Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion

Exact Solutions of Interacting Friendly Directed Walkers

[†]Aleks Owczarek, [‡]Andrew Rechnitzer, [†]Rami Tabbara and [‡]Thomas Wong

[†]School of Mathematics and Statistics, The University of Melbourne

[‡]Department of Mathematics and Statistics, University of British Columbia

October, 2015

Queen Mary University of London

イロト イポト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
DIRECTED WA	ALKS LATTICE MODE	LS		

- Simple lattice models of polymers in solution
- Interface of combinatorics, probability theory and statistical physics
- There are many exact solutions of single and multiple directed walkers
- Focus on the exact generating function for fixed number of walks
- Interest is in adding multiple interactions

イロト イロト イヨト イヨト

イロト イロト イヨト イヨト

EXACT SOLUTION OF DIRECTED LATTICE WALKS LATTICE

- Recurrence and functional equation for partition or generating function
- Rational, algebraic, Differentially-finite (D-finite)
- and non D-finite solutions (e.g. q-series) for generating functions
- · Vicious walks are related to free fermions
- Six vertex model can be mapped to walks that touch (osculating)
- Bethe Ansatz & Lindström-Gessel-Viennot (LGV) Lemma
- LGV: multiple walks = determinant of single walks (partition functions)
- LGV problems result in generating functions that are D-finite

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
INTERACTIN	G MODELS			

- Previously, interactions applied to single walk of various types
- Multiple walks where interaction confined to a single walk
- Recently interactions between walks
- and/or multiple interactions have been considered
- These can give non-D-finite solutions

Vicious No intersection

Osculating Shared sites but not lattice bonds (touch or kiss)

Friendly Shared sites and bonds

イロト イヨト イヨト イヨト

SOME KNOWN EXACT SOLUTIONS: GEOMETRIES

No wall or interaction

- Many vicious directed walks: Fisher ('84), Lindström-Gessel-Viennot thm. ('85), Essam & Guttmann ('95), Guttmann, Owczarek & Viennot ('98)
- Many friendly walks & Osculating walks: Brak ('97), Guttmann & Vöge ('02), Bousquet-Mélou ('06)

With wall but no interaction (LGV)

• Many vicious walks: Krattenhaler, Guttmann & Viennot ('00)

Single walk involved in interactions (recurrence, Bethe Ansatz, LGV):

- Two Vicious walks: with wall interactions Brak, Essam & Owczarek ('98)
- Many Vicious walks: with wall interactions Brak, Essam & Owczarek ('01)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

EXACT SOLUTIONS: MULTIPLE WALKS AND INTERACTIONS

How can we extend the numbers of walks with complex and different types of interactions that can be solved exactly?

Inter-walk interactions using (obstinate) kernel method:

- Two Friendly walks: with both walks interacting with the wall *Owczarek, Rechnitzer & Wong* ('12)
- Two Friendly walks: with both wall and inter-walk interactions *Tabbara, Owczarek, Rechnitzer* ('14)
- Three Friendly walks: with two types of inter-walk interactions *Tabbara, Owczarek, Rechnitzer* (submitted)

for the set of	
introc	luction

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

SO HOW DO WE FIND A SOLUTION: KERNEL METHOD

- Combinatorial decomposition of the set of walks
- Find a functional equation for an expanded generating function
- This leads to the use of extra catalytic variables
- Answer is a 'boundary' value
- Equation is written as "bulk = boundary terms"
- Bulk term is product of a rational kernel and bulk generating function
- Set the value of a catalytic variable to make the kernel vanish
- Origin of kernel method due to Knuth (1968)
- From \approx early '00's applied to a number of dir. walk problems

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
0.0000000000000000000000000000000000000				

OBSTINATE KERNEL METHOD

- Our problems have several catalytic variables
- Need multiple values of catalytic variables: obstinate kernel method
- Earliest combinatorial application due to Bousquet-Mélou ('02).
- Bousquet-Mélou Math. and Comp. Sci 2 (2002)
- Bousquet-Mélou, Mishna Contemp. Math. 520 (2010)
- Solutions are not always D-finite
- Quarter plane random walk problems
- Diagonals of multi-variate rational functions

イロト イロト イヨト イヨト

Introduction

Double adsorption model

Unzipping mode

Conclusion

POLYMER ADSORPTION: ONE DIRECTED WALK

The physical motivation is the adsorption phase transition

Exact solution and analysis of single and multiple directed walk models exist

- Single Dyck path, $\hat{\varphi}$, in a half space
- Energy $-\varepsilon_a$ for each time (number m_a) it visits the surface
- Boltzmann weight $a = e^{\varepsilon_a/k_BT}$
- Partition function $Z_n(a) = \sum_{|\widehat{\varphi}|=n} a^{m_a(\widehat{\varphi})}$
- Generating function: $G(a; z) = \sum_{n=0}^{\infty} Z_n(a) z^n$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

ADSORPTION: ONE DIRECTED WALK

A complete solution exists and the generating function is algebraic

The thermodynamic reduced free energy:

$$\kappa(a) = \lim_{n \to \infty} n^{-1} \log \left(Z_n(a) \right).$$

is known exactly from location of closest singularity to the origin of generating function

It has a single non-analytic point —- that is, a phase transition.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

ADSORPTION TRANSITION CHARACTISATION

Consider the density of visits (derivative of the free energy)

$$\mathcal{A}(a) = \lim_{n \to \infty} \frac{\langle m_a \rangle}{n}$$

There exists a phase transition at a temperature T_a given by a = 2:

- For $T > T_a$ (a < 2) the walk moves away entropically and A(a) = 0
- For $T < T_a$ (a > 2) the walk is adsorbed onto the surface and A(a) > 0
- Second order phase transition with jump in second derivative of the free energy
- Order parameter is density of visits to surface by the polymer

DOUBLE INTERACTION ADSORPTION MODEL

Motivation arising from Monte Carlo studies of ring polymers in slits in two dimensions

Figure : Two directed walks with single and "double" visits to the the surface.

