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3 Partially directed walks
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Modelling of Polymers in Solution

Polymers: long chains of monomers

“Coarse-Graining”: beads on a chain

“Excluded Volume”:
minimal distance between beads

Contact with solvent:
effective short-range interaction

Good/bad solvent:
repelling/attracting interaction
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Modelling of Polymers in Solution

Polymers: long chains of monomers

“Coarse-Graining”: beads on a chain

“Excluded Volume”:
minimal distance between beads

Contact with solvent:
effective short-range interaction

Good/bad solvent:
repelling/attracting interaction

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction
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A Polymer Phase Transition: Collapse (θ-point)

Polymers are often ‘Fractal’: length n, spatial extension R ∼ nν and the mass
m ∝ n ∼ Rdfractal giving ν = 1/dfractal .

A “Phase transition” occurs as temperature is changed: Polymer Collapse, aka Coil-Globule
Transition, aka Θ-Point

R

T > Tc : good solvent swollen phase (coil): dfractal < d

T = Tc : Θ-polymer: dfractal ≈ 2

T < Tc : poor solvent — collapsed phase (liquid-like globule): dfractal = d
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The Canonical Polymer Lattice Model

Polymer → self-avoiding random walk (SAW)

Physical space → regular lattice eg Z
3 or Z

2

Sites — beads — monomers
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The Canonical Polymer Lattice Model

Polymer → self-avoiding random walk (SAW)

Physical space → regular lattice eg Z
3 or Z

2

Sites — beads — monomers

Introduced by Orr in 1947

Still no closed form solution for the number of walks of length n

Can consider limit n → ∞ as a critical phenomenon (de Gennes)
(as well as a phase transition in the thermodynamic limit as temperature is varied).
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The Canonical Collapsing Polymer Lattice Model

Interacting Self-Avoiding Walk (ISAW)

Start with a SAW and add ‘interactions’

Quality of solvent → short-range interaction energy −J

Interactions are between (non-consecutive) nearest neighbours
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Variations and extensions

ISAW even more difficult mathematically

From work of de Gennes and later by Duplantier and Saleur expect
“Tricritical” collapse transition

The n → ∞ critical phenomena changes from second order at high

temperatures to first order-like at low ones.

Thermodynamic limit phase transition is second order

At low temperatures sometimes can expect β-sheet structures: long
folds

Studies of effects of other forces and physical effects

Surface phenomena: polymer adsorption

Stiffness: rod-to-coil transition

Stretching polymers: micromanipulation experiments

Search for exactly solvable model . . . Start on the square lattice
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Generating functions versus partition functions

Partition function

Zn(parameters) =
∑

walks of length n

Boltzmann weight of configuration depending on parameters

and

Boltzmann weight = e−Energy of configuration/kBT eg. ω = eJ/kBT

where T is the temperature (β = 1/kBT ), while the generating function
is

G(z ; parameters) =
∑

n≥0

Zn(parameters) zn

However, often we evaluate a generating function in terms of composite
variables such as

x = pz

where p is a parameter. This comes about as a natural consequence of
the method.
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Generating functions versus partition functions II

Let our parameters be pj = eβǫj where −ǫj is the energy associated with
some countable feature of our walk. Let there be mj(ϕn) occurences of
this feature in walk configuration ϕn of length n. Then the partition
function

Zn(p1, p2, . . .) =
∑

ϕn

∏

j

pj
mj (ϕ)

and we define a reduced free energy as

κ(p1, p2, . . .) = lim
n→∞

1

n
log Zn(p1, p2, . . .)

Assuming this limit exists the radius of convergence zc(p1, p2, . . .) of the
generating function G(z; p1, p2, . . .) is related to the free energy as

κ(p1, p2, . . .) = − log zc(p1, p2, . . .)
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Phase transition

Critical phenonemon at n → ∞
“Thermal” phase transition as parameters are varied

Thermal phase transition implies non-analyticity in free energy and
hence zc as a function of the parameters.

