Introduction and motivations	The model	Analysis of solution	Conclusion

Three Interacting Friendly Directed Walks; A Simple Model of Polymer Gelation

[†]Aleks Owczarek, [‡]Andrew Rechnitzer, and [†]Rami Tabbara

[†]MASCOS and School of Mathematics and Statistics, The University of Melbourne

[‡] Department of Mathematics and Statistics, University of British Columbia

June, 2015

CANADAM 2015

• □ > • □ > • □ > • □ > • □ > •

ntroduction	and	motivations	
-------------	-----	-------------	--

DIRECTED WALKS LATTICE MODELS

- Simple lattice models of polymers in solution
- Interface of combinatrorics, probability theory and statistical physics
- There are many exact solutions of single and multiple directed walk models

・ロト ・ 同ト ・ ヨト ・ ヨト

ntroduction and	motivations
-----------------	-------------

EXACT SOLUTION OF DIRECTED LATTICE WALKS LATTICE

- Recurrence and functional equation for partition or generating function
- Rational, algebraic, Differentially-finite (D-finite) and non D-finite solutions (e.g. *q*-series) for generating functions
- Multiple walks: Bethe Ansatz & Lindström-Gessel-Viennot (LGV) Lemma
- LGV Lemma: multiple walks = determinant of single walks (partition functions)
- Interactions have been added to a single walk of various types
- Multiple walks where interaction confined to a single walk
- Recently we have considered some problems where there are interactions between walks
- These can give non-D-finite solutions

イロト イヨト イヨト イヨト

Some known exact solutions: geometries

Vicious No intersection Osculating Shared sites but not lattice bonds (touch or kiss) Friendly Shared sites and bonds

No wall or interaction

- Many vicious directed walks: Fisher ('84), Lindström-Gessel-Viennot thm. ('85), Essam & Guttmann ('95), Guttmann, Owczarek & Viennot ('98)
- Many friendly walks & Osculating walks: Brak ('97), Guttmann & Vöge ('02), Bousquet-Mélou ('06)

With wall but no interaction (LGV)

• Many vicious walks: Krattenhaler, Guttmann & Viennot ('00)

イロト イロト イヨト イヨト

Some known exact solutions: interactions

Single walk involved in interactions (recurrence, Bethe Ansatz, LGV):

- Two Vicious walks: with wall interactions Brak, Essam & Owczarek ('98)
- Many Vicious walks: with wall interactions Brak, Essam & Owczarek ('01)

Inter-walk interactions using (obstinate) kernel method:

- Two Friendly walks: with both walks interacting with the wall *Owczarek, Rechnitzer & Wong* ('12)
- Two Friendly walks: with both wall and inter-walk interactions *Tabbara, Owczarek, Rechnitzer* ('14)

How can we extend the numbers of walks with complex and different types of interactions that can be solved exactly?

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

SO HOW DO WE FIND A SOLUTION: KERNEL METHOD

- Consider generating function
- Combinatorial decompose a set of walks
- Find a functional equation for an expanded generating function
- This leads to the use of extra catalytic variables
- Answer is a 'boundary' value
- Equation is written as "bulk = boundary terms" where bulk term is product of kernel and bulk generating function
- Answer needed is one of the boundary generating functions so try to remove bulk by setting the value of a catalytic variable to a value that makes the kernel vanish
- Standard kernel method due to *Knuth* (1968): use values of "catalytic variable' to "kill" kernel
- From \approx early '00's applied to a number of dir. walk problems

イロト イロト イヨト イヨト

OBSTINATE KERNEL METHOD

- Our problems have several catalytic variables
- Need multiple values of catalytic variables: obstinate kernel method
- Earliest combinatorial application of the obstinate kernel method due to *Bousquet-Mélou* ('02).
- See Bousquet-Mélou *Math. and Comp. Sci 2* (2002)), Bousquet-Mélou, Mishna *Contemp. Math.* **520** (2010)

DOUBLE INTERACTION ADSORPTION MODEL

Figure : Two directed walks with single and "double" visits to the wall the surface.

- Energy $-\varepsilon_a$ for visits of the bottom walk only (*single visits*) to the wall
- Energy $-\varepsilon_d$ when both walks visit a site on the wall (*double visits*)

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction and motivations	The model	Analysis of solution	Conclusion
Model			

- number of *single visits* to the wall denoted *m*_a,
- number of *double visits* denoted *m*_d.