- energy $-\varepsilon_a$ for visits of the bottom walk only (single visits) to the wall,
- energy $-\varepsilon_d$ when both walks visit a site on the wall (double visits)

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
Model				

- number of *single visits* to the wall will be denoted m_a ,
- number of *double visits* will be denoted *m*_d.

The partition function:

$$Z_n(a,d) = \sum_{\widehat{\varphi} \, \ni \, |\widehat{\varphi}| = n} e^{(m_a(\widehat{\varphi}) \cdot \varepsilon_a + m_d(\widehat{\varphi}) \cdot \varepsilon_d)/k_B T}$$

where $a = e^{\varepsilon_a/k_BT}$ and $d = e^{\varepsilon_d/k_BT}$.

The thermodynamic reduced free energy:

$$\kappa(a,d) = \lim_{n \to \infty} n^{-1} \log \left(Z_n(a,d) \right).$$

Exact Solutions of Interacting Friendly Directed Walkers

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
GENERATIN	g Function			

To find the free energy we will instead solve for the generating function

$$G(a,d;z) = \sum_{n=0}^{\infty} Z_n(a,d) z^n.$$

The radius of convergence of the generating function $z_c(a, d)$ is directly related to the free energy via

$$\kappa(a,d) = \log(z_c(a,d)^{-1}).$$

Two order parameters:

$$\mathcal{A}(a,d) = \lim_{n \to \infty} \frac{\langle m_a \rangle}{n}$$
 and $\mathcal{D}(a,d) = \lim_{n \to \infty} \frac{\langle m_d \rangle}{n}$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Υ	i				
			ΠГ		

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

FUNCTIONAL EQUATION

We consider walks φ in the larger set, where each walk can end at any possible height.

The expanded generating function

$$F(r,s;z) \equiv F(r,s) = \sum_{\varphi \in \Omega} z^{|\varphi|} r^{\lfloor \varphi \rfloor} s^{\lceil \varphi \rceil/2} a^{m_a(\varphi)} d^{m_d(\varphi)},$$

where

- *z* is conjugate to the length $|\varphi|$ of the walk,
- *r* is conjugate to the distance $\lfloor \varphi \rfloor$ of the bottom walk from the wall and
- *s* is conjugate to *half* the distance [φ] between the final vertices of the two walks.

and we recover G(a, d; z) = F(0, 0).

Exa

Unzipping model

Gelation model

イロト イヨト イヨト イヨト

Conclusion

FUNCTIONAL EQUATION

Consider adding steps onto the ends of the two walks

This gives the following functional equation

$$F(r,s) = 1 + z \left(r + \frac{1}{r} + \frac{s}{r} + \frac{r}{s}\right) \cdot F(r,s) - z \left(\frac{1}{r} + \frac{s}{r}\right) \cdot [r^{0}]F(r,s) - z\frac{r}{s} \cdot [s^{0}]F(r,s) + z(a-1)(1+s) \cdot [r^{1}]F(r,s) + z(d-a) \cdot [r^{1}s^{0}]F(r,s).$$

Figure : Adding steps to the walks when the walks are away from the wall.

Owczarek

E

200

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
THE KERNEI	,			

Rewrite equation as "Bulk = Boundary"

$$K(r,s) \cdot F(r,s) = \frac{1}{d} + \left(1 - \frac{1}{a} - \frac{zs}{r} - \frac{z}{r}\right) \cdot F(0,s) - \frac{zr}{s} \cdot F(r,0) + \left(\frac{1}{a} - \frac{1}{d}\right) \cdot F(0,0)$$

where the kernel K is

$$\mathbf{K}(\mathbf{r},\mathbf{s}) = \left[1 - z\left(r + \frac{1}{r} + \frac{s}{r} + \frac{r}{s}\right)\right].$$

Recall, we want F(0,0) *so we try to find values that kill the kernel*

Exact Solutions of Interacting Friendly Directed Walkers

Ξ

イロト イヨト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
Symmetries	OF THE KERNEL			

The kernel is symmetric under the following two transformations:

$$(r,s)\mapsto \left(r,\frac{r^2}{s}\right),$$
 $(r,s)\mapsto \left(\frac{s}{r},s\right)$

Transformations generate a family of 8 symmetries ('group of the walk')

$$(r,s), \left(r, \frac{r^2}{s}\right), \left(\frac{s}{r}, \frac{s}{r^2}\right), \left(\frac{r}{s}, \frac{1}{s}\right), \left(\frac{1}{r}, \frac{1}{s}\right), \left(\frac{1}{r}, \frac{s}{r^2}\right), \left(\frac{r}{s}, \frac{r^2}{s}\right), \text{ and } \left(\frac{s}{r}, s\right)$$

We make use of 4 of these which only involve positive powers of r.

This gives us four equations.

・ロト ・ 同ト ・ ヨト ・ ヨト

¥ .	1
	111CHOD
TTTTTT	A CAUCALONA A

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

MAGIC COMBINATION

Following Bousquet-Mélou when a = 1 we form the simple alternating sum

Eqn1 - Eqn 2 + Eqn 3 - Eqn 4.

- When $a \neq 1$ one needs to generalise that approach
- Multiply by rational functions,

The form of the Left-hand side of the final equation being

$$a^{2}rK(r,s)\left(sF(r,s) - \frac{r^{2}}{s}F\left(r,\frac{r^{2}}{s}\right) + \frac{Lr^{2}}{s^{2}}F\left(\frac{r}{s},\frac{r^{2}}{s}\right) - \frac{L}{s^{2}}F\left(\frac{r}{s},\frac{1}{s}\right)\right)$$

where

$$L = \frac{zas - ars + rs + zar^2}{zas - ar + r + zar^2}.$$

E

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
EXTRACTING	G THE SOLUTION $a =$	1		

 $K(r,s) \cdot (\text{linear combination of } F) =$

$$\frac{r(s-1)(s^2+s+1-r^2)}{s^2} \left(1+(d-1)F(0,0)\right) \\ -zd(1+s)sF(0,s) + \frac{zd(1+s)}{s^2}F\left(0,\frac{1}{s}\right).$$