We expect a collapse phase transition as ω is varied at
ω = ωt = eJ/kbTt
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Some Exponents

Generically we expect that for T ≥ Tt , where Tt is the tricritical
collapse θ-temperature

Zn ∼ A eκn nγ−1

which implies

G(z) ∼ A′

(z − zc)γ

Have already met the size exponent ν

Near the collapse transition we expect

κ ∼ C |T − Tt |2−α

This introduces the thermal exponent α.
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Some More Exponents

As we have just introduced, near the collapse transition we expect

κ ∼ C |T − Tt |2−α

Due to the relationship between the free energy and the radius of
convergence of the generating function the shape of the curve zc(T )
is related to α.

The exponent relating the n → ∞ critical phenomena and the
thermal phase transition of collapse is the so-called crossover
exponent φ. Eg.

R ∼ nνt R((T − Tt)n
φ)

where R is a scaling function.

It can be seen that
φ = 1/(2 − α)
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Partially directed walks: the beginning

Soon after Orr’s introduction of SAW workers defined restricted sets
of SAW so as to analyse SAW (Frisch, Collins and Friedman, 1951)

Fisher and Sykes (1959) considered partially directed walk
configurations so as to provide bounds on SAW numbers

Temperley (1956) had already considered them as models of
magnetic model phase boundaries

A flurry of activity occurred in the 1980’s with Szpilka, Privman,
Svrakic, Forgas and Frisch (yes the same one) considering
generalisations and adding various parameters
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What is a partially directed walk?

Partially directed walk on the square lattice

Starting at the origin allow only steps in the (1, 0) (East), (0, 1) (North) and (0,−1)

(South) directions
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No parameters: our first model

z

z

Partially directed walk of n = 21 steps

Generating function weight z
21

Boltzmann weight 1

G(z) =
1 + z

1 − 2z − z2

The generating function is rational with a simple pole (γ = 1) at
zc =

√
2 − 1.
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Our first Singularity diagram

1.0 2.0 3.0 4.0

0.1

(1,

√

2 − 1)

0.2

0.3

0.4

zc

ω
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Properties of a partially directed walk

Properties of a partially directed walk

sx

sy

horizontal span

vertical span

ny =

nx∑

j=1

|rj | vertical stepshorizontal steps andnx

r3
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Properties of a partially directed walk

sx = nx ∼ nν‖

sy ∼ nν⊥

〈|r |〉 ∼ nν
r

These have been found as ν‖ = 1, ν⊥ = 1/2 and νr = 0
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Counting vertical and horizontal steps separately

x

y

sx = nx = 8

Partially directed walk of n = 21 steps

Generating function weight x
8
y
11

including

fx

Boltzmann weight h
8

h = e
βfxwhere

ny = 11 vertical steps, horizontal stepsnx = 8

or h
8
z
21
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Counting vertical and horizontal steps separately

The generating stays rational

G(x , y) =
1 + y

1 − y − x − xy

Reinterpreting with a force parameter h = eβfx gives

G(z; h) =
1 + z

1 − z − hz − hz2
.

which has a simple pole at zc(h) =
√

h2+6h+1−1−h
2h .

This is an analytic function of h > 0 so no finite force produces a phase
transition.
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Rod to coil Transition

x

y

sx = nx = 8

Partially directed walk of n = 21 steps

ny = 11 vertical steps

Generating function weight x
8
y
11

including

fx

Boltzmann weight h
8

h = e
βfx , σ = e

β∆where

b

b
10

b
10

and k = 10 bends

σ

stiffness parameter site

bend parameter site

ℓ =
2nx − k − 2

2
= 2equivalently stiffness sites

or h
8
σ

2
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Counting vertical and horizontal steps separately

Privman and Frisch (1988) found the generating function and again
it stays rational.

Once again zc(b) is analytic function of b > 0 so no finite bend energy
produces a phase transition.
The rod-to-coil “phase transition” is a zero temperature effect.
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Interacting partially directed walks

Interacting partially directed walk of n = 21 steps

Generating function weight z
21

including

Boltzmann weight

ω = e
βJ

where

ω
6

m = 6 nearest neighbour contacts

nearest-neighbour “contact”

ω
6

(nearest neighbour energy −J)
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IPDW history

The psychedelic era

In 1968 and 1970 Zwanzig and Lauritzen considered a more
restricted set of walks (partially directed walks that must change
vertical direction after each horizontal step).

They found a collapse transition.

Their work went essentially unnoticed by the workers on
self-avoiding walks.

