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What is steric stabilisation?

Entropic repulsion between the colloidal particles.
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What is sensitised flocculation?

Polymer adsorbs and pulls the particles together.
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History

Paths in a slit
R. Brak, A. L. Owczarek, A. Rechnitzer
and S. Whittington Journal of Physics A: Mathematical and

General Volume 38 (2005) pages 4309–4325.

A directed path in a slit of width w .

Boltzmann weights a and b for interactions with lines (walls).

Solution: see Andrew’s talk

Loops — start and end on y = 0.

a

b

w
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Phase diagram for the half-plane

Consider the half-plane

Let us take the limit w → ∞ first.

The thermodynamic limit (n → ∞) free energy
κhalf−plane(a) = lim

n→∞
log Z 1/n

n (a) can be found exactly.

There are 2 phases characterised by density of visits:

ρ = lim
n→∞

〈u〉
n

=
∂κ(a)

∂ log a

where the partition function is

Zn(a) =
∑

u

cn,ua
u

with cn,u being the number of walks of length n with u visits to
the wall.

The limit n → ∞ has been taken after w → ∞.
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Phase diagram for the half-plane

Consider the half-plane

Let us take the limit w → ∞ first.

The thermodynamic limit (n → ∞) free energy
κhalf−plane(a) = lim

n→∞
log Z 1/n

n (a) can be found exactly.

There are 2 phases characterised by density of visits:

desorbed a ≤ ac = 2 : κhalf−plane = log 2 ρ = 0
adsorbed a > 2 : κhalf−plane = log

(

a/
√

a − 1
)

ρ > 0

a

zc ρ
1/2

logalog2ac = 2



Polymers in slabs

Owczarek

Outline

Motivation

Directed walks

Half-plane

slit Analysis

SAW model

Numerics

Scaling

Asymptotics

Conclusions

Phase diagram for the half-plane

Consider the half-plane

Let us take the limit w → ∞ first.

The thermodynamic limit (n → ∞) free energy
κhalf−plane(a) = lim

n→∞
log Z 1/n

n (a) can be found exactly.

There are 2 phases characterised by density of visits:

Jump in the specific heat

Second order phase transition

Crossover exponent φ = 1/2 where φ can be found from
〈u〉 ∼ nφ at a = ac
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Partition function

The finite slit partition function

Zn(w ; a, b) =
∑

u,v

cn,u,v(w)aubv

where cn,u,v (w) is known as the ‘density of states’ and is the number
of walks in a slit of width w with u visits to the bottom wall, v visits
to the top wall and being of length n. Note that the free energy for
the finite width slit is

κ(w ; a, b) = lim
n→∞

1

n
log Zn(w ; a, b)
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Analysis of the slit solution

Phase transitions

For finite w , κ(w ; a, b) is an analytic function of a and b.

So no phase transitions for finite w .

However in the limit w → ∞ (infinite slit) there are
non-analyticities (phase transitions).

The free energy κ(w ; a, b) in the limit w → ∞ can be found

The free energy κ(w ; a, b) for large widths w can be found
asymptotically

Special points exist where more can be done

Special points

For certain points in the a, b plane namely

(a,b) ∈ {(1, 1), (2, 1), (1, 2), (2, 2)}
and on the curve ab = a + b.

we can find κ(w ; a, b) exactly at any width w at these points.
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On the special curve

Special curve

when ab = a + b the free energy is given by

κ = log

(

a√
a − 1

)

.

Importantly, this is independent of the strip width, w .

1/2

a

zc

ac = 2
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On the special curve

Special curve

when ab = a + b the free energy is given by

κ = log

(

a√
a − 1

)

.

Importantly, this is independent of the strip width, w .

1/2

a

zc

ac = 2 a

zc

ac = 2

1/2
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The limit w → ∞ for arbitrary a, b

The infinite slit limit

The free energy of the infinite slit

In the limit w → ∞ one can calculate exactly

κinf−slit(a, b) = lim
w→∞

κ(w ; a, b)

We have the following

κinf−slit(a, b) =















log 2 a, b ≤ 2

log
(

a√
a−1

)

a > 2 and a > b

log
(

b√
b−1

)

otherwise

The free energy depends on b !