- The kernel has two roots
- choose the one which gives a positive term power series expansion in z
- with Laurent polynomial coefficients in s:

$$\hat{r}(s;z) \equiv \hat{r} = \frac{s\left(1 - \sqrt{1 - 4\frac{(1+s)^2 z^2}{s}}\right)}{2(1+s)z} = \sum_{n>0} C_n \frac{(1+s)^{2n+1} z^{2n+1}}{s^n},$$

where $C_n = \frac{1}{n+1} {2n \choose n}$ is a Catalan number.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

イロト イヨト イヨト イヨト

EXTRACTING THE SOLUTION a = 1

- *Make the substitution* $r \mapsto \hat{r}$
- *rewrite to remove z:* $z = (\hat{r} + 1/\hat{r} + \hat{r}/s + s/\hat{r})^{-1}$.

Setting $r \mapsto \hat{r}$ gives

$$0 = ds^{4}F(0,s) - dsF\left(0,\frac{1}{s}\right) - (s-1)(s^{2}+s+1-\hat{r}^{2})(s+\hat{r}^{2})\left(1+(d-1)F(0,0)\right)$$

Note coefficients of F(0, s) and F(0, 1/s) are independent of \hat{r} .

If we divide by equation by s — then F(0,0) is the constant term in s.

Ξ

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
SOLUTION F	OR $a = 1$			

Now extract the coefficient of s^1 :

$$0 = -\left(1 + \sum_{n=0}^{\infty} \frac{12(2n+1)}{(n+2)^2(n+3)} C_n^2 z^{2n+2}\right) \cdot (1 + (d-1)F(0,0)) - d \cdot F(0,0).$$

Solving the above when d = 1 gives

$$G(1,1;z) = 1 + \sum_{n=0}^{\infty} \frac{12(2n+1)}{(n+2)^2(n+3)} C_n^2 z^{2n+2},$$

and hence for general *d* we have

$$F(0,0) = G(1,d;z) = \frac{G(1,1;z)}{d + (1-d)G(1,1;z)}$$

Exact Solutions of Interacting Friendly Directed Walkers

200

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Introduction

Double adsorption model

Unzipping model

Gelation model

イロト イロト イヨト イヨト

Conclusion

a = d

Need to extract coefficients term by term in *a* to give

$$\begin{aligned} [a^{k}z^{2n}]F(0,0) &= \sum_{k'=0}^{k} \frac{k'(k'+1)(2+4n-k'n-2k')}{(k'-1-n)(n+1)^{2}(-2n+k')(n+2)} \binom{2n-k'}{n} \binom{2n}{n} \\ &= \frac{k(k+1)(k+2)}{(2n-k)(n+1)^{2}(n+2)} \binom{2n-k}{n} \binom{2n}{n} \end{aligned}$$

which gives us

$$G(a,a) = \sum_{n \ge 0} z^{2n} \sum_{k=0}^{n} a^k \frac{k(k+1)(k+2)}{(n+1)^2(n+2)(2n-k)} {2n \choose n} {2n-k \choose n}.$$

Agrees with Brak et al. (1998) that used LGV

One can now consider $d \neq a$:

$$G(a,d;z) = \frac{aG(a,a;z)}{d + (a-d)G(a,a;z)}.$$

Ξ

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
COMBINATORIAL STRUCTURE				

- Combinatorial structure in the underlying the functional equation.
- Breaking up our configurations into pieces between double visits gives

$$G(a,d;z) = \frac{1}{1 - dP(a;z)}$$

where P(a; z) is the generating function of so-called primitive factors or pieces.

• Rearranging this expression gives

$$P(a;z) = \frac{G(a,d;z) - 1}{dG(a,d;z)} = \frac{G(a,a;z) - 1}{aG(a,a;z)}.$$

• This allows us to calculate P(a; z) from a known expression for G(a, a; z)

イロト イロト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
PHASES				

The phases determined by dominant singularity of the generating function

The singularities of G(a, d; z) *are*

- those of P(a; z) which are related to those of G(a, a; z) and
- the simple pole at 1 dP(a; z) = 0.

There are two singularities of G(a, a; z) giving rise to two phases:

- A desorbed phase: A = D = 0
- The bottom walk is adsorbed (an *a*-rich phase): A > 0 with D = 0

The simple pole in 1 - dP(a; z) = 0 gives rise to the third phase

• Both walks are adsorbed and this is a *d*-rich phase: D > 0, and A > 0

イロト イヨト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
PHASEDIAC	TPAM			

The first-order transition is marked with a dashed line, while the two second-order transitions are marked with solid lines. The three boundaries meet at the point $(a, d) = (a^*, d^*) = (2, 11.55...)$.

1

イロト イヨト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
PHASE TRANSITIONS				

- The Desorbed to *a*-rich transition is
 - the standard second order adsorption transition
 - on the line a = 2 for $d < d^*$
- On the other hand the Desorbed to *d*-rich transition is first order
- While the *a*-rich to *d*-rich transition is also second order.

The other two phase boundaries are solutions to equations involving G(a, a)

The point where the three phase boundaries meet can be computed as

$$(a^*, d^*) = \left(2, \frac{16(8-3\pi)}{64-21\pi}\right)$$

Note that d^* is not algebraic.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Υ	i	3		
m	tro	auc	CUC	n

イロト イロト イヨト イヨト

NATURE OF THE SOLUTION

Desorbed to *d*-rich transition occurs at a value of $d_c(a)$ for a < 2. We found

$$d_c(1) = \frac{8(512 - 165\pi)}{4096 - 1305\pi}$$

which is not algebraic.

- If generating function were D-finite then $d_c(1)$ must be algebraic
- Hence generating function is not D-finite
- though it is calculated in terms of one.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

FIXED ENERGY RATIO MODEL FAMILY

- r = 2 model has *two* phase transitions as temperature changed .
- At very low temperatures the model is in a *d*-rich phase
- while at high temperatures the model is in the desorbed state.
- At intermediate temperatures the system is in an *a*-rich phase.
- Both transitions are second-order with jumps in specific heat.