The Thatcher Years

During the 80’s there was lots of work on magnetic/liquid phase
boundaries including so-called Solid-on-solid models (aka Partially
directed walks in 2 dimensions)

Also work on related polymer adsorption transition in late 80s/early
90s
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IPDW history

In 1989 one generalisations of the adsorption problem was
considered by Veal, Yeomans (Oxford) and Jug.

They considered partially directed walks above a sticky wall but also
with nearest neighbour attraction.

They numerically analysed the transfer matrices and found an
accurate value of the tricritical point without any surface attraction
at

(ω, z) = (3.382976, 0.2955977)

ALO moves to Oxford and becomes interested in interfacial
phenomena like depinning and wetting transitions

One thing leads another and IPDW is considered
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Solution on the special curve z = 1/ω

Binder, Owczarek, Veal and Yeomans (1990) used the transfer matrix
method to examine the model along the curve

z = 1/ω

They found a singular point at the solution of a cubic giving

ωt
−1 =

1

9

[

(17 + 3
√

33)1/3 + (17 − 3
√

33)1/3 − 1
]2

= 3.3829757 . . .

They argued on physical grounds that this must be the tricritical point.
Further that for ω > ωt one has zc(ω) = 1/ω.

Interacting Partially Directed Walks Owczarek



Outline Polymers/Motivation The setup The beginning IPDW Variable flexibility

IPDW history

Using generating function methods one can easily find that

1 + G(z; ω = 1/z) =

√

1 − z

1 − 3z − z2 − z3

For ω > 3.382976 . . . the generating function is finite

Along this curve the singularity at (3.382976 . . . , 0.2955977 . . .) is
algebraic: a divergent square root singularity to be precise.

We define
γtangential

t = 1/2
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Singularity diagram 2
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The other side of the world

Whittington (Toronto) and Guttmann (Melbourne) continue their
quests for solution of SAW problems

Brak moves from Oxford to Melbourne and becomes interested in
SAWs and Polymers

Brak, Guttmann and Whittington investigate IPDW
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Temperley method

Now Brak and Guttmann had uncovered the method used by Temperley
in 1956

Consider the generating function for walks with last vertical segment
of length r

Find a recurrence for these by adding an extra column of walk

Use a q-series Ansatz
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Solution

Let us define the variable
q = ωz

so the special curve becomes q = 1.
Solving the recurrence gives

1 + G(z; ω) =
z2(z − 1)g

(1)
0

z2(1 + ω + z − ωz)g
(1)
0 − 2zg

(1)
1

.

where

g (1)
r = z r + z r

∞
∑

m=1

(z − q)mqm(m+1)/2

∏m
k=1(q

k − ω)
∏m

k=1(q
k − 1)

qmr .
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q-Bessel

The functions involved were later indentifies as q-Bessel functions.

Each g
(1)
r converges for any q < 1

So the singularities of G(z; ω) may be at qk = 1 and qk = ω for all
natural numbers k

Singularites at qk = ω for all natural numbers k actually occur

This implies essential singularities on approaching z = 1/ω from
below.

There may also be a simple pole when the denominator is zero: this
certainly happens when ω = 1 and for some ω > 1.

These singularities should meet at the tricritical point.

But how does one prove it!

So they went to lunch ...
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Napkin 1
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The proof

Can find a functional equation for the functions g
(1)
r which lead to a

continued fraction expansion

Use theory of continued fractions

Worpitzky’s theorem
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Final singularity diagram for IPDW

1.0 2.0 3.0 4.0

0.1

(1,

√

2 − 1)

0.2

0.3

0.4

(0.296, 3.38)

z = 1/ω

Essential singularities

Generating function converges

line of simple poles

algebraic singularity

zc

ω
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But is it collapse?

Prellberg moves to Melbourne and then Owczarek moves to Melbourne

Prellberg, Owczarek, Brak and Guttmann 1993 produced series using
the recurrences for walks of length up to several thousand.

They numerically verified the scaling predictions of Owczarek,
Prellberg and Brak 1993

So what did Owczarek, Prellberg and Brak 1993 do?
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OPB 1993

Made predictions for the scaling of properties above, below and
around the collapse point.

