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Bulk case

e each site occupied (wet) with probability p
e unoccupied (dry) with probability g =1—p
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s e critical behaviour — phase transition at p = p.
e for p < pc, all clusters are finite
e for p > pc, there exists an infinite cluster
e probability of a given site being part of an infinite cluster
= percolation probability P(p)



A brief introduction to percolation theory

cluster size distribution

Introduction
Bulk case
Wet wall

Dry wall

critical behaviour — phase transition at p = p,

for p < pe, all clusters are finite

e for p > pc, there exists an infinite cluster

probability of a given site being part of an infinite cluster
= percolation probability P(p)

P(p) ~ (p—pc)’, P> pc

[ = critical exponent for percolation probability
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Pr(C occupied): 1
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Bulk case

Wet wall A A
C C
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Pr(C occupied): 1 0
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Directed Compact Percolation

2

pq p? ¢° pq g

probability of cluster = p*q°, g=1—-p
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Bulk case
Wet wall
Dry wall

Q(p) = sum of probabilities of finite clusters

P(p) = 1-Q(p)

= percolation probability
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Directed Compact Percolation

z = weighting on each step of the walk

G(z) = generating function for staircase polygons

Q(p) = 2 G(pq)



Directed Compact Percolation

Bulk case 1 — 2Z — 1 — 4Z
Wet wall G(z) =
Dry wall 2
1-2p(1—p)—[2p—1]
Q(p) =
0, p<3
P(p) =
22 p>3

critical exponent 5 =1



Directed Compact Percolation near a wet wall

Bulk case
Wet wall
Dry wall

~ Vv



Directed Compact Percolation near a wet wall

Bulk case
Wet wall
Dry wall

~ Vv



Directed Compact Percolation near a wet wall

Bulk case
Wet wall
Dry wall

e relate to a directed walk — Dyck paths



Directed Compact Percolation near a wet wall

Bulk case
Wet wall
Dry wall

~ Vv

e relate to a directed walk — Dyck paths
e weight walk with k each time it touches x =1
e G(z, k) = generating function for walks



Directed Compact Percolation near a wet wall

Bulk case
Wet wall
Dry wall

relate to a directed walk — Dyck paths

weight walk with x each time it touches x =1

G(z, k) = generating function for walks
Q(p) = 1G(pg.1)



Directed Compact Percolation near a wet wall

i 1—-2z—+/1—-4z
Wet wall G(Z7 1) -

Dry wall 2z

Qlp) = %G(pq, 1)

1-2p(1—p)—[2p—1

2p?
0, p<3
P(p) =
22 p>3

critical exponent 5 =1
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Dry wall

e relate to pairs of non-intersecting directed walks.
e add a weighting of k for each contact with the wall
¢ G(z, k) = generating function for vesicles



Directed Compact Percolation near a dry wall

Bulk case
Wet wall

Dry wall

relate to pairs of non-intersecting directed walks.

add a weighting of x for each contact with the wall

G(z, k) = generating function for vesicles

Q(p) = > G(pa, )
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Directed Compact Percolation near a dry wall

k(K — 2) w\ [(w—22° — Jw(w — 4z%)
S G(z,k) = N 1+ (1 + ;) 252 Ok —2)
Dry wall
Z2 — r — s—r k—1
+ — Zzz (G + zCri1) Z Cw*™ ", where w= =
r=0 s=r+1
1
C, = r'" Catalan number = <2r>
r+1\r
1
Q(p) = —G(pg, 5)



Directed Compact Percolation near a dry wall

Bulk case
Wet wall

Dry wall
0, p<3
P(p) =
2p—1)>?
( pp3 ) , P> %

critical exponent 3 = 2
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e interpolates between wet and dry wall cases

Percolation
problem

Method of

sl e a wall site is wet with probability p,, dry with probability
dw = 1- Pw

e wet wall: p, =1, dry wall: p,, =0.