イロト イヨト イヨト イヨト

CONCLUSIONS FOR DOUBLE INTERACTION MODEL

- Vesicle above a surface both sides of the vesicle can interact
- Exact solution of generating function
- Obstinate kernel method with a minor generalisation
- Solution is not D-finite LGV lemma does not apply directly
- There are two low temperature phases
- Line of first order transition and usual second order adsorption.
- Owczarek, Rechnitzer, and Wong, J. Phys. A, 45 425002, (2012)

Introduction

Unzipping model

elation model

イロト イロト イヨト

Conclusion

UNZIPPING ADSORPTION MODEL OF DNA DENATURATION

Simple model of DNA as two friendly walks near a boundary

Figure : An allowed configuration of length 10. The overall weight is a^3c^7

- *a is a fugacity for each single visit to the wall*
- *c* is a fugacity for each contact of the two walks to site

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
UNZIPPING A	Adsorption Mode	L		

Let *T* be the system temperature, k_B the Boltzmann constant.

- surface visit step: $a \equiv e^{\varepsilon_a/k_BT}$
- shared site contact: $c \equiv e^{\varepsilon_c/k_B T}$
- Energy $-\varepsilon_a$ for visits of the bottom walk only (single visits) to the wall
- Energy $-\varepsilon_c$ when both walks visit the same site (contacts)

The partition function is

$$Z_n(a,c) = \sum_{\widehat{\varphi} \ni |\widehat{\varphi}| = n} a^{m_a(\widehat{\varphi})} c^{m_c(\widehat{\varphi})}$$

- number of visits to the wall denoted m_a,
- number of joint contacts denoted m_c.

イロト イヨト イヨト イヨト

Ψ.			
			<u>م</u>
	na		

イロト イヨト イヨト イヨト

Conclusion

GENERATING FUNCTION

- Partition function: $Z_n(a,c) = \sum_{\widehat{\varphi} \ni |\widehat{\varphi}|=n} a^{m_a(\widehat{\varphi})} c^{m_c(\widehat{\varphi})}$
- Generating function: $G(a,c) \equiv G(a,c;z) = \sum_{n>1} Z_n(a,c) z^n$
- Reduced free energy:

$$\kappa(a,c) = \lim_{n \to \infty} n^{-1} \log Z_n(a,c) = \log z_s(a,c)$$

where $z_s(a, c)$ is dominant singularity of *G* w.r.t. *z*

Two order parameters:

$$\mathcal{A}(a,c) = \lim_{n \to \infty} \frac{\langle m_a \rangle}{n}$$
 and $\mathcal{C}(a,c) = \lim_{n \to \infty} \frac{\langle m_c \rangle}{n}$,

Exact Solutions of Interacting Friendly Directed Walkers

Ξ

Unzipping model

GENERALISED GENERATING FUNCTION

We consider walks φ in the larger set, where each walk can end at any possible height.

- To find G(a, c), consider larger class of configs.
- Generalised generating function:

F

$$\begin{aligned} (\mathbf{r},\mathbf{s}) &\equiv F(\mathbf{r},\mathbf{s},a,c;z) \\ &= \sum_{\varphi \in \Omega} a^{m_a(\varphi)} c^{m_c(\varphi)} \mathbf{r}^i \mathbf{s}^j z^n \end{aligned}$$

• G(a,c) = F(0,0)

イロト イロト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
ESTABLISHIN	G A FUNCTIONAL E	QUATION		

- By considering the addition of a single column onto a configuration, and the types of walks obtained, we can find a decomposition of all configurations
- Translating back to generating functions we end up with

$$\begin{split} K(r,s)F(r,s) &= \frac{1}{ac} + \left(\frac{c-1}{c} - \frac{zr}{s}\right)F(r,0) \\ &+ \left[\frac{a-1}{a} - \frac{z}{r}\left(s+1\right)\right]F(0,s) - \frac{(a-1)}{a}\frac{(c-1)}{c}F(0,0) \end{split}$$

where the kernel K(r, s) is

$$K(r,s) \equiv K(r,s;z) = \left(1 - z\left[r + \frac{s}{r} + \frac{r}{s} + \frac{1}{r}\right]\right).$$

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
Symmetries	OF THE KERNEL			

The kernel is symmetric under the following two transformations, which are involutions:

$$(r,s)\mapsto \left(r,\frac{r^2}{s}\right),$$
 $(r,s)\mapsto \left(\frac{s}{r},s\right)$

Transformations generate a family of 8 symmetries ('group of the walk')

$$(r,s), \left(r, \frac{r^2}{s}\right), \left(\frac{s}{r}, \frac{s}{r^2}\right), \left(\frac{r}{s}, \frac{1}{s}\right), \left(\frac{1}{r}, \frac{1}{s}\right), \left(\frac{1}{r}, \frac{s}{r^2}\right), \left(\frac{r}{s}, \frac{r^2}{s}\right), \text{ and } \left(\frac{s}{r}, s\right)$$

- We make use of four of these which only involve positive powers of r.
- This gives us four equations.
- One can eliminate many of the unknown generating functions by a clever choice of adding these equations

イロト イロト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
ROOTS OF T	THE KERNEL			

- The kernel has two roots as function of either *r* or *s*
- choose the one which gives a positive term power series expansion in *z*
- with Laurent polynomial coefficients in *s* (*r*):

$$\hat{r}(s;z) \equiv \hat{r} = \frac{s\left(1 - \sqrt{1 - 4\frac{(1+s)^2 z^2}{s}}\right)}{2(1+s)z} = \sum_{n>0} C_n \frac{(1+s)^{2n+1} z^{2n+1}}{s^n},$$

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is a Catalan number.

