Walks and Collapse	Trails	Grooves	Walks again: generalised DS model

The role of three body interactions in polymer collapse in two dimensions

[†]Aleks Owczarek, Andrea Bedini, and [‡]Thomas Prellberg

[†]School of Mathematics and Statistics, The University of Melbourne

[‡]School of Mathematical Sciences, Queen Mary University of London

June, 2017

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Means, Methods and Results in the Statistical Mechanics of Polymeric Systems II

Three body interactions in polymer collapse

Owczarek

Trails

Groove

Walks again: generalised DS model

Stop the difference: 2007 and 2017

Three body interactions in polymer collapse

୬ ୦ ୦ Owczarek

Walks and Collapse	Trails	Grooves	Walks again: generalised DS model

STU'S INSPIRATION: SOME OF HIS PAPERS ABOUT POLYMER COLLAPSE

- Madras, N., et al. "The free energy of a collapsing branched polymer." Journal of Physics A: Mathematical and General 23.22 (1990): 5327.
- Brak, R., A. J. Guttmann, and S. G. Whittington. "On the behaviour of collapsing linear and branched polymers." J. Math. Chem. 8 (1991): 255-267.
- Brak, Richard, Anthony J. Guttmann, and Stuart G. Whittington. "A collapse transition in a directed walk model." J. Phys. A 25.9 (1992): 2437.
- Flesia, S., Gaunt, D. S., Soteros, C. E., and Whittington, S. G. (1994). Statistics of collapsing lattice animals. Journal of Physics A: Mathematical and General, 27(17), 5831.
- Tesi, M. C., Janse van Rensburg, E. J., Orlandini, E., and Whittington, S. G. (1996). Monte Carlo study of the interacting self-avoiding walk model in three dimensions. J. Stat. Phys., 82(1), 155-181.
- Vrbov, Tereza, and Stuart G. Whittington. "Adsorption and collapse of self-avoiding walks in three dimensions: A Monte Carlo study." J. Phys. A 31.17 (1998): 3989.

Walks and	Colla	pse
-----------	-------	-----

THE CANONICAL COLLAPSING POLYMER LATTICE MODEL

Interacting Self-Avoiding Walk (ISAW)

- Start with a self-avoiding walk (SAW) and add 'interactions'
- Quality of solvent \rightarrow short-range interaction energy $-\varepsilon_{is}$
- Inverse temperature $\beta_{is} = \varepsilon_{is}/k_BT$
- Interactions are between (non-consecutive) nearest neighbours

The θ point

- High temperature "swollen or "extended" phase $d_f > d = 2$
- θ -point collapse transition is a second order phase transition
- Low temperature partially dense globule $d_f = d$
- de Gennes' general description (1975) as a "tricritical point"

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Trails

Groove

Scaling around the θ point

As the critical temperature is approached the specific heat is expected to behave as

$$c_{\infty}(T) \sim B|T_t - T|^{-\alpha}$$
,

For finite lengths *n*

$$c_n(T) \sim n^{\alpha \phi} \mathcal{C}((T-T_t)n^{\phi})$$

The exponents α and ϕ are related via

$$2-\alpha=\frac{1}{\phi}\;.$$

Three body interactions in polymer collapse

Owczarek

DUPLANTIER-SALEUR (DS) MODEL

Duplantier and Saleur (1987) predicted the standard θ -point behaviour in two dimensions

which has been subsequently supported by work of Prellberg and Owczarek (1994) on the Manhattan lattice.

- Considered SAW on the honeycomb lattice in the presence of percolating vacancies (annealed) with probability *p*
- Equivalent to ISAW-type model with interactions around a face
- In particular to a model where faces visited three times are given a Boltzmann weight, ω₃, being equal to the square of the weight of those visited twice, ω₂

• That is,
$$\omega_3 = \omega_2^2 = \frac{1}{(1-p)^2}$$

• Collapse point is when $\omega_2 = 2$, at percolation point (p = 1/2)

イロト イヨト イヨト イヨト

Walks and	Colla	ipse
-----------	-------	------

Grooves

THREE TYPES OF FACE ON THE HONEYCOMB LATTICE

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

lks and Collapse	Trails	Grooves	Walks again: generalised DS model
2012222		0	

SCALING AROUND THE θ point in two dimensions

- Model related to hulls of percolating clusters
- Exponents from O(n = 1) Ising model in "critical" low temperature phase (q = 1 Potts at critical point)
- It was hence predicted that

$$\phi = 3/7 \approx 0.43$$
 and $\alpha = -1/3$.

- The specific heat does not diverge at the transition
- It was also predicted the $d_f = 7/4$ at the θ -point.