Solved a semi-continuous variant of IPDW and showed explicitly the
tricritical scaling around ωt

Generalised the solution of Brak, Guttmann, Whittington to
distinguish horizontal to vertical steps

Use perturbation expansions (non-rigorous) to demonstrate tricritical
scaling in the discrete IPDW model

Showed how the generating function of the semi-continuous model
was a simple limit of the discrete model

Connect the work of Zwanzig and Lauritzen and IPDW

Relate SOS model of magnetic model interfaces and IPDW
generating functions

In an appendix solve a generalisation that distinguishes positive and
negative vertical steps
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Scaling 1

The following were found exactly for the semi-continuous model and
verified for the discrete IPDW

At high temperature ω < ωt we have γ = 1, ν‖ = 1, ν⊥ = 1/2 and
νr = 0

At the collapse point precisely ω = ωt we have γ ≡ γdirect
t = 1/3,

ν‖ = 2/3, ν⊥ = 1/3 and νr = 1/3

For low temperatures we have ν‖ = 1/2, ν⊥ = 1/4 and νr = 1/2

Later work by Owczarek (1993) shows the low temperature scaling of the
partition function does not follow the usual form
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Singularity diagram: calculated from continued fractions
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Tricritical point scaling region

Tricritical point

z = 1/ω

z = 1/ω

tangential approachdirect approach

Divergent Square root singularityDivergent Cube root singularity

Simple pole
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Semicontinuous IPDW

A variant is to allow the vertical sections of the walk be of any Real
length rather than discrete

Naturally horizontal and vertical “steps” are distinguished

Semi-continuous interacting partially directed walk

o1

Boltzmann weight ω
o1+o2

o2
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Solution of the semi-continuous model

The solution can be written in terms of Bessel functions:

1 + Gsemi−cont(x , y ; ω) = σ−1 Jλ(σλ)

J ′
λ(σλ)

where σ =
(

4x
βJ

)1/2

and λ = βJ
τ−βJ while ω = eβJ and y = e−τ

Near the tricritical point we have

Gsemi−cont(x = 1, y(λ); ω(ζ)) ≈ −
(

ζ

1 − σ2

)1/2
Ai(λ2/3ζ)

Ai′(λ2/3ζ)
λ1/3
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Tricritical scaling

This gave us verification of the general scaling ansatz

G(z; ω) ∼ 1

(z − zt)γt
S

(

ω − ωt

(zt − z)φ

)

where zt ≡ zc(ωt) with γt ≡ γdirect
t = 1/3 and the crossover exponent

φ = 2/3.

This is consistent with our calculated value of 1/2 for γtangential
t as we

must have
γtangential

t = γdirect
t /φ

It also follows that the thermal exponent α = 2 − 1
φ=1/2.
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IPDW differentiating horizontal and vertical steps

Another variation solved was distinguishing horizontal and vertical steps
with counting variables x and y : similar q series solution

Interacting partially directed walk of n = 21 steps

Generating function weight

including

Boltzmann weight

ω = e
βJ

where

ω
6

m = 6 nearest neighbour contacts

nearest-neighbour “contact”

ω
6

and

x

y

x
8
y
11

h
8

h = e
βfx

fx

sx = nx = 8

ny = 11 vertical steps, horizontal steps,nx = 8

z
21

or ω
6
h

8

Horizontal force interpretation not realised at the time however!
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The final nail

In 1995 Prellberg rigorously proved uniform asymptotic results for
q-Bessel functions in the context of the Bar graph polygon model.

However the functions involved in IPDW are related

So we left it at that .... after all, all the results were in the
literature, though not in one place.
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Stretching polymer

With the advent of instruments in the early naughties that can
micromanipulate single polymer molecules there was a renewed
interest in the behaviour of polymers when placed under a stress

Rosa, Marenduzzo, Maritan, and Seno (2003) cleverly reinterpreted
IPDW distinguishing horizontal and vertical steps as a model of
stretching (horizontally) collapsing polymers.