Directed Compact Percolation near a damp wall

. interpolates between wet and dry wall cases
R
Method of
solving

a wall site is wet with probability p,,, dry with probability
dw = 1- Pw

wet wall: p, =1, dry wall: p,, =0.

relate to pairs of non-intersecting directed walks
e weighting with z for each step,
e weighting with k1 for wet wall sites,
e weighting with k; for dry wall sites.
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Directed Compact Percolation near a damp wall

Percolation
problem
Method of
solving

probability = paw p* pwq q Pwq P aqw = Poa%p*q"

weighting = /1%/1326



Directed Compact Percolation near a damp wall

Percolation A A
problem Q(p,pw) = sum of probabilities of finite clusters
solving

G(z,k1,k2) = generating function for pairs of walks

Pw qw

Q(p.pw) = 4°G <pq,,)
pa’ q



Method of solving

Percolation
problem

vd 4 t
Wted o Gz,m1,m2) = ) Z{ (k1 k2)z
£>0
where:
Z(k1,k2) = partition function for vesicles with a free end

(vesicles ending at any point, after t time steps)



Method of solving

Percolation

problem t+1
Method of z
sling ZV (k1 k) = Y ZY(xI1)
x=0
where:
Z/(x|1) = partition function for vesicles with a fixed end

(vesicles ending at x after t time steps)



Method of solving

Percoltion e obtain expression for Z}(x|1) in terms of single walk

Tt
Mothed of partition function Z;(x|1) using Gessel-Viennot
determinant:

1] Z5(x1)  Zg(x+2)1)
v _+ t t
2o = 0 ze (xll) Z(x 4 21)



Method of solving

t+1

21_{/ = ZZ:/(X“_)
x=0
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Method of solving

t+1
v = Y ZV(x()
ﬁ;ﬁﬂﬂﬂof x=0
. 1
zy = ;2(Cr+125r(1\1)+(ff2—1)25(1\1))

. 1
Zy = R—Q(C,+1Z§r+2(1\1))



Method of solving

t+1
Zr = 3z ()
sl =0
. 1
% = = (GuB D+ (-1 Z )

. 1
Zy = R—Q(C,+1Z§r+2(1\1))



Method of solving

e obtain set of partial difference equations for Z7(x|1)
e leads to an expression for Z3 (1|1):
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Method of
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Percolation

problem
Method of
solving

Method of solving

e obtain set of partial difference equations for Z7(x|1)
e leads to an expression for Z3 (1|1):

73 (1]1) = fd (0(c—1)(c+1)( wZ "+ Z CowS"

s=r+1

—0(d — 1)wwgr+ i Cswy

d s=r+1

)



Method of solving

e obtain set of partial difference equations for Z7(x|1)
e leads to an expression for Z3 (1|1):

Percolation
problem

e 2 (c+1)(c-1) . ~~ -
z,(11) = — (0(c—1)cwc +s;1 Cowy,
d+1)(d—1 -
—0(d — 1)Wwdr+ Z Cswd'>
s=r+1
where:
2 2y _ 2 4
(1—cz9)(1—4dz%) = 1— (k1 +kp—2)z"— (k2 — 1)z,
c d
We = Wd =

(c+1)% (d +1)%’



Method of solving

G(z,k1,k2) = ZZZ’(m,m)zt

Percolation

problem t>0
i
. 1
B = Z(CnB )+ (ke - )2 ()
vd 2 1 s
Z2r+1 = E(Cr+lz2r+2(1‘1))



Method of solving

e recurrence for Z3 (1]1):

Percolation
problem
Method of

solving K/2(wc - wd) C

Z5(11) = — Gt (we + wa) Z3rio(1]1)

—wcwd25,+4(1]1)



Percolation
problem
Method of
solving

Method of solving

e recurrence for Z3 (1]1):