Wa

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

ADDING STIFFNESS TO ISAW

Adding stiffness

- Models natural rigidity of polymers
- though it implies sites to monomer mapping is incomplete with adding stiffness
- In 1998 Bastolla and Grassberger studied the canonical model in three dimensions and added a weight for bends
- Later, in 2009, a model with weights for 'stiffness sites' studied by Krawczyk, Owczarek and Prellberg in two dimensions
- At low temperatures and sufficient stiffness a polymer crystal can occur

Three body interactions in polymer collapse				0	wczarek
			《曰》《國》《臣》《臣》	Ξ	990
	Stiffness sites	Non-stiffness sites			

Walks and Collapse	Trails	Grooves	Walks again: generalised DS model
SEMI-FLEXI	BLE ISAW		

- Two transitions or one depends on stiffness
- For small stiffness

Ξ

イロト イヨト イヨト イヨト

PHASE TRANSITION FOR SEMI-FLEXIBLE POLYMERS

Swollen – Globule

This is the θ transition: convergent specific heat and divergent free energy third derivative, $\alpha = -1/3$.

Swollen - Crystal

First order in both two and three dimensions

Globule - Crystal

Second order in two dimensions with estimated $\alpha \approx 0.6(2)$

Meeting point

Unknown

Three body interactions in polymer collapse

ISAT ON THE SQUARE LATTICE— DIFFERENT MODEL OF POLYMER COLLAPSE

- Start with self-avoiding trails (bond avoiding walks) = same universality class as SAW
- Interactions were added by associating an energy with doubly occupied sites both crossings and touching.

<ロ> < 部 > < E > < E > E のへの

ISAT ON THE SQUARE LATTTICE — DIFFERENT MODEL OF POLYMER COLLAPSE

- Shapir and Oono found a "new" tricritical point (that is, not the de Gennes *θ*-point)
- Lim A Guha, Y Shapir (1988) analysed ISAT on the triangular lattice via series found a divergent specific heat
- H Meirovitch, H A Lim (1989) analysed ISAT on the square lattice using a Monte Carlo method gave $\phi = 0.807(5)$ for the ISAT collapse transition

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Trails

Groove

SQUARE LATTICE ISAT SCALING

Owczarek and Prellberg (1995) studied ISAT via Kinetic Growth algorithm. It was estimated

 $\phi = 0.88(7)$

They also analysed surface exponents and showed they were not consistent with θ -point values.

Three body interactions in polymer collapse

Owczarek

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

SQUARE LATTICE ISAT COLLAPSE TRANSITION

An alternate theory

Grassberger and Hegger 1996 suggest renormalisation argument implies ISAT collapse is first order: they gave numerical evidence in three dimensions but could not verify the conjecture on the square lattice.

Square lattice ISAT simulations

Owczarek and Prellberg 2006, used PERM Monte Carlo on the square lattice has shown that there is a collapse transition with a strongly divergent specific heat, and the exponents have been estimated as

 $\phi = 0.84(3)$ and $\alpha = 0.81(3)$.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣へ(?)

Three body interactions in polymer collapse

47.3			0.11	
wal	ks.	and	(0)	nse
		CIT ICI	-01	poc

SQUARE LATTICE ISAT COLLAPSE TRANSITION

Transfer matrix calculations

- Foster 2009 suggested that the mapping between magnetic model and single polymer (there is a difference of ensembles here) is not straightforward with the ν exponent not mapped as normal. This may be related to a first order nature to the transition that was conjectured.
- In fact it was conjectured that ISAT on the square lattice are in the Blote-Nienhuis loop model universality class

Clearly there is something special about square lattice ISAT so study another lattice....

Means, Methods and Results in the Statistical Mechanics of Polymeric Systems I

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

THE EXTENDED MODEL OF SELF-INTERACTING TRAILS (EISAT) ON THE TRIANGULAR LATTICE

J. Doukas, A. O and T. Prellberg (2010) considered an extended model on the triangular lattice

Differentiate between the number of times the Trail crosses or touches

- We associate an energy $-\varepsilon_2$ with each doubly-visited site and a different energy $-\varepsilon_3$ with each triply-visited site.
- For each SAT we assign a Boltzmann weight $\omega_2^{m_2}\omega_3^{m_3}$, where $\omega_j = \exp(\beta \varepsilon_j)$.

The partition function of the eISAT model is then given by

$$Z_n(\omega_2,\omega_3) = \sum_{SAT} \omega_2^{m_2(\varphi_n)} \omega_3^{m_3(\varphi_n)}$$

イロト イロト イヨト イヨト

PHASE DIAGRAM FOR EXTENDED ISAT MODEL ON THE TRIANGULAR LATTICE

Two low temperature phases, one fully dense

Figure: The Coil-Crystal transition looks first order

イロト イポト イヨト

Trails

Grooves

Walks again: generalised DS model

COIL-CRYSTAL TRANSITION

Figure: Plot of the distribution $p_n(m_3/n)$ of triply-visited sites for the *Triple* model at temperatures near, and at, the temperature at which the specific heat attains its maximum for length n = 1024.