Free energy of infinite slit and half plane are not equal if b > 2
and a < b
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The phase diagram for directed model

Phase transitions
infinite-slithalf-plane

des ads bottom

a = bb

bc = 2

ads top

a aac = 2

b

ac = 2

des ads

Black = 2nd order (φ = 1/2) and pink = 1st order.

Left-hand diagram: w → ∞ and then n → ∞.

Right-hand diagram: n → ∞ and then w → ∞.

The order of n and w limits really does matter!
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Steric stabilisation and sensitised flocculation

Forces

Compute forces between walls from ∂κ(w)
∂w

from large w

expansion of κ(w ; a, b).

There are attractive and repulsive regimes.

For various regions of the (a, b)-plane we have:

long-ranged repulsive force,
short-ranged repulsive force,
short-ranged attractive force,
and a line of zero force dividing the last two.

The zero-force line is not a phase boundary.
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Steric stabilisation and sensitised flocculation

Force diagram

a2

2

short range
attraction

b

zero force

long range
repulsion

short range
repulsion
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The SAW model in three dimensions

Self-avoiding walks in a slab

A self-avoiding walk in a slab of width w .

Boltzmann weights a and b for interactions with planes (walls).

Start on z = 0 and finish anywhere
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Half-space for 3d SAW

Self-avoiding walks in a half-space

A self-avoiding walk in a half-space has been studied rigorously
and numerically.

Free energy is known to exist

A phase transition has been proved to exist

The adsoption transition has been seen numerically

The crossover exponent φ = 1/2 as for directed 2d walks but
other exponents are different (eg entropic exponents).
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Partition function

The partition function

Zn(w ; a, b) =
∑

u,v

cn,u,v(w)aubv

where cn,u,v (w) is known as the ‘density of states’ and is the number
of walks in a slab of width w with u visits to the bottom wall, v visits
to the top wall and being of length n. Note that the free energy for
the slab is

κ(w ; a, b) = lim
n→∞

1

n
log Zn(w ; a, b)
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Rigourous results

Rigorous work

E. J. Janse Van Rensburg, E. Orlandini and S. G. Whittington

Journal of Physics A: Mathematical and General Volume 39

(2006) pages 13869-902.

Concatenation arguments and new pattern theorem (Kesten
patterns) for walks in slabs lead to a number of results.
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Rigorous results continued

Rigorous work

Existence of the limiting free energy: that is. κ(w ; a, b) exists
for all a, b and all w .

Montonic properties of the free energy: the limiting free energy
is a strictly increasing function of the width w in some region of
the phase diagram: implies repulsive force exerted by polymer

Equality of half-plane and slit free energies in certain parts of
phase diagram

Bounds on the location of the zero force curve

Points to the structure of phase diagram similar as directed
walks in 2d
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Self-avoiding walks in slabs using numerical
techniques

Self-avoiding walks in slabs

E. J. Janse Van Rensburg, E. Orlandini, A. L. Owczarek, A.

Rechnitzer and S. G. Whittington Journal of Physics A:

Mathematical and General Volume 38 (2005) pages L823–L828.

Monte Carlo and series analysis found phase diagram of same
shape as the two-dimensional directed walk model!

E. J. Janse Van Rensburg, E. Orlandini, A. L. Owczarek, A.

Rechnitzer and S. G. Whittington Journal of Physics A:

Mathematical and General soon

Monte Carlo and series analysis now verifies that most aspects of
the phase diagram are the same as the exactly solved
two-dimensional directed walk model!

Proposes and confirms a scaling theory
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Exact enumeration and series analysis

Exact enumeration

Exact enumeration of cn,u,v (w) for n ≤ 22 and w ≤ 8.
Use Ratio method to infer movement of free energy with changing
width

The estimated adsorption transition for the half-plane is
a = ac ≈ 1.33.
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Exact enumeration and series analysis

Define
Rn(a, b; w) =

√

Zn(a, b; w)/Zn−2(a, b; w)

which one expects behaves as

Rn(a, b; w) = exp(κ(w , a, b))[1 + B/n + o(1/n)].

Let Qn(a) be the partition function for the half-space problem.
Suppose that a ≥ b. Define

R ′
n(a, b; w) = Rn(a, b; w) −

√

Qn(a)/Qn−2(a).
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Free energy changes

Ratio plots
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Free energy changes

For a = 1, b = 1 the ratio plots for the different values of w are
well separated and the values for small w are below those for
larger w , consistent with the limiting free energy being an
increasing function of w or, equivalently, with the force being
repulsive.