• Make the substitution $r \mapsto \hat{r}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
Finding th	HE SOLUTION			

Key idea

- Treat *K* as fn. of *r* or *s* to get roots \hat{r} and \hat{s}
- Then use subset of \mathcal{F} to get system of eqns. E.g. Using \hat{r} :

(\hat{r},s)	$F(\hat{r},0)$	F(0,s)	F(0, 0)
$(\hat{r},\hat{r}^2/s)$	$F(\hat{r},0)$	$F(0,\hat{r}^2/s)$	F(0, 0)
$(\hat{r}/s,\hat{r}^2/s)$	$F(\hat{r}/s,0)$	$F(0,\hat{r}^2/s)$	F(0, 0)
$(\hat{r}/s, 1/s)$	$F(\hat{r}/s,0)$	F(0, 1/s)	F(0, 0)

• Combine these eqns. to get new fn. eqn

$$N_1^{\star}(s;z)F(0,1/s) + N_2^{\star}(s;z)F(0,s) = \left[M^{\star}(s) - c^2 H^{\star}(s;z)\right] \left(\frac{1}{ac} - ACF(0,0)\right),$$

- Can do the same using \hat{s} !
- Nice things happen when a = 1 or c = 1 to $N_1^{\star}(s; z)$ etc

イロト イロト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
SOLUTION F	OR $G(a, 1)$			

Exact solution for G(a, 1) is known and can be found using the kernel method In fact, the exact solution for G(a, 1) is known from first part of talk!

- Brak, Essam & Owczarek (1998, 2001): Partition fn. using Lindström-Gessel-Viennot Thm.
- Owczarek, Rechnitzer & Wong (2012): Gen. fn calculated by employing same kernel method techniques.

Specifically:

$$G(a,1) = \sum_{n\geq 0} z^{2n} \sum_{k=0}^{n} a^k \frac{k(k+1)(k+2)}{(2n-k)(n+1)^2(n+2)} {2n-k \choose n} {2n \choose n}.$$

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
SOLUTION F	or $G(1,c)$			

• No known previous solution for G(1, c)

We can write functional equation as

$$G(1,c) = [r^{1}]\frac{\hat{s}(r^{2}-1)[r-cr+cz(1+r^{2}-\hat{s})]}{(c-1)(\hat{s}-c\hat{s}+crz)},$$

where $\hat{s}(r)$ is the appropriate root of the kernel, expanding RHS as power series in *c* and so obtain, after some work:

$$\begin{split} &G(1,c;z) = 1 + c^2 z^2 + c^3 \left(1 + 2z\right) z^4 \\ &+ \sum_{i=3}^{\infty} z^{2i} \sum_{m=3}^{2i} c^m \sum_{k=3}^m (-1)^{k+1} \frac{k(k-1)(k-2)(2i-k+1)(i-k+2)}{i^2(i-1)^2(i+1)(i-2)} \binom{m}{k} \binom{2i-k}{i-2} \binom{2i-k-1}{i-3}. \end{split}$$

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
SOLUTION F	or $G(1,c)$			

- While we have an explicit solution for *G*(1, *c*) it is advantageous for analysis to directly read off the singularities
- Alternative find differential equation satisfied by generating function
- Use Zeilberger-Gosper algorithm: Maple: DETools package, Zeilberger hyperexp. implementation
- Result: DE for G(1, c) is order 6 with poly. coeff of deg_z = 12

イロト イロト イヨト イヨト

Introduction Double adsorption model Unzipping model Gelation model Conclusion FORTUNATE DECOMPOSITION OF G(a, c)

Using various combinatorial relationships between the generating functions we can re-write G(a, c) in terms of G(a, 1) and G(1, c):

$$G(a,c) = \frac{1}{(a-1)(c-1)} + \frac{p_1(a,c,z)}{p_2(a,c,z) + p_3(a,c,z)G(a,1) + p_4(a,c,z)G(1,c)}$$

where p_i are polynomials in a, c and z: quadratics in z^2 .

Key point: With solutions to G(a, 1) and G(1, c) we additionally have solved for G(a, c).

イロト イロト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
SINGULARIT	TIES OF $G(a, 1)$	& <i>G</i> (1, <i>c</i>)		

- Recall, free energy $\kappa(a, c) = \log z_s(a, c)$
- For G(a, 1), prev. known:

$$z_s(a,1) = \begin{cases} z_b \equiv 1/4, & a \le 2\\ z_a \equiv \frac{\sqrt{a-1}}{2a}, & a > 2 \end{cases}$$

• For *G*(1, *c*), we use the DE (roots of leading poly. coeff.):

$$z_s(1,c) = \begin{cases} z_b \equiv 1/4, & c \le 4/3\\ z_c \equiv \frac{1-c+\sqrt{c^2-c}}{c}, & c > 4/3 \end{cases}$$

Exact Solutions of Interacting Friendly Directed Walkers

(日)

Introduction

RECALL ORDER PARAMETERS

Recall lim. avg. surface and shared site contacts resp.

$$\mathcal{A}(a,c) = \lim_{n \to \infty} \frac{\langle m_a \rangle}{n} = a \frac{\partial \kappa}{\partial a}, \qquad \qquad \mathcal{C}(a,c) = \lim_{n \to \infty} \frac{\langle m_c \rangle}{n} = c \frac{\partial \kappa}{\partial c}$$

• For *G*(*a*, 1): the order parameter associated with the phase transition is the surface coverage

$$\mathcal{A}(a,1) = \begin{cases} 0, & a \le 2\\ \frac{a-2}{2(a-1)}, & a > 2 \end{cases}$$

• For *G*(1, *c*): the order parameter associated with the phase transition is the shared site density

$$\mathcal{C}(1,c) = egin{cases} 0, & c \leq 4/3 \ rac{c-2+\sqrt{c(c-1)}}{2(c-1)}, & c > 4/3 \end{cases}$$

• Second-order adsorption and zipping phase trans. resp.

