Exact solution of long chain polymers in an attractive slit

Aleks Owczarek

Richard Brak Andrew Rechnitzer Stu Whittington

MASCOS — University of Melbourne

University of Toronto

July 7, 2005

Outline Colloids The model Solution Analysis Mesoscopic scale

Polymers in slits Owczarek

Talk outline

Sensitised flocculation and steric stabilisation

The model

Solving the full model

Analysing the model

Mesoscopic scale

Conclusions

・ロト・日本・日本・日本・日本・日本・日本

What is steric stabilisation?

• Entropic repulsion between the colloidal particles.

Polymers in slits

Owczarek

Outline

Colloids

The mode

Solution

Analysis

Mesoscopic scale

What is sensitised flocculation?

Polymer adsorbs and pulls the particles together.

Polymers in slits

Owczarek

Outline

Colloids

The mode

Solution

Analysis

Mesoscopic scale

Our model

Paths in a slit

- A directed path in a slit of width w.
- Boltzmann weights a and b for interactions with lines (walls).

 Several different geometric constraints: loops, bridges and tails — in this talk only loops.

Polymers in slits

Owczarek

Outline

Colloids

The mode Finite *w* Half-plane

Solution

Analysis

Mesoscopic scale

Our model

Paths in a slit

- A directed path in a slit of width w.
- Boltzmann weights a and b for interactions with lines (walls).
- Several different geometric constraints: loops, bridges and tails — in this talk only loops.

Loops — start and end on
$$y = 0$$
.

Polymers in slits

Owczarek

Outline

Colloids

The mode Finite w Half-plane

Solution

Analysis

Mesoscopic scale

Conclusions

・ロト・日本・日本・日本・日本・日本

Relationship to Tony's work

History: no walls or no interactions

- Guttmann, A.J., Owczarek, A.L. and Viennot, X.G., Vicious walkers and Young Tableaux I: Without Walls, (1998)
- Krattenthaler, C., Guttmann, A.J. and Viennot, X.
 G., Vicious walkers, friendly walkers and Young tableaux: II With a wall (2000)
- Guttmann, A.J. and Voege, M, Lattice paths: vicious walkers and friendly walkers. Journal of Statistical Inference and Planning, (2002)
- Krattenthaler, C, Guttmann, A. J., and Viennot, X. V., Vicious walkers, friendly walkers and Young tableaux III: Between two walls. (2003)
- Chan, Y-b and Guttmann A.J., Some results for directed lattice walkers in a strip. (2003)

Polymers in slits

Owczarek

Outline

Colloids

The mode Finite *w* Half-plane

Solution

Analysis

Mesoscopic scale

First let $w \to \infty$; the half-plane limit

Adsorbing paths in a half plane

Study model via its generating function

$$L(z,a) = \sum_{\varphi \in loops} z^{n(\varphi)} a^{v(\varphi)}$$

- Obtain a functional equation and solve it
- Solution is algebraic

$$L(z,a)=\frac{2}{2-a+a\sqrt{1-4z^2}}$$

Polymers in slits

Owczarek

Outline

Colloids

The mode Finite *w* Half-plane

Solution

Analysis

Mesoscopic scale

Conclusions

・ロト ・日下・ ・日下・ ・日・ うへぐ

Phase diagram for the half-plane

Analyse the solution

- The free energy is $\kappa^{half-plane}(a) = -\log z_c(a)$.
- There are 2 phases characterised by density of visits:

$$\rho = \lim_{n \to \infty} \frac{\langle \mathbf{v} \rangle}{n} = \frac{\partial \kappa(\mathbf{a})}{\partial \log \mathbf{a}}$$

• The limit $n \to \infty$ has been taken after $w \to \infty$.