K’2(WC - (,dd) C

Z5(1)1) = — G+ (we +wa)Z342(111)
_chdz2sr+4(1’1)
Recall:
1| Z5(x]1)  Z5(x +21)
v _ t t
D)=z, Z(x+211)



Method of solving

Percolation

problem yid (1 | 1)
Method of 2r
solving

We—wd | Gy1 Z3,5(1]1)
ra(c—d) | Crea Za(11)

b wawaZy o(11)



Method of solving

Percolation We — Wy Cr 75 (1‘1)
problem ZY(111) = ¢ +1 2r+2 4
shﬂfvti':,ogd of 2r( | ) KQ(C — d) Cr+2 Zzsr+4(]-‘1) + WCWCIZQ,,+2(1|1)
oo 1 o0
V _2r __ 2r
; 2y 2" = m ; (C,Z§,+2(1|1) - CF+1ZZSr(1|1)) z

RoWcWd
72 — Wewy



Method of solving

G(z,k1,k2) = ZZZ’(m,m)zt

Percolation

problem t>0
i
. 1
B = Z(CnB )+ (ke - )2 ()
vd 2 1 s
Z2r+1 = E(Cr+lz2r+2(1‘1))



Percolation
problem
Method of
solving

G(z, K1, K2)

Method of solving

< s=r+1 we 5o

= (26,“ <i> > cut +Zc,+1 <i> 5 csw§>

2\ & s oo 5 0o .
+7 C i c _ o c
e (S (2) Zet-Te(2) £ee

s=r+1

4 (gqﬂ (i) Z Cscud+—2c,+1 (i) i wa,)

wd s=r+1 Wy 12
cd ) 2\ = 1 oo 2\7 oo
- Cri1 (*) Csws - G | =— Cswz
e d)2 <§) wd 5:221 wd ;a wg 5:222
oo - -
w005 =L (s (S onr - S0
(c -d) \iZ% prd
c(d> - 1) e 2\’ 1 > 2\
—6(d — c (Y _ r& (2
( )W(C a7 Z e o » Z::o (=

+

—0(d — 1 1 c 2\’ cdry
(_) +7 Z r+1 7 m



Percolation
problem
Method of
solving

Method of solving

Q(p.pw) = 4°G (pq,pw qw)

= pPq, K1 = y K2 = —



P lation

erco
problem
Method of
solving

Method of solving

Pw q
Q(P7Pw) = q2G <pq7W7W)
pPa q
Pw aw
e z = pq, K1 = —, kp = —
pq q
d = Pw — P _ P
- 9 wC pq7 wd - T
P Pw

We = Z



Percolation
problem
Method of
solving

G(z, K1, K2)

Method of solving

< s=r+1 we 5o

= (26,“ <i> > cut +Zc,+1 <i> 5 csw§>

2\ & s oo 5 0o .
+7 C i c _ o c
e (S (2) Zet-Te(2) £ee

s=r+1

4 (gqﬂ (i) Z Cswd+—ZC,+1 (i) i wa,)

wd s=r+1 Wy 12
cd el 2\ = 1 oo 2\7 oo
- Cri1 (*) Csws - G | =— Cswz
roz(c — d)2 (; wy 5:221 wg ;} g 5:24.2
oo - -
w005 =L (s (S onr - S0
(c -d) \iZ% prd
C(dz -y (& 2\ 1 2\’
o@D (e () - Lye (=
roz(c —d)2 \Z wy wq 2 o

+

& -1 z - 2\’ cdk
B () S ()
d(c —d) wd ) 1=p wy wele — d)(1 — cd)



Percolation
problem
Method of
solving

G(z, K1, K2)

Method of solving

< s=r+1 we 5o

= (26,“ <i> > cut +Zc,+1 <i> 5 csw§>

2\ & s oo 5 0o .
+7 C i c _ c (%= c
(B (5) B Ee (D) S

s=r+1

4 (gqﬂ (i) Z Cswd+—ZC,+1 (i) i wa,)

wd s=r+1 we) Lo

d o 2\r oo 1 SN’ oo
c Z(ZCrH(Z—) chwjfch,<i> S Gl

Koz(c — d) —o wd ) S wg =% W) s

2 -1 sl cd
w02 (B g (S ea - Ser )
r=0 r2zlc —

cdry
It S
we(e — d)(1 — cd)