Owczarek

SINGULARITIES AND PHASES

This leads us to associate the singularities of G(a, 1) and G(1, c) with the phases as

- $z_b = 1/4$ with a desorbed phase where $\mathcal{A} = 0$ and $\mathcal{C} = 0$
- $z_a = \frac{\sqrt{a-1}}{2a}$ with an adsorbed phase where A > 0
- $z_c = \frac{1-c+\sqrt{c^2-c}}{c}$ with a zipped phase where C > 0

(日)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

ORDER PARAMETERS FOR THE FULL MODEL

Four possible phases:

- Desorbed: A = C = 0
- Adsorbed: (a-rich) A > 0, C = 0
- Zipped: (c-rich) $\mathcal{A} = 0, \mathcal{C} > 0$
- Zipped & Adsorbed: (ac-rich) A > 0, C > 0

Ξ

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
ANALYSING	G(a,c)			

Recall

$$G(a,c) \sim \frac{p_1(a,c,z)}{p_2(a,c,z) + p_3(a,c,z)G(a,1) + p_4(a,c,z)G(1,c)}$$

- \Rightarrow Singularities: Look at G(a, 1), G(1, c) and root of above denom.
- root of denominator is associated with the zipped-adsorbed phase

The dominant singularity $z_s(a, c)$ of the generating function G(a, c; z) is one of four types associated with the four phases

$$z_{s}(a,c) = \begin{cases} z_{b} \equiv 1/4, & a \leq 2, c \leq 4/3\\ z_{a}(a) \equiv \frac{\sqrt{a-1}}{2a}, & a > 2, c \leq \alpha(a)\\ z_{c}(c) \equiv \frac{1-c+\sqrt{c^{2}-c}}{c}, & a \leq \gamma(c), c > 4/3\\ z_{ac}(a,c), & a > \gamma(c), c > \alpha(a) \end{cases}$$

- $\alpha(a)$ is boundary between adsorbed and zipped-adsorbed phases
- $\gamma(c)$ is the boundary between zipped and zipped-adsorbed phases

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
PHASE DIAG	RAM			

All transitions found to be second order

Low-temp argument gives

• $c \to \infty, \gamma(c) \to 2$

•
$$a \to \infty, \alpha(a) \to \sqrt{5} - 1$$

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
ASYMPTOTIC	CS			

Table : The growth rates of the coefficients $Z_n(a, c)$ modulo the amplitudes of the full generating function G(a, c; z) over the entire phase space.

phase region	$Z_n(a,c) \sim$
free	$4^{n}n^{-5}$
free to adsorbed boundary	$4^{n}n^{-3}$
free to zipped boundary	$4^{n}n^{-3}$
a = 2, c = 4/3	$4^{n}n^{-3}$
adsorbed	$z_a(a)^{-n}n^{-3/2}$
zipped	$z_c(c)^{-n}n^{-3/2}$
adsorbed to adsorbed-zipped boundary ($\alpha(a)$)	$z_a(c)^{-n}n^{-1/2}$
zipped to adsorbed-zipped boundary $(\gamma(c))$	$z_c(c)^{-n}n^{-1/2}$
adsorbed-zipped	$z_{ac}(a,c)^{-n}n^{-1}$

1

イロト イヨト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
CONCLUSIO	N			

- Simple model of DNA as two friendly walks near a boundary
- Used combinatorial decomposition to obtain linear functional equation
- Used obstinate kernel method to solve functional equations (using symmetries to provide sufficient information)
- Explicit series solutions for G(a, 1) and G(1, c)
- Combined these equations to relate G(a, c) to both G(a, 1) and G(1, c)
- Also used Zeilberger-Gosper algorithm to find linear DE for G(1, c)
- Full analysis of asymptotics and phase diagram
- R. Tabbara, A. L. Owczarek and A. Rechnitzer, J. Phys. A.: Math. Theor, 47, 015202 (34pp), 2014

イロト イヨト イヨト イヨト

・ロト ・ 同ト ・ ヨト ・ ヨト

THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — finite gelation

Figure : An example of an allowed configuration of length 8. Here, we have $m_c = 11$ double shared contact steps and $m_d = 3$ triple shared contact steps. Thus, the overall Boltzmann weight for this configuration is $c^{11}d^3 = c^5t^3$

イロト イヨト イヨト イヨト

THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — finite gelation

- Start with three walks in the "bulk" (no walls) with interactions
- double visits fugacity: *c* and triple visits fugacity: *d*
- total weight for triple visits: $t = c^2 d$
- Walks start and end together
- *m_c* is the number of double contacts between pairs of walks
- *m_d* is the number of triple contacts between all three walks
- Partition function: $Z_n(c,d) = \sum_{\varphi \in \widehat{\Omega}, |\varphi|=n} c^{m_c(\varphi)} d^{m_d(\varphi)}$
- Generating function: $G(c,d) \equiv G(c,d;z) = \sum_{n>1} Z_n(c,d) z^n$

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
Primitive p	IECES			

- Primitive walks [P(c; z)] only have triple visits at either end
- Any walk can be uniquely decomposed into a sequence of primitive pieces:

$$G(c,d;z) = \frac{1}{1 - dP(c;z)}$$
$$G(c,d;z) = \frac{G(c,1;z)}{d \left[1 - G(c,1;z)\right] + G(c,1;z)}.$$

Hence it suffices to solve for G(c, 1; z)

(日)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

GENERALISED GENERATING FUNCTION

We consider walks in a larger set, where they do not necessarily end together.

• Generalised generating function:

$$F(r,s) \equiv F(r,s,c;z) = \sum_{\varphi \in \widehat{\Omega}} r^{h(\varphi)/2} s^{f(\varphi)/2} c^{m_c(\varphi)} z^{|\varphi|}$$

- G(c,1) = F(0,0)
- where h(φ) and f(φ) are half the distance between the final vertices of the top to middle and middle to bottom walks respectively.