The partition function is

$$Z_n^{(d)}(a,d) = \sum_{\widehat{\varphi} \, \ni \, |\widehat{\varphi}| = n} e^{(m_a(\widehat{\varphi}) \cdot \varepsilon_a + m_d(\widehat{\varphi}) \cdot \varepsilon_d)/k_B T}$$

where $a = e^{\varepsilon_a/k_BT}$ and $d = e^{\varepsilon_d/k_BT}$.

- a is associated with (weights or counts) each single visit to the wall
- *d* is associated with (weights or counts) each double visit to the wall

The generating function is

$$D(a,d;z) = \sum_{n=0}^{\infty} Z_n^{(d)}(a,d) z^n.$$

イロト イロト イヨト

Introduction and motivations

interactions

- "Group of walk" has eight elements
- D(a, d) can be written in terms of D(a, a) via "primitive piece" argument or using obstinate kernel method

Used combinatorial decomposition to obtain linear functional equation

- *D*(*a*, *a*) can be found via obstinate kernel method or other methods
- Solution is not D-finite LGV lemma does not apply directly

· Obstinate kernel method with a generalisation for inclusion of

- Interesting discrete maths
- Phase diagram with second and first order transitions
- Interesting physics
- Scaling of partition function calculated
- Owczarek, Rechnitzer, and Wong, J. Phys. A: Math. Theor., 45 425002, (2012)

Owczarek

(ロ) (同) (E) (E) (E) (E)

Conclusion

Analysis of solution

Exact solution of generating function can be found

Conclusion

UNZIPPING ADSORPTION MODEL

Simple model of DNA as two friendly walks near a boundary

Figure : An allowed configuration of length 10. The overall weight is a^3c^7

- Energy $-\varepsilon_a$ for visits of the bottom walk only (*single visits*) to the wall
- Energy $-\varepsilon_c$ when both walks visit the same site (*contacts*)

(ロ) (同) (E) (E) (E) (E)

Introduction and motivations	The model	Analysis of solution	Conclusion
Model			

- number of *visits* to the wall denoted *m*_a,
- number of *joint visits* (or contacts) denoted *m*_c.

The partition function is

$$Z_n^{(u)}(a,c) = \sum_{\widehat{arphi} \, \ni \, |\widehat{arphi}| = n} e^{(m_a(\widehat{arphi}) \cdot arepsilon_a + m_d(\widehat{arphi}) \cdot arepsilon_c)/k_B T}$$

where $a = e^{\varepsilon_a/k_BT}$ and $c = e^{\varepsilon_d/k_BT}$.

- a is associated with (weights or counts) each single visit to the wall
- *c* is associated with (weights or counts) each joint visit of the two walks to site

The generating function is

$$U(a,c;z) = \sum_{n=0}^{\infty} Z_n^{(u)}(a,c) z^n.$$

イロト イロト イヨト イヨト

SUMMARY FOR UNZIPPING-ADSORPTION MODEL

- Exact solution of generating function can be found
- Used combinatorial decomposition to obtain linear functional equation
- Obstinate kernel method with a generalisation for inclusion of interactions
- "Group of walk" has eight elements
- U(a, c) can be written in terms of U(a, 1) and U(1, c) using observed functional equation relationship after applying obstinate kernel method
- No obvious combinatorial explanation (e.g. primitive pieces)
- U(a,1) = D(a,a) already known
- U(1, c) can be found via obstinate kernel method
- Explicit series solutions for U(a, 1) and U(1, c)
- Also used Zeilberger-Gosper algorithm to find linear DE for U(1, c)
- Phase diagram with four phases and second order transitions
- Scaling of partition function calculated
- R. Tabbara, A. L. Owczarek and A. Rechnitzer, J. Phys. A.: Math. Theor, 47, 015202 (34pp), 2014

THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — gelation

• Start with three walks in the "bulk" (no walls) with interactions

Consider three directed walks along the square lattice. Let our model contain the class of allowed configs. with *n* steps as described:

- all walks begin at (0,0), end at (2*n*,*m*) where *m* is not fixed.
- directed: can only take steps in the $(\pm 1, 0)$ directions.
- (∞) friendly: walks can share sites, but cannot cross
- Energy $-\varepsilon_c$ for visits of any two walks to a single lattice site
- An extra energy $-\varepsilon_d$ when all three walks visit a single site
- That is, a total energy $(-2\varepsilon_c \varepsilon_d)$ when all three walks visit a single site