This can be done simply by substituting

x = hz , y = z with h = eβfx

They plotted critical force-temperature curves and conjectured
various exponents.
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IPDW differentiating horizontal and vertical steps

Interacting partially directed walk of n = 21 steps

Generating function weight

including

Boltzmann weight

ω = e
βJ

where

ω
6

m = 6 nearest neighbour contacts

nearest-neighbour “contact”

ω
6

and

x

y

x
8
y
11

h
8

h = e
βfx

fx

sx = nx = 8

ny = 11 vertical steps, horizontal steps,nx = 8

z
21

or ω
6
h

8
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Adding stiffness to collapsing polymers

For ISAW it was seen by Bastolla and Grassberger (1997) that
adding stiffness can change the collapse transition to first order

Different in effect in different dimensions and needs sufficient
stiffness

Zhou, Zhou, Zhong-Can Ou-Yang, and Kumar (Phys. Rev. Lett.
(2006) studied
“Collapse Transition of Two-Dimensional Flexible and Semiflexible
Polymers”

Actually considered IPDW modified

Used analytic approximation and Monte Carlo

Conjectured that the collapse transition becomes first order with any

stiffness added
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Interacting partially directed walk of n = 21

Generating function weight

including

Boltzmann weight

ω = e
βJ

where

ω
6

m = 6 nearest neighbour contacts,

nearest-neighbour “contact”

ω
6

ny = 11 vertical steps,

x

y

x
8
y
11

h
8

h = e
βfx

fx

sx = nx = 8

ℓ = 2 stiffness sites

stiffness parameter site

σ = e
β∆

σ
2

σ
2

horizontal steps,nx = 8

or ω
6 h

8
σ

2
z
21
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Solution

Owczarek and Prellberg, J. Stat. Mech.: Theor. Exp., P11010:1-14, 2007
“Exact Solution of Semi-Flexible and Super-Flexible Interacting Partially
Directed Walks”
The solution for the generating was found using the Temperley-like methodology:

1+G(z ; h, σ, ω) =
(1 − ω)

2

»

H(z, zω, hz2(ω − 1)) −
„

(1 + ω)

2
+

(1 − ω)

2

hz

1 − hz(σ − 1)

«–−1

where

H(y, q, t) =
H(y, q, qt)

H(y, q, t)
and H(y, 1, t) =

1

2y

»

1 + y − t −
q

(1 + y − t)2 − 4y

–

with

H(y, q, t) =

∞
X

n=0

q

“

n
2

”

(−t)n

(y ; q)n(q; q)n
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Solving along q = 1

Let u = ω/(ω − h(σ − 1)), then along the curve q = 1 the generating
function has an algebraic singularity at

ωa(h) =

(

ω + h

ω − h

)2

and for u > 1 a simple pole at

ωp(h, u) =
(ω + uh)(ω + 2h − uh)

(ω − uh)(ω − 2h + uh)

The singularites coincide for u = 1, ie. σ = 1.
So, minor change to the solution: this changes the singularity structure it
seems ... lunch
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Napkin 2
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Singularity diagram: no stiffness

1.0 2.0 3.0 4.0

0.1

(1,

√

2 − 1)

0.2

0.3

0.4

(0.296, 3.38)

z = 1/ω

Essential singularities

Generating function converges

line of simple poles

divergent algebraic singularity

∆ = 0

Fully Flexible

zc

ω
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Singularity diagram: adding positive stiffness

1.0 2.0 3.0 4.0

0.1

0.2

0.3

0.4

z = 1/ω

Essential singularities

Generating function converges

line of simple poles

algebraic singularity

simple pole

∆ > 0

Flexibility reduced

zc

ω
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Singularity diagram: encouraging bends

1.0 2.0 3.0 4.0

0.1

(1,

√

2 − 1)

0.2

0.3

0.4

(0.296, 3.38)

z = 1/ω

Essential singularities

Generating function converges

line of simple poles

convergent algebraic singularity

∆ < 0

Bending enhanced

zc

ω
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Exponents

Fully flexible case (∆ = 0): we have a second-order collapse transition
with

γtangential
t =

1

2
γdirect

t =
1

3
φ =

2

3
,

Super-flexible case (∆ < 0): we have a second-order collapse transition
with

γtangential
t = −1

2
γdirect

t = −1

3
φ =

2

3
,

Semi-flexible case (∆ > 0): first order transition.