Polymers in slits Owczarek Outline Colloids The mode Half-plane Mesoscopic scale

Phase diagram for the half-plane

Analyse the solution

- The free energy is $\kappa^{half-plane}(a) = -\log z_c(a)$.
- There are 2 phases characterised by density of visits:

$$\begin{array}{lll} \text{desorbed} & a \leq 2: & z_c = 1/2 & \text{and} & \rho = 0 \\ \text{adsorbed} & a > 2: & z_c = \sqrt{a-1}/a & \text{and} & \rho > 0 \end{array}$$

Owczarek Outline Colloids The model Finite *w* Half-plane Solution Analysis Mesoscopic scale Conclusions

Polymers in slits

Back to the full model — finite width slit

How to solve the full model

- Build the paths a row at a time
- Replace vertices in top row by zig-zag paths.
- Leads to (different) infinite set of functional equations

Rational form

$$L_w(z,a,b) = \frac{P_w(z,0,b)}{P_w(z,a,b)}$$

- $P_w(z, a, b)$ satisfies a simple linear recurrence.
- Related to Fibonacci polynomials.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The solution of the full model

► This leads us to

$$L_w = \frac{(1+q)\left[(1+q-bq)-(1+q-b)q^w\right]}{(1+q-aq)(1+q-bq)-(1+q-a)(1+q-b)q^w}.$$
Where

$$q = \frac{1-2z^2 - \sqrt{1-4z^2}}{2z^2}$$

A similar analysis works for tails and bridges.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ●

Polymers in slits Owczarek

Outline Colloids

Location of singularities

Zeros of P_w

- The zeros of P_w give the singularities of L_w .
- These satisfy

$$q^w = rac{(1+q-aq)(1+q-bq)}{(1+q-a)(1+q-b)}$$

The closest singularity to the origin gives the free energy.

Polymers in slits

Owczarek

Outline

Colloid

The model

Solution

Analysis Simplification Special points $w \rightarrow \infty$ Large w

Conclusions

Analysis of the solution

Special points

- For certain points in the a, b plane the equation for the zeros simplifies
 - $(a,b) \in \{(1,1), (2,1), (1,2), (2,2)\}$
 - and on the curve ab = a + b.

• At these points we can find $q_c(w)$ and so $z_c(w)$ exactly.

Polymers in slits

Owczarek

Outline

Colloids

The model

Solution

Analysis Simplification Special points $w \rightarrow \infty$ Large w

Mesoscopic scale

On the special curve

Zeros of P_w

• when ab = a + b the zeros are given by

$$q^w=1$$
 and $q=(a-1), \ rac{1}{(a-1)}$

• This implies that $z_c = \frac{\sqrt{a-1}}{a}$.

▶ Note, this is independent of the strip width, w.

Polymers in slits Owczarek Outline Special points

On the special curve

Zeros of P_w

• when ab = a + b the zeros are given by

$$q^w=1$$
 and $q=(a-1), \ rac{1}{(a-1)}$

- This implies that $z_c = \frac{\sqrt{a-1}}{a}$.
- ▶ Note, this is independent of the strip width, w.

Polymers in slits

Owczarek

Outline

Colloid

The model

Solution

Analysis Simplification Special points $w \rightarrow \infty$ Large w Mesoscopic scal

Conclusions

・ロト ・日下・ ・日下・ ・日・ うへぐ

The limit $w \to \infty$ for arbitrary a, bThe infinite slit limit

The free energy

- Can find zeros of P_w in the limit $w \to \infty$.
- The smallest zero gives z_c which gives κ .
- We have the following

$$z_c(a,b) = \begin{cases} 1/2 & a,b \leq 2\\ \frac{\sqrt{a-1}}{a} & a > 2 \text{ and } a > b\\ \frac{\sqrt{b-1}}{b} & \text{otherwise} \end{cases}$$

Polymers in slits Owczarek Outline Colloids Analysis

The phase diagram for loops and tails

Phase transitions

- For finite w, $z_c(a, b)$ is an analytic function of a and b.
- So no phase transitions for finite w.
- However in the limit $w \to \infty$ there are phase transitions.

Polymers in slits Owczarek Outline Colloids The model Solution

Simplification Special points $w \rightarrow \infty$ Large w

Mesoscopic scale

Conclusions

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

The phase diagram for loops and tails

Phase transitions

• Black = 2^{nd} order and pink = 1^{st} order.

- Left-hand diagram: $w \to \infty$ and then $n \to \infty$.
- Right-hand diagram: $n \to \infty$ and then $w \to \infty$.
- ▶ The order of *n* and *w* limits really does matter!

Polymers in slits

Owczarek

Outline

Asymptotics of free energy for large w

Special points

• We know $z_c(w)$ exactly at these points.