Introduction and n	notivations
--------------------	-------------

Analysis of solution

Conclusion

WEIGHTS

- double visits weight: $c \equiv e^{\varepsilon_c/k_B T}$
- triple visits extra weight factor: $d \equiv e^{\varepsilon_d/k_BT}$
- total weight for triple visits: $t = c^2 d$
- trivial walk consisting of zero steps has weight 1.
- number of *shared contact sites* between the top-to-middle and the middle-to-bottom walks is denoted *m_c*
- number of *triple shared contact sites* where all three walks coincide is denoted m_d

・ロト ・ 同ト ・ ヨト ・ ヨト

Analysis of solution

Conclusion

The model

Figure : An example of an allowed configuration of length 8. Here, we have $m_c = 11$ double shared contact steps and $m_d = 3$ triple shared contact steps. Thus, the overall Boltzmann weight for this configuration is $c^{11}d^3 = c^5t^3$

5900

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Analysis of solution

Conclusion

GENERATING FUNCTION

- Partition function: $Z_n^{(t)}(c,d) = \sum_{\varphi \in \widehat{\Omega}, |\varphi|=n} c^{m_c(\varphi)} d^{m_d(\varphi)}$
- Generating function: $G(c,d) \equiv G(c,d;z) = \sum_{n\geq 1} Z_n^{(t)}(c,d) z^n$
- Reduced free energy:

$$\kappa(c,d) = \lim_{n \to \infty} n^{-1} \log Z_n^{(t)}(c,d) = \log z_s(c,d)$$

where $z_s(c, d)$ is dominant singularity of *G* w.r.t. *z*

Three Interacting Friendly Directed Walks; A Simple Model of Polymer Gelation

(ロ) (同) (E) (E) (E) (E)

ntroduction and	l motivations
-----------------	---------------

Analysis of solutio

Conclusion

PRIMITIVE PIECES

- Let Ω_P be the subclass where *all* three walks share a common site only at the very beginning and end of the configuration.
- Then the *primitive* generating function P(c; z)

$$P(c;z) = \sum_{\varphi \in \widehat{\Omega}_P} z^{|\varphi|} c^{m_c(\varphi)}$$
(1)

• Importantly any $\varphi\in\widehat{\Omega}$ can be uniquely decomposed into a sequence of primitive walks. Hence

$$G(c,d;z) = \frac{1}{1 - dP(c;z)}$$
$$G(c,d;z) = \frac{G(c,1;z)}{d \left[1 - G(c,1;z)\right] + G(c,1;z)}.$$

Hence solve for our full model it suffices to solve for the model that ignores triple shared contact effects with corresponding generating function G(c, 1; z)

Three Interacting Friendly Directed Walks; A Simple Model of Polymer Gelation

Owczarek

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Analysis of solution

Conclusion

GENERALISED GENERATING FUNCTION

We consider walks φ in the larger set, where each walk can end at any possible position and not necessarily together.

- Let Ω(*i*, *j*) be the class of triple walks that consists of configurations with final top to middle walk distance *i* and middle to bottom distance *j*, that still obey friendly constraints
- To find G(c, 1), consider larger class of configurations $\widehat{\Omega} \equiv \bigcup_{i \ge 0, i \ge 0} \Omega(i, j)$
- Generalised generating function:

$$F(\mathbf{r}, \mathbf{s}) \equiv F(\mathbf{r}, \mathbf{s}, c; z)$$

= $\sum_{\varphi \in \widehat{\Omega}} z^{|\varphi|} r^{h(\varphi)/2} s^{f(\varphi)/2} c^{m_c(\varphi)}$

• G(c,1) = F(0,0)

where *z* is conjugate to the length $|\varphi|$ of a configuration $\varphi \in \widehat{\Omega}$, *r* and *s* are conjugate to *half* the distance $h(\varphi)$ and $f(\varphi)$ between the final vertices of the top to middle and middle to bottom walks respectively.