)



G(z, K1, K2)

Percolation
problem
Method of
solving

Method of solving

1 . 22 2 r oo .
Z Cri1 (*) Z Csw? + Z Cri1 Z Cow?
R “e/ s=ri1 We /) s=rt2

2\ = ) 2N\l
+7 G C. s C, — C. s
e (Son(5) B e ,z;r(%) ot

s=r+1 s=r12

4 (gCHJ (i> Z Cswd+—ZC,+1 (i)r i Cw;)

wy wqg

s=r+1 sori2
? (S () S et (2) 5 e
e ——— r+1 | —— Swd - — [ — swS,
e d)2 r=0 “d /) s=rt1 wd ) sZrio

+6(c — (22 Cri12" t— (Z Cry12’ — Z Gz~ ))

cdry
It S
we(e — d)(1 — cd)



G(z, K1, K2)

Percolation
problem
Method of
solving

Method of solving

(Z C,+1z Z Csw +ZC,+1Z Z C5w>

s=r+1 s=r42

+m <Z C,+1z Z Csu ZC,Z -1 Z Csm>

s=r+l1 s=r+2

4 (gqﬂ (i) Z Cswd+—ZC,+1 (i)r i wa,)

Wy wWd

s=r+1 s=r+2
“ (S (22)2c 25a(2) 5 av
- 7 5 r+1 - Swd I Swd
Koz(c — d)2 =0 wd / s=rt1 wd /) s=rt2

+6(c — (22 Cri12" t— (Z Cry12’ — Z Gz~ ))

cdky
+ -
we(c — d)(1 — cd)



Percolation probability for damp wall

Percolation
probability

(2p - 1)?
P s Pw — 5 >
(P pw) p2(p — pw + ppw)’

1
2



Percolation probability for damp wall

1
0 p<3
P(p, pw) =
Percolation & l
probability P2(p—pw+ppw) p > 2
2p—1 1
t: P(p,1) = L= -
we (pv ) P2 , Pp> 2
dry: P(p,0) Gp—1y .1
ry: = — =
y: P(p, S P>s

e same critical exponent as in dry wall case, 3 = 2 (except
for p, = 1, the wet wall case, with 3 = 1)
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Bulk case:

Further work




Mean length of finite clusters

Wet wall case:

Further work

0
L(p) = ¢°5-(2G(z,K))
0z z=pq, k=1




Mean length of finite clusters

Dry wall case:

Further work
[e.e]

L(p) = %Z(2r+1)C,zr Y Gz
r=0

= s=r+1

2
q—z 2r +2)Cryp2 M Z Cz°
P r=0 s=r+1



Mean length of finite clusters

Dry wall case:

1 8E(1622
L(p) = 3(—5+4z+6\/1—4 —(WZ)

Further work 8p

N 2(3 —4z)(1 47: 4z)K(1622)>
3-2
+ 6(p — pc)q(p3p)

where z = p(1 — p)



Further work

e mean length of finite clusters

Further work

e mean number of wall contacts for finite clusters

e solving problem for general seed width m (currently using
m=1)

e investigating effect of bias towards or away from the wall —
introducing p, and py
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A
C
Further work B
Pr(C occupied): 0
A
C
B

Pr(C occupied): p
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Pr(C occupied):

Pr(C occupied):

Further work

A
C
B
0
A
C
B
Pd

Pu
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e mean length of finite clusters

Further work

e mean number of wall contacts for finite clusters

e solving problem for general seed width m (currently using
m=1)

e investigating effect of bias towards or away from the wall —
introducing p, and py
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