General a, b

- Can do asymptotic expansion of $z_c(w)$ for large w.
- ▶ e.g. For a, b < 2:

$$z_c(w) = \frac{1}{2} + \frac{\pi^2}{4} \frac{1}{w^2} + \frac{\pi^2(ab-a-b)}{(2-a)(2-b)} \frac{1}{w^3} + \cdots$$

For a > 2 and a > b:

$$z_c = \frac{\sqrt{a-1}}{a} - \frac{(a-2)^2(ab-a-b)}{2a(a-b)\sqrt{a-1}} \left(\frac{1}{a-1}\right)^w + \cdots$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Polymers in slits

Owczarek

Outline

Analysis

Large w

Steric stabilisation and sensitised flocculation

Forces

- Compute forces between walls from $\frac{\partial \kappa(w)}{\partial w}$.
- There are attractive and repulsive regimes.
- ▶ For various regions of the (*a*, *b*)-plane we have:
 - long-ranged repulsive force,
 - short-ranged repulsive force,
 - short-ranged attractive force,
 - and a line of zero force dividing the last two.
- The zero-force line is *not* a phase boundary.

Polymers in slits

Owczarek

Outline

Colloids

The model

Solution

Analysis Simplification Special points $w \rightarrow \infty$ Large w

Mesoscopic scale

Steric stabilisation and sensitised flocculation

Force diagram

Polymers in slits Owczarek Outline Large w

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ �� ◇ ◇ ◇

Publication details

 The above work has been published Journal of Physics A: Mathematical and General Volume 38 (2005) pages 4309–4325.

Polymers in slits

Owczarek

Outline

Colloid

The model

Solution

Analysis Simplification Special points $w \rightarrow \infty$ Large w

Mesoscopic scale

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Publication details

 The above work has been published Journal of Physics A: Mathematical and General Volume 38 (2005) pages 4309–4325.

Polymers in slits Owczarek

Outline

Large w

There is more to come.

Mesoscopic scale

Large but finite *n* and *w*

- We now consider finite but large *n* and *w*.
- > To do this look at the partition function, defined via

$$L_w(z, a, b) = \sum_{n \ge 0} Z_n(w; a, b) z^n$$

We define the finite-length free energy by

$$\kappa_n(w; a, b) = \frac{1}{n} \log Z_n(w; a, b)$$

so that $\kappa(w; a, b) = \lim_{n \to \infty} \kappa_n(w; a, b)$.

Polymers in slits Owczarek Outline Colloids The model

Mesoscopic scale Finite *n* and *w* Scaling Analytic results

Conclusions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

Order of limits

The order of limits matters

► The infinite slit limit is

$$\kappa^{inf-slit}(a,b) = \lim_{w \to \infty} \kappa(w; a, b)$$
$$= \lim_{w \to \infty} \lim_{n \to \infty} \kappa_n(w; a, b)$$

whereas the half-plane limit is

$$\kappa^{half-plane}(a) = \lim_{n \to \infty} \kappa_n^{half-plane}(a)$$
$$= \lim_{n \to \infty} \lim_{w \to \infty} \kappa_n(w; a, b)$$

Polymers in slits Owczarek Outline Colloids The model Solution

Mesoscopic scale Finite n and w Scaling Analytic results Numerical results

Conclusions

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

What we know

From now on we confine ourselves to $a, b \leq 2$.

Here we have

$$\kappa^{half-plane}(a) = \kappa^{inf-slit}(a,b) = \log 2.$$

So the limits do agree, but what about asymptotics?We have

$$Z_n^{half-plane} \sim A 2^n n^{\gamma-1}, \qquad \gamma = \begin{cases} -1/2 & a < 2\\ +1/2 & a = 2 \end{cases}$$

So

$$\kappa_n^{half-plane} \sim \log 2 + \frac{1}{n} \left[(\gamma - 1) \log n + \log A \right]$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ◎

Polymers in slits Owczarek

Outline

Finite n and w

What we know

The asymptotics are different.