ntroc	luction	and	motivations	

ESTABLISHING A FUNCTIONAL EQUATION

- By considering the addition of a single column onto a configuration, and the types of walks obtained, we can find a decomposition of all configurations
- Translating back to generating functions we end up with

$$\begin{aligned} K(r,s)F(r,s) &= \frac{1}{c^2} - \frac{(r-cr+cz+csz)}{cr}F(0,s) \\ &- \frac{(s-cs+cz+crz)}{cs}F(r,0) \\ &- \frac{(c-1)^2}{c^2}F(0,0) \end{aligned}$$

where the kernel K(r, s) is

$$K(r,s) \equiv K(r,s;z) = 1 - \frac{z(r+1)(s+1)(r+s)}{rs}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Analysis of solution

Conclusion

SYMMETRIES OF THE KERNEL

The kernel is symmetric under the following two transformations, which are involutions:

$$(r,s)\mapsto (s,r),$$
 $(r,s)\mapsto \left(r,\frac{r}{s}\right)$

Transformations generate a family of 12 symmetries ('group of the walk')

$$\begin{aligned} &(r,s), (s,r), \left(r,\frac{r}{s}\right), \left(s,\frac{s}{r}\right), \left(\frac{r}{s},r\right), \left(\frac{s}{r},s\right), \left(\frac{s}{r},\frac{1}{s}\right), \left(\frac{s}{r},\frac{1}{r}\right), \\ &\left(\frac{1}{s},\frac{r}{s}\right), \left(\frac{1}{r},\frac{s}{r}\right), \left(\frac{1}{r},\frac{1}{s}\right), \left(\frac{1}{s},\frac{1}{r}\right). \end{aligned}$$

- We make use these to produce multiple equations making sure we have either only positive powers of r or s.
- *Re-combine to leave only say* F(0,0), F(1/s,0) and F(0,s)

$$N_1(s;z)F(1/s,0) + N_2(s;z)F(0,s) + N_3(s;z)\left[(c-1)^2F(0,0) - 1\right] = 0$$

where N_j can be considered simple polynomials of \hat{r} , s and z.

・ロト ・ 同ト ・ ヨト ・ ヨト

Analysis of solution

Conclusion

ROOTS OF THE KERNEL

- Substitute root of the kernel
- Use Lagrange inversion to find answer term-by-term
- The kernel has two roots as function of either *r* or *s*
- choose the one which gives a positive term power series expansion in z
- with Laurent polynomial coefficients in *s* (*r*):

$$\hat{r}_{\pm}(s;z) = \frac{s - z \left(s^2 + 2s + 1\right) \pm \sqrt{s^2 - 2zs(1+s)^2 + z^2 \left(s^2 - 1\right)^2}}{2z(s+1)}$$

$$\hat{r}(s;z)^k = \sum_{n \ge k} \frac{k}{n} z^n (1+s)^n \sum_{j=k}^n \binom{n}{j} \binom{n}{j-k} s^{j-n}$$

Three Interacting Friendly Directed Walks; A Simple Model of Polymer Gelation

QA

Analysis of solution

Conclusion

SOLUTION FOR G(c, 1)

$$G(c,1;z) = \frac{1}{(c-1)^2} \left(1 + \frac{c(c^2z + c^2 - 3c)\sqrt{1 - 4cz}}{G_b(c,1;z)} \right)$$

where

$$G_b(c,1;z) = -1 - c^2 z - c^3 z + c(2z+1) + \sqrt{1 - 4cz} \left[-cz + c^2 z - c^3 z + \left(-2c^2 z + 2c^3 z \right) J(c;z) \right].$$

and

$$J(c;z) = \sum_{i\geq 3} z^{i} \sum_{m=1}^{i-1} c^{m} \sum_{k=1}^{i-m-1} {m \choose k} \sum_{j=k}^{i-m-1} \left\{ \frac{k}{i-m-1} {i-m-1 \choose j} {i-m-1 \choose j-k} \right] \\ \left[{m+i-k \choose i-j} + {m+i-k \choose i-j-2} \right] \\ - \frac{k}{i-m} {i-m \choose j} {i-m \choose j-k} {m+i-k-1 \choose i-j-1} \right\} \\ - \sum_{i\geq 2} z^{i} \sum_{m=1}^{i-1} c^{m} \sum_{k=1}^{i-m} {m \choose k} \frac{k}{i-m} {i-m \choose i-k-m} {m+i-k-1 \choose m-1}$$

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Three Interacting Friendly Directed Walks; A Simple Model of Polymer Gelation