イロト イロト イヨト イヨト

ESTABLISHING A FUNCTIONAL EQUATION

The decomposition of the set of walks gives

$$\begin{aligned} \mathbf{K}(\mathbf{r}, \mathbf{s}) F(\mathbf{r}, \mathbf{s}) &= \frac{1}{c^2} - \frac{(\mathbf{r} - c\mathbf{r} + c\mathbf{z} + c\mathbf{s}\mathbf{z})}{c\mathbf{r}} F(0, \mathbf{s}) \\ &- \frac{(s - c\mathbf{s} + c\mathbf{z} + c\mathbf{r}\mathbf{z})}{c\mathbf{s}} F(\mathbf{r}, 0) - \frac{(c - 1)^2}{c^2} F(0, 0) \end{aligned}$$

where the kernel K(r, s) is

$$K(r,s) \equiv K(r,s;z) = 1 - \frac{z(r+1)(s+1)(r+s)}{rs}.$$

Exact Solutions of Interacting Friendly Directed Walkers

Owczarek

Ξ

590

Ψ.			
			<u>م</u>
	na		

Double adsorption model

Unzipping model

Gelation model

イロト イロト イヨト イヨト

Conclusion

SYMMETRIES OF THE KERNEL

The kernel K(r, s) is

$$K(r,s) \equiv K(r,s;z) = 1 - \frac{z(r+1)(s+1)(r+s)}{rs}$$

The kernel is symmetric under the following two transformations, which are involutions:

$$(r,s)\mapsto(s,r)\,,\qquad (r,s)\mapsto\left(r,\frac{r}{s}\right)$$

Transformations generate a family of 12 symmetries ('group of the walk')

$$\begin{aligned} &(r,s), (s,r), \left(r,\frac{r}{s}\right), \left(s,\frac{s}{r}\right), \left(\frac{r}{s},r\right), \left(\frac{s}{r},s\right), \left(\frac{s}{r},\frac{1}{s}\right), \left(\frac{s}{r},\frac{1}{s}\right), \left(\frac{s}{r},\frac{1}{r}\right), \\ &\left(\frac{1}{s},\frac{r}{s}\right), \left(\frac{1}{r},\frac{s}{r}\right), \left(\frac{1}{r},\frac{1}{s}\right), \left(\frac{1}{s},\frac{1}{r}\right). \end{aligned}$$

• Proceed in a similar way to previously

イロト イロト イヨト イヨト

USING THE SYMMETRIES

- We make use of the symmetries of the kernel to produce multiple equations making sure we have either only positive powers of r or s.
- *Re-combine to leave only say* F(0,0), F(1/s,0) and F(0,s)

$$N_{1}(s;z)F(1/s,0) + N_{2}(s;z)F(0,s) + N_{3}(s;z)\left[(c-1)^{2}F(0,0) - 1\right] = 0$$

where N_j can be considered simple polynomials of \hat{r} , s and z.

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
ROOTS OF TH	he Kernel			

- Substitute root of the kernel
- Use Lagrange inversion to find answer term-by-term
- The kernel has two roots as function of either *r* or *s*
- choose the one which gives a positive term power series expansion in *z*
- with Laurent polynomial coefficients in *s* (*r*):

$$\hat{r}_{\pm}(s;z) = \frac{s - z \left(s^2 + 2s + 1\right) \pm \sqrt{s^2 - 2zs(1+s)^2 + z^2 \left(s^2 - 1\right)^2}}{2z(s+1)}$$

Lagrange Inversion gives us

$$\hat{r}(s;z)^{k} = \sum_{n \ge k} \frac{k}{n} z^{n} (1+s)^{n} \sum_{j=k}^{n} \binom{n}{j} \binom{n}{j-k} s^{j-k}$$

イロト イロト イヨト イヨト

Introduction

Conclusion

Solution for G(c, 1)

$$G(c,1;z) = \frac{1}{(c-1)^2} \left(1 + \frac{c(c^2z + c^2 - 3c)\sqrt{1 - 4cz}}{G_b(c,1;z)} \right)$$

where

$$G_b(c,1;z) = -1 - c^2 z - c^3 z + c(2z+1) + \sqrt{1 - 4cz} \left[-cz + c^2 z - c^3 z + \left(-2c^2 z + 2c^3 z \right) J(c;z) \right].$$

and

$$J(c;z) = \sum_{i\geq 3} z^{i} \sum_{m=1}^{i-1} c^{m} \sum_{k=1}^{i-m-1} {m \choose k} \sum_{j=k}^{i-m-1} \left\{ \frac{k}{i-m-1} {i-m-1 \choose j} {i-m-1 \choose j-k} \right] \\ \left[{m+i-k \choose i-j} + {m+i-k \choose i-j-2} \right] \\ - \frac{k}{i-m} {i-m \choose j} {i-m \choose j-k} {m+i-k-1 \choose i-j-1} \right\} \\ - \sum_{i\geq 2} z^{i} \sum_{m=1}^{i-1} c^{m} \sum_{k=1}^{i-m} {m \choose k} \frac{k}{i-m} {i-m \choose i-k-m} {m+i-k-1 \choose m-1}$$

▲□▶▲□▶▲≣▶▲≣▶ = 三 - のへで

Ψ.				
		101	010	
	nai		COLL	

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

DE for G(c, 1)

- While we have an explicit solution for *G*(*c*, 1) it is advantageous for analysis to directly read off the singularities
- Alternative find differential equation satisfied by generating function
- Use Zeilberger-Gosper algorithm: Maple: DETools package, Zeilberger hyperexp. implementation
- Result: DE for G(c, 1) is order 7 with poly. coeff of deg_z = 26

Introduction

イロト イヨト イヨト イヨト

,

ORDER PARAMETERS FOR THE FULL MODEL

Two order parameters:

$$C(c,d) = \lim_{n \to \infty} \frac{\langle m_c \rangle}{n}$$
 and $D(c,d) = \lim_{n \to \infty} \frac{\langle m_d \rangle}{n}$

The system is in a free phase when

$$\mathcal{C}=\mathcal{D}=0,$$

while a gelated phase is observed when

 $\mathcal{C} > 0, \mathcal{D} > 0$

and finally we do not observe a phase where

C > 0, D = 0.