Owczarek

Trails

Groove

Walks again: generalised DS model

THE DENSE 'CRYSTAL'-LIKE PHASE

Figure: A typical configuration at length 512 produced at $(\omega_2, \omega_3) = (1, 10)$ which looks like an ordered crystal.

Owczarek

LOOP MODELS

So where does the story go now...

- The configurations of the exactly solved Loop models (á la Blöte-Nienhuis) are neither the full set of self-avoiding walks or trails
- They are paths on a lattice that can share sites, but usually not edges, and importantly unlike trails do not *cross*

イロト イヨト イヨト イヨト

alks and Collapse	Trails	Grooves	Walks again: generalised DS model
INTERACTING C	GROOVES ON	THE TRIANG	ULAR

LATTICE

Recently we looked at Grooves: look mum, no crossings!

1-visited

2-visited

3-visited

$$Z_n(\tau_2,\tau_3) = \sum_{Grooves} \tau_2^{m_2(\varphi_n)} \tau_3^{m_3(\varphi_n)}$$

• Related to O(n)-model type configurations

Ξ

PHASE DIAGRAM FOR GENERALISED INTERACTING GROOVES (IG) ON THE TRIANGULAR LATTICE

• Extended(Coil) to Dense transition looks first order again

Grooves

Walks again: generalised DS model

CONFIGUARTIONS: SWOLLEN TO FULLY DENSE

Configurations in Extended, 'at first order' Transition and Dense regions

Three body interactions in polymer collapse

Owczarek

FIRST ORDER NATURE OF SWOLLEN TO DENSE

Figure: The distribution of the number of triply visited sites m_3 is clearly bimodal at the point when τ_2 and τ_3 cross the line of suspected first-order transitions.

Owczarek

Wal	ks.	and	Coll	a	pse

BACK TO THE FUTURE: WALKS AGAIN

- Want to look at fully flexible walk model that incorporates three-body interactions
- That is, no stiffness
- Back to self-avoiding walks no trails or grooves

1

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Grooves

GENERALISED DS MODEL

Consider model of Duplantier and Saleur on the Honeycomb lattice again

• Just generalise to arbitrary ω_3 and ω_2

Trails

Groove

Walks again: generalised DS model

FLUCTUATIONS IN OUR MODEL

Density plot of the logarithm of the largest eigenvalue of the matrix of second derivatives of the free energy with respect to ω_2 and ω_3 at length 256. Darker shades (colours) represent larger values.

Trails

Grooves

Walks again: generalised DS model

Specific heat for $\omega_2 = 0.5$

Specific heat peak increases rapidly with length

<ロト < 団 > < 巨 > < 巨 > 三 の < ()</p>

Three body interactions in polymer collapse

DISTRIBUTION OF TRIPLY VISITED FACES

The distribution of the number of *type-3* faces f_3 is clearly bimodal at the point when ω_2 and ω_3 cross the line of suspected first-order transitions

Trails

Grooves

Walks again: generalised DS model

CONFIGURATIONS

Configurations that illustrate the co-existence of fully dense and swollen parts of the polymer, demonstrating the first-order nature of the transition as ω_3 is increased at fixed $\omega_2 = 0.5$.

Three body interactions in polymer collapse

∽ ९ (~ Owczarek

Walks and Collapse	Trails	Grooves	Walks again: generalised DS model
CONJECTURED	PHASE DIAG	RAM FOR GE	NERALISED
DS WALKS			

Walks and Collapse	Trails	Grooves	Walks again: generalised DS model
CONCLUSIONS			

- Our generalised DS interacting walk model incorporating three-body interactions displays a phase diagram similar to interacting trails and grooves
- No need for stiffness, touching or crossings
- Universality is being restored to this picture
- Beautiful new theory: Vernier, Jacobsen, Saleur (2015)
- Outstanding issues of crossings being tackled: *Nahum* et al (2015)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Valks and Collapse	Trails	Grooves	Walks again: generalised DS model
OUTSTANDING	OUESTIONS		

- Is the dense phase resulting from stiffness the same as that produced from three-body interactions?
- multi-critical points
- dense-globule transition characterisation
- adsorption Chris Bradly

3

イロト イヨト イヨト イヨト

Valks and Collapse	Trails	Grooves	Walks again: generalised DS model
OUTSTANDING	OUESTIONS		

- Is the dense phase resulting from stiffness the same as that produced from three-body interactions?
- multi-critical points
- dense-globule transition characterisation
- adsorption Chris Bradly

Thanks Stu for the inspiration!

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Valks and Collapse	Trails	Grooves	Walks again: generalised DS model
OUTSTANDI	NG OUESTI	ONS	

- Is the dense phase resulting from stiffness the same as that produced from three-body interactions?
- multi-critical points
- dense-globule transition characterisation
- adsorption Chris Bradly

Thanks Stu for the inspiration!

Here is looking forward to "Means, Methods and Results in the Statistical Mechanics of Polymeric Systems III"

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト