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SQUARE LATTICE SELF-AVOIDING WALKS (SAW)

A square lattice SAW
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A SERIES OF SAW PROBLEMS

Figure: Example SAWs with increasing degree of confinement to a box of side
length L = 8. (a) Unconfined, (b) confined to the box (our model), (c) crossing
a square and (d) a Hamiltonian path crossing a square.
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SAW WITHOUT ANY RESTRICTION

• Let the number of them be denoted w(n)
• It is known that the growth constant exists (Hammersley 1957)

µ = lim
n→∞

w(n)1/n

• with a best estimate of µ most recently µ = 2.63815853032790(3)
(Jacobsen, Scullard and Guttmann, 2016)

• It is expected that
w(n) ∼ Aµnnγ−1

where γ = 43/32.
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SIZE OF A SAW

The ”size” of the SAW scales as

⟨R2(n)⟩ ∼ An2ν

In two-dimensions ν is known exactly to be 3/4 for non-dense
polymers and this has been confirmed numerically to high precision
(Clisby 2010).
All measures of size should behave similarly: end-to-end distance,
radius of gyration and maximum span L(n), so

L(n) ∼ Cnν
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SAW CROSSING A SQUARE I

• Now consider SAWs with end points fixed at two opposing
vertices of a square of side L bonds and all sites of the walk lie
within or on the boundary of the square where

2L ≤ n ≤ L2 + 2L

• This problem has a long history too: Whittington and Guttmann
1990, Madras 1995 and Bousquet-Mélou, Guttmann and Jensen
2005 and Knuth 1976 introduced a similar problem

L=5
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SAW CROSSING A SQUARE III

Let the number of such SAW be sL . It has been proven ( Abbott and
Hanson 1978 and Whittington and Guttmann 1990) that the limit

λS = lim
L→∞

s1/L2

L

exists so that sL = λ
L2+o(L2)
S

The best estimate of this growth constant (Bousquet-Mélou,
Guttmann and Jensen 2005) λS = 1.744550(5)
The average number of steps N(L) is expected to scale as

N(L) ∼ CL1/ν

with ν = 3/4
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HAMILTONIAN WALKS I

SAW in a box Owczarek



Introduction Counting SAW Length fugacity SAW in a. box Scaling theory Monte Carlo results Brainstorming

HAMILTONIAN WALKS II

Walks that visit every vertex of a finite patch of lattice are known as
Hamiltionian
Let the number of such walks be hL and the limit

µH = lim
L→∞

h1/L2

L

exists and has been estimated as µH = 1.472801(1) (Bousquet-Mélou,
Guttmann and Jensen 2005)
Note: Whether the walks start and finish at opposite corners is not
relevant.
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SAW WITH LENGTH FUGACITY

Length fugacity
Consider weighting the length by a fugacity eβ with −∞ < β <∞.

For SAW in the bulk consider the grand partition function

Gw(β) =

∞∑
n=0

w(n)eβn,

which converges for β < − logµ.
Note that

⟨n⟩ = ∂ logGw(β)

∂β

is finite when Gw is finite and diverges as a simple pole.
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SAW CROSSING A SQUARE WITH LENGTH FUGACITY

For walks that cross a square define the partition function

Z(S)(β)L =
∑

n

sL(n)eβn

and we can define the free energy as the limit

f (S)(β) = lim
L→∞

1
L2 logZ(S)(β)L

Note
f (S)(0) = log λS
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PREVIOUS RIGOROUS BOUNDS

Previous rigorous results and bounds on the free energies are
summarized as

f (S)(β) = 0, for β < − logµ

logµH + β ≤ f (S)(β) ≤ logµ+ β, for β ≥ − logµ
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SELF-AVOIDING WALKS IN A BOX I

Our problem:
SAW in a box of side length L without restriction of their endpoints

Z(B)
L (β) =

∑
n

cL(n)eβn,

where cL(n) is the number of walks of length n that fit in the box and
eβ is the fugacity of each step.
It is useful to also consider the number of walks ĉL(n) that are unique
up to translation with the corresponding partition function Ẑ(B)

L (β)
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SELF-AVOIDING WALKS IN A BOX II

L=5
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SELF-AVOIDING WALKS IN A BOX III

We define the free energy in a similar way to walks that cross a
square as

f (B)(β) = lim
L→∞

1
L2 logZ(B)

L (β)

and similarly for f̂ (B)(β)

It can be easily seen that if the limit f̂ (B)(β) exists so does f (B)(β).
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RIGOROUS RESULTS

It can be proved using standard arguments that

f (B)(β) = f̂ (B)(β) = 0 for β < − logµ

and

logµ+ β ≥ f (B)(β) = f̂ (B)(β) ≥ f (S)(β) ≥ logµH + β for β ≥ − logµ.
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FREE ENERGY BOUNDS

confined

crossing

Figure: The free energies of confined SAW models. We do not know that the
free energy for our model of confined SAW is strictly greater than that of
SAW that cross a square. The top and bottom dotted lines mark bounds
derived from unconstrained SAWs and Hamiltonian paths, respectively.
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SCALING QUANTITIES

We define the average density via a derivatve

ρ(β) =
∂f (B)(β)

∂β
.

Standard critical scaling implies the existence of an exponent α

f (B)(β) ∼ |β − βc|2−α, β → β+
c ,

and that
ρ(β) ∼ |β − βc|1−α, β → β+

c .
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FINITE SIZE SCALING: DENSITY

For finite L
ρL =

∂fL
∂β

=
⟨n⟩
L2

and finite size scaling suggests that

ρL(β) ∼ Lqψ
(
(β − βc)L1/ν

)
Scaling arguments imply

q = −(1 − α)/ν

and that α = 1/2
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FINITE SIZE SCALING: DENSITY

Density Scaling Ansatz

ρL(β) ∼ L−2/3ψ
(
(β − βc)L4/3

)
.

For fixed values of β we have

⟨n⟩(β) ∼


A for β < βc ,

B L4/3 for β = βc ,

C L2 for β > βc

with

A ∼ (βc − β)−1 as β → β−
c and C ∼ (βc − β)

1
2 as β → β+

c
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The scaling ansatz for the partition function can be written as

Z(B)
L (β) ∼ Lpϕ

(
(β − βc)L1/ν

)
,

with scaling argument implying that

p = 2 − η = γ/ν

so that
Z(B)

L (βc) ∼ BL2−η

η is predicted to have exact value 5/24 in two dimensions
(Nienhuis1982).
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Partition Function Scaling Ansatz

Z(B)
L (β) ∼ L43/24ϕ

(
(β − βc)L4/3

)
,

The fixed β scenario is

Z(B)
L (β) ∼


D(β) for β < βc ,

E L43/24 for β = βc ,

exp
(
f (B)(β)

[
L2 + o

(
L2
)])

for β > βc .

with
D ∼ (βc − β)−43/32 as β → β−

c
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Figure: A sample SAW of length n = 24, considered to be confined in a
bounding box of side length L = 7. The possible next steps are shown with
arrows; the only restriction is that the step to the right is forbidden if the limit
for the simulation was chosen to be Lmax = 7.
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Figure: Thermodynamic quantities for SAWs confined to a box of size L = 9.
Plots show (a) the free energy fL, (b) the density ρL, (c) the logarithm of the
variance L2var(ρL) , and (d) the average size r.
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Figure: (a) The critical density ρL(βc) plotted against the expected scaling
L−2/3 and (b) the scaling function ψ(x) for confined SAWs.
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OUR EXPONENT ESTIMATES: ν AND α

We fitted the data to our scaling form at β = βc assuming ν = 3/4
yielding the critical exponent

α = 0.4996(8)

Then we considered the crossover exponent in the scaling variable so
obtain the estimate

ν = 0.756(4)
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Figure: The critical exponent of the confined SAW partition function ZL(βc)
versus the upper bound of the range of L values used to fit the data, with
(top) and without (bottom) a correction-to-scaling term.
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OUR EXPONENT ESTIMATES: η