For a = 2, b = 1 the curves are very much closer together
though the ratios for small w are still below those for larger w ,
corresponding to a repulsive force.

These results then allow us to infer a force which decreases like
a power law for a = 1, b = 1 and exponentially for a = 2, b = 1.
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Free energy changes

Ratio plots

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

22 18 16 14 13 12

R
n’

1/n

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

22 18 16 14 13 12

1/n

 5.75

 5.8

 5.85

 5.9

 5.95

 6

 6.05

22 18 16 14 13 12

R
n

(2.0,2.0)

w=4 w=5 w=6 w=7 w=8

 8.1

 8.15

 8.2

 8.25

 8.3

 8.35

 8.4

22 18 16 14 13 12

(3.0,2.0)



Polymers in slabs

Owczarek

Outline

Motivation

Directed walks

SAW model

Numerics

series

Monte Carlo

Scaling

Asymptotics

Conclusions

Free energy changes

For a = 2, b = 2 (ie on the diagonal in the (a, b)-plane) the
values of the ratios (and their estimated intercepts) are
decreasing as w increases so the force is attractive.

For a = 3, b = 2 we see the same behaviour but now the ratios
are very close together (ie depend only weakly on w).

The values still decrease as w increases so the force is attractive
and the weak w -dependence is consistent with exponential decay
of the force as found for a directed walk model.

For the directed case the behaviour on the diagonal is predicted
to be different from that elsewhere in the attractive regime, and
this is seen clearly in the plots.
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Location of the zero-force curve

Zero Force curve

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5

b

a

Estimates of the location of the zero force curve. Note that it passes
through or close to the point (ac , ac) and is asymptotic to the lines
a = 1 and b = 1. The phase boundaries are also displayed: that is,
the lines a = ac for 0 ≤ b ≤ ac , b = ac for 0 ≤ a ≤ ac and a = b for
a ≥ ac . Note that ac ≈ 1.33.
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Monte Carlo technique

Simulate with FlatPERM algorithm

Not Markov Chain Monte Carlo

Growth algorithm with ‘pruning’ and ‘enrichment’

Flat Histogram method: performs a random walk in the space of
parameters (u, v , n) for all u and v and n up to an nmax

Algorithm operates so as to obtain approximately an equal
number of samples for any (u, v , n)

Our simulations
Simulated walks up to length 512 and for various widths up to
w = 40

Calculated fluctuations in visits to the two walls: used largest
eigenvalue of matrix of second derivatives to search for phase
transitions
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Fluctuations in the SAW slab model
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Phase diagram

a = b

zero force
curve

desorbed

adsorbed
top

adsorbed
bottom

A

B

C

ac

bc

b

a

1

1

0.5

0.5

2

2

The conjectured infinite-slab phase diagram contains three phases in which

the polymer is desorbed, adsorbed to the bottom surface and adsorbed to

the top surface. The corresponding phase boundaries are indicated with

solid lines. We have simulated the system along the lines

{(a, 1/2), (a, 2), (1/2, b), (2, b)} (indicated with dashed lines). The three

points A, B and C are those at which we estimate the scaling function.
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Transitions I
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n=128
n=256
n=512

The variance of contacts with the bottom surface per length along the line

(a, 1/2) for width 20 and lengths 64, 128, 256 and 512.
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Transitions II
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The variance of contacts with the bottom surface per length squared along

the line (a, 2) for width 12 and lengths 128, 256 and 512. Note that the

peak height stays approximately constant implying that the peak height

hn ∼ n
2.
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Transitions III

 0
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The distribution of contacts with the bottom surface from the simulations

at a point (at , 2) where at was chosen to be at the peak of the variance of

contacts with the bottom surface. The value of at used was 1.975, for data

produced from simulations at width 12 and polymer length 512.
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In the beginning

Arguments from the past

There was Daoud and de Gennes 1977 who conjectured

F∞(a, b; w) ∼ 1

w (1+1/ν)

where the Radius of Gyration scales as nν as n becomes large.
We note that ν = 1/2 for the directed model and has been estimated
as approximately 0.588 for three-dimensonal SAW
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Mesoscopic scale

Large but finite n and w

We now consider finite but large n and w .