However for any finite w we have

$$Z_n(w; a, b) \sim B(w)\mu(w)^n,$$

where
$$\mu(w) = \exp(\kappa(w; a, b))$$
, $\lim_{w\to\infty} \mu(w) = 2$.
So

$$\kappa_n(w; a, b) \sim \log 2 + \log (\mu(w)/2) + \frac{\log B(w)}{n}$$

 $\sim \log 2 + \frac{1}{n}f(n, w)$

Polymers in slits Owczarek Outline

The model

Solution

Analysi

Mesoscopic scale Finite n and w Scaling Analytic results Numerical results

Conclusions

うせん 聞 ふぼやふぼや ()

The scaling regime

Is there a scaling regime?

- Can we write f(n, w) as a function of a single variable?
- Does it match the various limiting asymptotic cases?
- A case of finite-size scaling.
- The mean vertex height at a = b = 1 is

mean height of vertex
$$\sim \sqrt{rac{\pi n}{8}} + O(1),$$

Hence we expect the scaling variable

$$\frac{w}{\xi_{\perp}} \propto \frac{w}{\sqrt{n}}$$

Polymers in slits Owczarek

Colloids The mode

Outline

Mesoscopic scale Finite *n* and *w* Scaling Analytic results Numerical results

Conclusions

The scaling regime

Polymers in slits Owczarek Scaling

くりょう 御を ふぼや ふぼや ふりゃ

The scaling Ansatz

Scaling of κ and ${\mathcal F}$

▶ For $a, b \le 2$ and as $w, n \to \infty$ with fixed $x = \frac{w}{\sqrt{n}}$, we propose the Ansatz for the free energy:

$$\kappa_n(w; a, b) \sim \log 2 + \frac{1}{n} X(gx).$$

Differentiating wrt w gives an expression for the force

$$\mathcal{F}_n(w;a,b)\sim \frac{1}{n^{3/2}}Y(gx).$$

- The universal functions X(x) and Y(x) change if a or b equal 2.
- The constant g is a non-universal factor.

Polymers in slits Owczarek Outline Colloids Solution Analysis Mesoscopic scale Scaling

Matching the infinite-slit

Scaling of κ

Reiterating the Ansatz

$$\kappa_n(w; a, b) \sim \log 2 + \frac{1}{n} X(gx).$$

▶ For *w* fixed and large and $n \to \infty$ we recall that

$$\kappa(w; a, b) = \log 2 + \frac{e_1}{w^2} + O(w^{-3})$$

Owczarek Outline Colloids The model Solution Analysis Mesoscopic scale Finite *n* and *w* Scaling

Polymers in slits

Numerical resul

Matching the infinite-slit

Scaling of κ

Reiterating the Ansatz

$$\kappa_n(w; a, b) \sim \log 2 + \frac{1}{n} X(gx).$$

▶ For *w* fixed and large and $n \to \infty$ we recall that

$$\kappa(w; a, b) = \log 2 + \frac{e_1}{w^2} + O(w^{-3})$$

So if

$$X(x)\sim rac{e_1}{x^2}=rac{e_1n}{w^2}$$
 as $x
ightarrow 0^+$

then the scaling Ansatz matches the infinite-slit asymptotics.

Outline Colloids The model Solution Analysis Mesoscopic scale Finite *n* and *w* Scaling

Polymers in slits Owczarek

Analytic results Numerical results

Conclusions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

The scaling regime

Polymers in slits Owczarek Scaling

くりょう 御を ふぼや ふぼや ふりゃ

Matching the half-plane

• What about $w \to \infty$ with *n* fixed and large?

Reiterating the Ansatz

$$\kappa_n(w; a, b) \sim \log 2 + \frac{1}{n} X(gx).$$

and the half-plane result

$$\kappa_n^{half-plane} \sim \log 2 + rac{1}{n} [(\gamma - 1) \log n + \log A]$$

Owczarek Outline Colloids The model Solution Analysis Mesoscopic scale Finite *n* and *w* Scaling Analytic results

Polymers in slits

Conclusions

Matching the half-plane

• What about $w \to \infty$ with *n* fixed and large?

Reiterating the Ansatz

$$\kappa_n(w; a, b) \sim \log 2 + \frac{1}{n} X(gx).$$

and the half-plane result

$$\kappa_n^{half-plane} \sim \log 2 + \frac{1}{n} \left[(\gamma - 1) \log n + \log A \right]$$

• After w > n/2, $Z_n(w; a, b)$ is a constant function of w.