Analysis of solution

DE for G(c, 1)

- While we have an explicit solution for *G*(*c*, 1) it is advantageous for analysis to directly read off the singularities
- Alternative find differential equation satisfied by generating function
- Use Zeilberger-Gosper algorithm: Maple: DETools package, Zeilberger hyperexp. implementation
- Result: DE for G(c, 1) is order 7 with poly. coeff of deg_z = 26

イロト イロト イヨト イヨト

ORDER PARAMETERS FOR THE FULL MODEL

Two order parameters:

$$\mathcal{C}(c,d) = \lim_{n \to \infty} \frac{\langle m_c \rangle}{n}$$
 and $\mathcal{D}(c,d) = \lim_{n \to \infty} \frac{\langle m_d \rangle}{n}$,

The system is in a free phase when

 $\mathcal{C}=\mathcal{D}=0,$

while a partially-gelated phase is observed when

 $\mathcal{C}>0, \mathcal{D}=0$

and finally we have a fully-gelated phase when

C > 0, D > 0.

Three Interacting Friendly Directed Walks; A Simple Model of Polymer Gelation

Owczarek

1

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction and motivations	The model	Analysis of solution	Conclusion
ANALYSING $G(a, c)$			

The dominant singularity $z_s(c, d)$ of the generating function G(c, d; z)

$$z_{s}(c,d) = \begin{cases} z_{b} \equiv 1/8, & c \leq 4/3, d < 9/8\\ z_{b}, & c \leq \alpha(d), d \geq 9/8\\ z_{p}(c,d), & c > \alpha(d), d \geq 9/8\\ z_{c}(c) \equiv \frac{1-c+\sqrt{c^{2}-c}}{2c}, & c > 4/3, d < \beta(c),\\ z_{p}(c,d), & c > 4/3, d \geq \beta(c), \end{cases}$$

- $\alpha(d)$ is boundary between free and fully-gelated phases
- $\beta(c)$ is the boundary between partially-gelated and fully-gelated phases

where each of the different singularities are associated with different phases:

- z_b with the free phase
- $z_c(c)$ with the partially-gelated phase
- $z_p(c, d)$ with the fully-gelated phase

(ロ) (同) (E) (E) (E) (E)

Analysis of solution

Conclusion

PHASE DIAGRAM

Figure : The phase diagram of our full model. First and second order phase transitions are observed when crossing solid and dashed lined boundaries respectively. All phase boundaries coincide at c = 4/3 and d = 9/8.

Ξ

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Figure : The limiting average number of shared contacts C when d = 1. There is a second and first order phase transition at c = 4/3 and $c = c^* \approx 1.34865$ respectively. Figure (b) is a rescaling of the plot (a) to highlight the finite-jump discontinuity at $c = c^*$.

Analysis of solution

Conclusion

ASYMPTOTICS

Table : The growth rates of the coefficients $Z_n(c, d)$ modulo the amplitudes of the full generating function G(c, d; z) over the entire phase space.

phase region	$Z_n(c,d) \sim$
free	$8^{n}n^{-3}$
free to partial-gelation boundary	$8^{n}n^{-2}$
free to full-gelation boundary	$8^n n^{-1/2}$
c = 4/3, d = 9/8	$8^n n^{-1/2}$
partial-gelation	$z_c(c)^{-n}n^{-3/2}$
partial to full-gelation boundary	$z_c(c)^{-n}n^{-1/2}$
full-gelation	$z_p(c,d)^{-n}n^0$

PHASE DIAGRAM IN DIFFERENT VARIABLES

Figure : The phase diagram of our full model when setting $d = t/c^2$. First and second order phase transitions are observed when crossing sold and dashed lined boundaries respectively. All phase boundaries coincide at c = 4/3 and t = 2.

E

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

CONCLUSION

- Simple model of gelation with three friendly walks in the bulk
- Used combinatorial decomposition to obtain linear functional equation
- G(c, d) can be written in terms of G(c, 1) via "primitive piece" argument
- Used obstinate kernel method to solve functional equations
- Explicit series solutions for *G*(*c*, 1)
- Also used Zeilberger-Gosper algorithm to find linear DE for G(c, 1)
- Full analysis of asymptotics and phase diagram
- Again interesting physics and mathematics
- Manuscript in preparation

イロト イロト イヨト イヨト