We define the finite-length free energy by

κn(w ; a, b) =
1

n
log Zn(w ; a, b)

so that the finite slit/slab free energy is

κ(w ; a, b) = lim
n→∞

κn(w ; a, b)

.
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Order of limits

We already know that the order of limits matters

The infinite slit limit is

κinf−slit(a, b) = lim
w→∞

κ(w ; a, b)

= lim
w→∞

lim
n→∞

κn(w ; a, b)

whereas the half-plane limit is

κhalf−plane(a) = lim
n→∞

κhalf−plane
n (a)

= lim
n→∞

lim
w→∞

κn(w ; a, b)

Only expect κinf −slit(a, b) = κhalf−plane(a) if either a, b ≤ ac

where ac is the adsorption point of the half-plane or a > ac with
a > b.

So when can we expect similar scaling for finite systems: that is
asymptotics?
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What we know

From now on we confine ourselves to a, b ≤ ac .

κhalf−plane(a) = κinf−slit(a, b) = log µ(d).

where µ(d) is the d-dimensional connective constant for SAW.

So the limits do agree, but what about asymptotics?

Z half−plane
n ∼ Aµ(d)nng , g =

{

γ1(d) − 1 a < ac

γ1,s(d) − 1 a = ac

κhalf−plane
n ∼ log µ(d) +

1

n
[g log n + logA]

γ1(3) − 1 ≈ −0.32 while estimates of γ1,s(3) − 1 are poor (−0.5(2))
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Finite slit

The asymptotics are different for the finite slit.

For any finite w we have

Zn(w ; a, b) ∼ B(a, b; w)eκ(w ;a,b)nnh,

where h = γ(d − 1) − 1. Note that γ(2) − 1 = 11/32.

Can rewrite this as

κn(a, b; w) ∼ κ(a, b; w) + h
log n

n
+

B(a, b; w)

n

What happens to this asymptotic form as w becomes large?

Compare to half-plane result

κhalf−plane
n (a) ∼ κhalf−plane(a) + g

log n

n
+

A(a)

n
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The scaling regime

Is there a scaling regime?

Can we write the asymptotics of κn(a, b; w) as a function of a
single variable?

Does it match the various limiting asymptotic cases?

A case of finite-size scaling.

A scaling distance (length scale) to which compare the width is

mean height of vertex ∼ Radius of Gyration ∼ nν ,

Hence we expect the scaling variable

w

ξ⊥
∝ w

nν
.
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Conjectured scaling form for the free energy

Our conjectured scaling form of the free energy is

κn(a, b; w) ∼ logµ(d) + g
log n

n
+

1

n
K(d nν/w) as n, w → ∞

with nν/w fixed,

Expansion around half-plane

It is important to understand that the scaling function depends
on whether the underlying infinite-slab/slit system is critical or
not as the temperature is varied.

Hence there are four different scaling functions: one for
a, b < ac , one for a = ac , b < ac , one for a < ac , b = ac and one
for a = ac , b = ac .
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Matching the half-plane an infinite slit

The scaling function K(x) should obey

K(x) ∼ A(a) as x → 0

and

K(x) ∼ cx1/ν +
(h − g)

ν
log(x) as x → ∞

with c and d being generic constants here — note that d is a
non-universal factor.
This second assumption matches with (large width) finite-slit.
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Scaling of the force

While a scaling form for the force is

Fn(a, b; w) ∼ 1

n(1+ν)
F(d nν/w) as n, w → ∞

where
F(x) ∼ cx1+1/ν as x → ∞.

This gives the Daoud and De Gennes result that

F (a, b; w) ∼ 1

w (1+1/ν)
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Back briefly to directed walks: numerically

Scaling function Y (x) for the force

The scaling Ansatz tells us that

Fn(w ; a, b)n3/2 ∼ Y (gx) = Y

(

g
w√
n

)

,

in the limit n → ∞ with x fixed.

So Y (x) should be the same for all a, b < 2 — seems to be the
case

and also same for other models in the universality class
— e.g. Motzkin paths in a slit.

Y (x) different for (1, 1), (1, 2), (2, 1) and (2, 2) since there is a
phase transition at a = 2 and also at b = 2.
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Y (x) is universal for directed walks in 2 dimensions.

-5

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5  3

wn−1/2

F
n
(w

)
·n

3/
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Scaled force at (1, 2) for Dyck paths and (1, 3
2 ) for Motzkin

paths.