We fitted the data to our scaling form at β = βc yielding the critical
exponent

2 − η = 1.785(3)

to be compared to the conjectured value of 43/24 = 1.7916̇
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SIMULATING HAMILTONIAN WALKS

Monte Carlo Backbite Algorithm (clisby.net)
• Moves go back to ”Monte Carlo studies of polymer chain

dimensions in the melt” by Marc L. Mansfield, J. Chem. Phys. 77,
1554 (1982)

• “Secondary structures in long compact polymers” by Richard
Oberdorf, Allison Ferguson, Jesper L. Jacobsen and Jané Kondev,
Phys. Rev. E 74, 051801 (2006)

• An aside: no proof of ergodicity
• Let’s use the moves for a different purpose ...
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SAW IN A BOX WITH THREE ENDPOINT CONDITIONS

1 walks whose endpoints lie at opposing corners of the square
counted as sL;

2 walks whose endpoints lie on opposing sides of the square
counted as dL;

3 walks whose endpoints lie anywhere inside the square (or on the
boundary) counted as aL.

L=5
L=5
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THE LIMIT OF INTEREST

We are interested in the existence of the limit

λA = lim
L→∞

a1/L2

L .

and comparing its value to the previously considered

λS = lim
L→∞

s1/L2

L = 1.744550(5) .

One can in fact prove that
λA = λS
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START OF THE PROOF

Let us further define the number of walks whose endpoints lie
anywhere inside a square of side ℓ that span the square in at least one
direction: in this way they are walks whose minimal bounding box is
of side ℓ and these have cardinality mℓ with the convention m0 = 1.
Denote by m̂L the union of the sets counted by mℓ for 0 ≤ ℓ ≤ L.
Hence

m̂L =

L∑
ℓ=0

mℓ

and
sL ≤ dL ≤ mL ≤ m̂L ≤ aL .

Importantly can also argue that

aL ≤ (L + 1)2m̂L ≤ (L + 1)3mL .
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OUR COMPARISONS

So
mL ≤ aL ≤ (L + 1)3mL .

Hence, if we can show that

λM = lim
L→∞

m1/L2

L

exists then λA exists and λA = λM
Moreover if we can also prove

λM = λS

we will have our result
λA = λS

So need to compare
walks with end points anywhere to those at opposite corners where
the bounding box is a square of side L
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STRATEGY

• Start with walks whose end points are anywhere inside the box
• Move the endpoints to the sides of the box
• bound the number of configurations that lead to a unique

configuation with endpoints on the sides of the box

SAW in a box Owczarek



Introduction Counting SAW Length fugacity SAW in a. box Scaling theory Monte Carlo results Brainstorming

BACKBITE MOVES

or depending on which edge is connected more closely to the 
endpoint

Backbite Move

Figure: The backbite move from the Hamiltonian walk algorithm
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END ATTACK MOVES

Edge closer to this 
endpoint

End-Attack Move

Endpoint in play

Figure: The end-attack move
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CHANGING THE LENGTH MOVES

Lengthen

Shorten

Figure: The lengthening and shortening moves.
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ANTECEDENTS

Figure: On the left are the three possible antecedents of the configuration on
the right when moving the endpoint to the right
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FINAL BOUNDS

Consider the antecedents whose left endpoint reach the boundary
after b moves, then the total is a sum over values of b ≤ L. Hence the
total number of antecedents is bounded for L ≥ 2 by

L∑
b=0

3b
L−b∑
r=0

3r =
1
2

L∑
b=0

3b(3L−b+1 − 1) <
1
2
(L + 1)3L+1 .

Hence we have
sL ≤ mL ≤ 1

2
(L + 1)3L+1sL

and the results (λM exists and λM = λS) follow by raising each to the
power 1/L2 and taking the limit L → ∞. Hence

λA = λS
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FULL ASYMPTOTICS

From series analysis we conjecture that the number of such walks AL,
for both problems, behaves as

AL ∼ λL2+bL+c
A · Lg,

where λA = 1.7445498 ± 0.0000012, b = −0.04354 ± 0.0005,
c = −1.35 ± 0.45, and g = 3.9 ± 0.1.
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