So which limit do we really want?

$$w \to \frac{n}{2}$$
 or $w \to \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Polymers in slits Owczarek

Outline

Analysis Mesoscopic scale Finite *n* and *w* Scaling Analytic results in progress?

An expression for the partition function

We can write

$$Z_n(w;a,b) = \frac{1}{2\pi i} \oint L_w(z;a,b) \frac{\mathrm{d}z}{z^{n+1}},$$

where L_w is a rational function.

So Z_n is a sum over residues at the zeros of the denominator of L_w — in the q variable these satisfy:

$$q^w = rac{(1+q-aq)(1+q-bq)}{(1+q-a)(1+q-b)}$$

- This is equivalent to a partial fraction expansion of L_w .
- However where are all the zeros?

Polymers in slits Owczarek

Outline

Colloids

Analysis Mesoscopic scale

Analytic results

A nice trick

A different expression

There is a 'trick' which is equivalent to moving the integration contour which gives the following expression for arbitrary a and b.

$$Z_{2\ell}(w;a,b) = \sum_{r=0}^{w} \sum_{s=0}^{\ell} \sum_{s_0,\ldots,s_w}' C_{2\ell,\ell^*} \binom{s}{s_0,\ldots,s_w} \alpha_r \prod_{m=0}^{w} \beta_m^{s_m}$$

where the multinomial sum is simply constrained, $C_{n,m}$ is a generalised Catalan number, ℓ^* is a simple function of ℓ and α_i and β_i are simple functions of a and b. Polymers in slits

Owczarek

Outline

Colloids

The mode

Solution

Analysis

Mesoscopic scale Finite *n* and *w* Scaling Analytic results Numerical results

A nice trick

A different expression

There is a 'trick' which is equivalent to moving the integration contour which gives the following expression for arbitrary a and b.

$$Z_{2\ell}(w;a,b) = \sum_{r=0}^{w} \sum_{s=0}^{\ell} \sum_{s_0,\ldots,s_w}^{\prime} C_{2\ell,\ell^*} \binom{s}{s_0,\ldots,s_w} \alpha_r \prod_{m=0}^{w} \beta_m^{s_m}$$

- We have summed over all Bethe roots without knowing them!
- This is pretty, but an asymptotic challenge!
- We are currently analysing the special cases a, b ∈ {1,2} where Z_n simplifies.

Polymers in slits Owczarek Outline Colloids The model Solution Analysis

Mesoscopic scale Finite *n* and *w* Scaling Analytic results Numerical results

Numerical analysis

Scaling function Y(x) for the force

The scaling Ansatz tells us that

$$\mathcal{F}_n(w; a, b) n^{3/2} \sim Y(gx) = Y\left(g\frac{w}{\sqrt{n}}\right),$$

in the limit $n \to \infty$ with x fixed.

- So Y(x) should be the same for all a, b < 2 seems to be the case
- and also same for other models in the universality class
 e.g. Motzkin paths in a slit.
- Y(x) different for (1,1), (1,2), (2,1) and (2,2) since there is a phase transition at a = 2 and also at b = 2.

Polymers in slits

Owczarek

Outline

Colloids

The model

Solution

Analysis

Mesoscopic scale Finite *n* and *w* Scaling Analytic results Numerical results

Y(x) is universal.

- Scaled force at (1,2) for Dyck paths and (1, ³/₂) for Motzkin paths.
- Data collapse for $w \in \{8, 16, \dots, 80\}$.
- Same scaling function (up to some constants) for both models.
- ▶ Note that *Y*(*x*) changes sign and is non-monotonic!

Conclusions

- ► We have found an exact solution for the g.f.
- The thermodynamic limits now well understood.
- The half-plane is not the same as the infinite-slit.
- The force-diagram has been mapped out.

Polymers in slits

Conclusions

- Finite-size scaling analysis in progress.
- Matching for small x (infinite-slit) appears to hold.
- Matching for large x (half-plane) as yet undetermined.
- ► Scaling analysis of partition function and generating function at special points a, b ∈ {1,2} is proceeding.
- Numerical analysis for a, b > 2 also underway.
- Some preliminary work for self-avoiding walks using FlatPERM.
- Of course we stand on Tony's shoulders...

Polymers in slits

Owczarek

Outline Colloids The model Solution Analysis Mesoscopic scale Conclusions