Interacting Partially Directed Walks Owczarek



Outline Polymers/Motivation The setup The beginning IPDW Variable flexibility

Scaling region 1

Using Lemma 4.3 from Prellberg (1995), a result completely analogous to
Theorem 5.3 in Prellberg (1995) can be obtained for H(y , q, t), i.e. an
asymptotic expansion in q = 1 − ǫ uniformly valid for all values of t and
y , which reads

H(y, 1−ǫ, t) =
1

2y

"

1 + y − t −
 

− Ai′(αǫ−2/3)

α1/2ǫ−1/3 Ai(αǫ−2/3)

!

q

(1 + y − t)2 − 4y

#

(1+O(ǫ)) .

Here, α = α(y, t) is a function of y and t which is known exactly.
Near the tricritical point

α(y, t) ∼
„

4

1 − (t − y)2

«4/3 (1 + y − t)2 − 4y

4

for small (1 + y − t)2 − 4y .
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Scaling region 2

H(y , 1 − ǫ, t) ∼ 1

2y

[

1 + y − t + ǫ1/3 Ai′(αǫ−2/3)

Ai(αǫ−2/3)

(1 − (t − y)2)2/3

21/3

]

.

The behaviour of this expression is determined by the function
f (z) = −Ai′(z)/ Ai(z)
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The function f (z) = −Ai′(z)/ Ai(z)

The large-z asymptotics allows for matching for ǫ → 0 and positive
α.

For negative α, the argument of f is negative. As f (z) has a simple
pole at z = −2.3381 . . ., for any fixed α < 0 we have a pole at a
finite value of ǫ.

As α tends to zero, the locus of this pole scales as ǫ2/3.

5

0

−2

3

z

87

3

6

2

1

−1

4

−3

210−2 −1

The function
√

z is plotted for comparison.
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What next?

Interacting partially directed walk of n = 21

Generating function weight

including

Boltzmann weight

ω = e
βJ

where

ω
6

m = 6 nearest neighbour contacts

nearest-neighbour “contact”

ω
6

and

z
21

h = e
βfx

fx

sx = nx = 8

fy

sy = 3

horizontal span

vertical spansy = 3

sx = 8

ny = 11 vertical steps, horizontal steps,nx = 8

v = e
βfy

h
8
v
3

h
8
v
3

sy = ny+
− ny

−

= 8 − 5Note

or ω
6
x

8
y
8
+y

5
−
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The solution

The solution can be found in (you guessed it) Owczarek, Prellberg and Brak (1993) as

1 + G(x, y+, y−, ω) =
1 − ω

2



H(x, y+, y−, ω) − (
1 + ω

2
+

1 − ω

2
x)

ff−1

where

H(x, y+, y−, ω) =
(A+

0 + B+
0 )(A+

1 − B+
1 ) − (A−

0 + B−
0 )(A−

1 − B−
1 )

(A+
0 + B+

0 )(A+
0 − B+

0 ) − (A−
0 + B−

0 )(A−
0 − B−

0 )
.

and

A±
r =

∞
X

m=0

x2m(ω − 1)2m(q+q−)m(m+r)q±
m

Qm
k=1 P[(q+q−)k−1q±]P[(q+q−)k ]

B
±
r =

∞
X

m=0

x2m+1(ω − 1)2m+1(q+q−)m(m+r)q±
r+m+1

P[(q+q−)mq±]
Qm

k=1 P[(q+q−)k−1q±]P[(q+q−)k ]
.

and P[l] = (l − 1)(l − ω) Note that q+q− = q2, and given that all the parameters are positive we

have q =
√

q+q−. But what can we say about the singularity structure, phase transition, scaling

etc ...
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Conclusions

Interacting partially directed walks is an exactly solvable model of
polymer collapse with interesting combinatorics and analytic
structure
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Interacting partially directed walks is an exactly solvable model of
polymer collapse with interesting combinatorics and analytic
structure

The literature contains the occasional gem (ie Temperley,
Zwanzig/Lauritzen etc)
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Conclusions

Interacting partially directed walks is an exactly solvable model of
polymer collapse with interesting combinatorics and analytic
structure

The literature contains the occasional gem (ie Temperley,
Zwanzig/Lauritzen etc)

Always try to reinterpret your own work
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Conclusions

Interacting partially directed walks is an exactly solvable model of
polymer collapse with interesting combinatorics and analytic
structure

The literature contains the occasional gem (ie Temperley,
Zwanzig/Lauritzen etc)

Always try to reinterpret your own work

Lunch is a useful scientific tool
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