Data collapse for w ∈ {8, 16, . . . , 80}.
Same scaling function (up to some constants) for both models.

Note that Y (x) changes sign and is non-monotonic!
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Recall Phase diagram
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SAW Scaling Functions I
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A plot of the scaled free energy at the point A(1/2, 1/2) for widths

12, 16, 20, 24 and 28 and lengths from 0 to 512. The horizontal axis is

n
ν/w and the vertical axis is n
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log Zn(w)
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We have used the values µ(3) = 4.684, ν = 0.588 and (γ1 − 1) = −0.32.
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Scaling Functions II
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A plot of the scaled free energy at the point B(1/2, bc) using bc = 1.33,

for widths 12, 16, 20, 24 and 28 and lengths from 0 to 512. The horizontal
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− log µ(3) − (γ1 − 1)
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«

. We have used the values

µ(3) = 4.684, ν = 0.588. We have used (γ1 − 1) = −0.32.
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SAW Scaling Functions III
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Plots of the scaled free energy at the points C(ac , 1/2) using ac = 1.33, for

widths 12, 16, 20, 24 and 28 and lengths from 0 to 512. The horizontal axis

is n
ν/w and the vertical axis is
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. We have used the values

µ(3) = 4.684, ν = 0.588. We have used (γ1,s − 1) = 0.25
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Discussion

While K is monotonic at points A and C , we find that it is
distinctly unimodal at point B.

We conclude that at points A and C , the polymer exerts a
repulsive force on the plates at all lengths and widths.

Whereas at point B we see that there is a combination of length
and width such that the free energy has derivative (with respect
to w) equal to zero.

At point A the interactions with both confining planes are
repulsive and the entropy loss due to confinement leads to a
repulsive force.

Point C corresponds to a critical value of the attraction at the
plane where the walk is tethered and there is no attractive force
with the other plane, so the force is repulsive.

At point B the walk is tethered to one plane but attracted to
the other.
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Discussion

If n → ∞ at fixed w it is known rigorously that the force is
repulsive (rigorous work) and this corresponds roughly to the
case where nν/w >> 1.

If nν << w the walk extends to allow vertices in the top plane
and this leads to an attractive force.
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Confirmation by calculation on the directed model

Owczarek, Prellberg, and Rechnitzer, Finite-Size scaling functions for

directed polymers confined bewteen attractive walls, To be submitted
J.Phys. A. in September, 2007.
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What one needs to do

Recall the generating function for the directed model

Lw (z) =
(1 + q)[(1 + q − bq) − (1 + q − b)qw ]

(1 − q − aq)(1 + q − bq) − (1 + q − a)(1 + q − b)qw
,

where z =
√

q/(1 + q), and so the asymptotics of the finite size
partition function Zn,w (a, b) is given by finding

Zw,n(a, b) =
1

2πi

∮

Lw (z, a, b)
dz

zn+1

The problem is to evaluate this contour integral for large but finite n

and finite w .
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Partition function asymptotics

We note that g = 3/2 for a < 2 and g = 1/2 for a = 2.
We recall that ν = 1/2.
For n even, n and w large, we calculate

Zw,n(1, 1) ∼ 2n

n3/2
f1,1(

√
n/w) ,

Zw,n(1, 2) ∼ 2n

n3/2
f1,2(

√
n/w) ,

Zw,n(2, 1) ∼ 2n

n1/2
f2,1(

√
n/w) ,

Zw,n(2, 2) ∼ 2n

n1/2
f2,2(

√
n/w)
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Scaling Functions

The scaling functions are given by elliptic θ-functions as

f1,1(x) = 4π2x3
∞
∑

k=0

k2e−
π2k2

2 x2

,

f1,2(x) = 4π2x3
∞
∑

k=0

(k + 1/2)2e−
π2(k+1/2)2

2 x2

,

f2,1(x) = 2x

∞
∑

k=0

e−
π2(k+1/2)2

2 x2

,

f2,2(x) = 2x

∞
∑

k=0

e−
π2k2

2 x2
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Conclusions

Conclusions
Using series analysis and Monte Carlo have confirmed phase and
force diagrams look like directed 2d model

Force can be attractive with moderate length walks and
repulsive for long walks

Scaling Theory conjectured and confirmed numerically

Soon analytic verification... another talk
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