Exact Solutions of Interacting Friendly Directed Walkers

Owczarek

E

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
ANALYSING	G(a,c)			

The dominant singularity $z_s(c, d)$ of the generating function G(c, d; z)

$$z_{s}(c,d) = \begin{cases} z_{b} \equiv 1/8, & c \leq 4/3, d < 9/8\\ z_{b}, & c \leq \alpha(d), d \geq 9/8\\ z_{p}(c,d), & c > 4/3, d < 9/8\\ z_{p}(c,d), & c > \alpha(d), d \geq 9/8 \end{cases}$$
(1)

where the boundary $\alpha(d)$ corresponds to when the singularities $z_p(c, d) = z_b$ coincide respectively.

where each of the different singularities are associated with different phases:

- z_b with the free phase
- $z_p(c, d)$ with the gelated phase

There is another singularity $z_c(c)$ of the generating function but one can show that $z_p < z_c$ for all c, d where z_c exists.

イロト イロト イヨト イヨト

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
PHASE DIAG	RAM			

Figure 9. The phase diagram of our full model. First and second-order transitions are indicated by solid and dashed lines respectively. All phase boundaries coincide at c = 4/3 and d = 9/8.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
ASYMPTOTIC	CS			

Table : The growth rates of the coefficients $Z_n(c, d)$ modulo the amplitudes of the full generating function G(c, d; z) over the entire phase space.

phase region	$Z_n(c,d) \sim$
free	$8^{n}n^{-4}$
gelated	$z_p(c,d)^{-n}n^0$
free to gelated boundary, $d < 9/8$	$8^n n^{-1} \log n$
free to gelated boundary, $d > 9/8$	$8^n n^0$
c = 4/3, d = 9/8	$8^{n}n^{-1}$

PHASE DIAGRAM IN DIFFERENT VARIABLES

Figure 10. The phase diagram of our full model when setting $d = t/c^2$. First and second-order transitions are indicated by solid and dashed lines respectively. All phase boundaries coincide at c = 4/3 and t = 2.

Ξ

200

Introduction	Double adsorption model	Unzipping model	Gelation model	Conclusion
Conclusion	N			

- Simple model of finite gelation with three friendly walks in the bulk
- Used combinatorial decomposition to obtain linear functional equation
- G(c,d) can be written in terms of G(c,1) via "primitive piece" argument
- Used obstinate kernel method to solve functional equations
- Explicit series solutions for G(c, 1)
- Also used Zeilberger-Gosper algorithm to find linear DE for G(c, 1)
- Full analysis of asymptotics and phase diagram
- Again interesting physics and mathematics
- Manuscript submitted to J. Phys. A: Math. Theor.

イロト イヨト イヨト イヨト

FUTURE WORKS

How far can we extend this? — where does integrability end?

- Combine single, double surface and unzipping interactions
- Consider three walks with multiple unzipping interactions
- Three walks and a wall
- Four walks
- Working in a slit

COEFFICIENT

Three interacting friendly walks

27

Appendix A. J(c, z): Leading coefficient of the differential equation

The following is the leading polynomial coefficient of the linear homogeneous differential equation (55) satisfied by the generating function J(c; z).

 $-2(-1+c)^{15}(2-10c+5c^2)z^3 - (-1+c)^{13}(-39+161c+5c^2-222c^3+100c^4+10c^5)z^4$ $+(-1+c)^{12}(37+868c-4988c^2+6268c^3-2741c^4+1048c^5-894c^6+276c^7)z^5$ $-\left(-1+c\right)^{11} \left(144-2972c+5580c^{2}+25430c^{3}-54470c^{4}+30904c^{5}-6709c^{6}+5072c^{7}-2974c^{8}+340c^{9}\right)z^{6}$ $+ (-1+c)^{10} \left(64 - 4392c + 50474c^2 - 199461c^3 + 206342c^4 - 40697c^5 + 80412c^6 - 165265c^7 + 79458c^8 - 4196c^9 - 2640c^{10} + 144c^{11} \right) z^7 + 2640c^{10} + 144c^{10} + 144c^{1$ $-267138c^9 + 11452c^{10} + 1008c^{11}$ z^8 $-4922524c^9 + 1924892c^{10} - 255032c^{11} + 5616c^{12}$ $+2280008c^9+2360242c^{10}-676758c^{11}+49032c^{12}\bigr)\,z^{10}$ $-(-1+c)^{6}c^{2} \left(44544-230784 c+3551112 c^{2}-38087632 c^{3}+180802288 c^{4}-453709471 c^{5}+757037039 c^{6}-1000 c^{2}+1000 c^{$ $-984837233c^7+964461909c^8-610442720c^9+210975064c^{10}-28939008c^{11}-1107832c^{12}+435024c^{13}\right)z^{11}$ $-3696376911c^7+5534602531c^8-5744764453c^9+3949902310c^{10}-1648705682c^{11}+364273136c^{12}-32000516c^{13}+400464c^{14}\bigr)z^{12}$ $+ 11555022726c^9 - 12066613597c^{10} + 8462237673c^{11} - 3794267461c^{12} + 989457534c^{13} - 128435640c^{14} + 6705720c^{15} \Big) z^{13} + 128435640c^{14} + 128435640c^{15} + 128435640c^{14} + 1284356640c^{14} + 128435660c^{14} + 12845660c^{14} + 12845660c^{14$ $+ (-1+c)^3 c^4 \left(8306688 - 167047680 c + 1173463616 c^2 - 4823571904 c^3 + 11089729840 c^4 - 12279891800 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 12279891800 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 12279891800 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 12279891800 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 12279891800 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 12279891800 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 12279891800 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 1227989180 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 1227989180 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 1227989180 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 1227989180 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 1227989180 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 1227989180 c^5 + 3293103356 c^6 + 4133511414 c^7 + 1089729840 c^4 - 1227989180 c^5 + 329810 c^5 + 329$ < ≣ (A.1) $+2455498351c^8-18471969408c^9+28896185625c^{10}-24138273334c^{11}+11229185308c^{12}-2621954160c^{13}+223736688e^{1}$