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DIRECTED WALKS LATTICE MODELS

• Simple lattice models of polymers in solution
• Interface of combinatrorics, probability theory and statistical physics
• There are many exact solutions of single and multiple directed walk

models
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EXACT SOLUTION OF DIRECTED LATTICE WALKS LATTICE

• Recurrence and functional equation for partition or generating function
• Rational, algebraic, Differentially-finite (D-finite) and non D-finite

solutions (e.g. q-series) for generating functions
• Multiple walks: Bethe Ansatz & Lindström-Gessel-Viennot (LGV)

Lemma
• LGV Lemma: multiple walks = determinant of single walks (partition

functions)
• Interactions have been added to a single walk of various types
• Multiple walks where interaction confined to a single walk
• Recently we have considered some problems where there are

interactions between walks
• These can give non-D-finite solutions
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SOME KNOWN EXACT SOLUTIONS: GEOMETRIES

Vicious No intersection

Osculating Shared sites but not lattice bonds (touch or kiss)

Friendly Shared sites and bonds

No wall or interaction
• Many vicious directed walks: Fisher (’84), Lindström-Gessel-Viennot thm.

(’85), Essam & Guttmann (’95), Guttmann, Owczarek & Viennot (’98)
• Many friendly walks & Osculating walks: Brak (’97), Guttmann & Vöge

(’02), Bousquet-Mélou (’06)

With wall but no interaction (LGV)

• Many vicious walks: Krattenhaler, Guttmann & Viennot (’00)
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SOME KNOWN EXACT SOLUTIONS: INTERACTIONS

Single walk involved in interactions (recurrence, Bethe Ansatz, LGV):
• Two Vicious walks: with wall interactions Brak, Essam & Owczarek (’98)
• Many Vicious walks: with wall interactions Brak, Essam & Owczarek (’01)

Inter-walk interactions using (obstinate) kernel method:
• Two Friendly walks: with both walks interacting with the wall

Owczarek, Rechnitzer & Wong (’12)
• Two Friendly walks: with both wall and inter-walk interactions

Tabbara, Owczarek, Rechnitzer (’14)

How can we extend the numbers of walks with complex and different types of
interactions that can be solved exactly?
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SO HOW DO WE FIND A SOLUTION: KERNEL METHOD

• Consider generating function
• Combinatorial decompose a set of walks
• Find a functional equation for an expanded generating function
• This leads to the use of extra catalytic variables
• Answer is a ‘boundary’ value
• Equation is written as ”bulk = boundary terms” where bulk term is

product of kernel and bulk generating function
• Answer needed is one of the boundary generating functions so try to

remove bulk by setting the value of a catalytic variable to a value that
makes the kernel vanish

• Standard kernel method due to Knuth (1968): use values of ”catalytic
variable’ to ”kill” kernel

• From ≈ early ’00’s applied to a number of dir. walk problems
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OBSTINATE KERNEL METHOD

• Our problems have several catalytic variables
• Need multiple values of catalytic variables: obstinate kernel method
• Earliest combinatorial application of the obstinate kernel method due to

Bousquet-Mélou (‘02).
• See Bousquet-Mélou Math. and Comp. Sci 2 (2002)), Bousquet-Mélou,

Mishna Contemp. Math. 520 (2010)
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DOUBLE INTERACTION ADSORPTION MODEL

Two walks above a surface — both walks can interact with wall

Figure : Two directed walks with single and “double” visits to the wall the surface.

• Energy −εa for visits of the bottom walk only (single visits) to the wall
• Energy −εd when both walks visit a site on the wall (double visits)
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MODEL

• number of single visits to the wall denoted ma,
• number of double visits denoted md.

The partition function is

Z(d)
n (a, d) =

∑
ϕ̂3 |ϕ̂|=n

e(ma(ϕ̂)·εa+md(ϕ̂)·εd)/kBT

where a = eεa/kBT and d = eεd/kBT.

• a is associated with (weights or counts) each single visit to the wall
• d is associated with (weights or counts) each double visit to the wall

The generating function is

D(a, d; z) =
∞∑

n=0

Z(d)
n (a, d)zn.
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DOUBLE INTERACTION ADSORPTION MODEL

• Used combinatorial decomposition to obtain linear functional equation
• Exact solution of generating function can be found
• Obstinate kernel method with a generalisation for inclusion of

interactions
• ”Group of walk” has eight elements
• D(a, d) can be written in terms of D(a, a) via ”primitive piece” argument

or using obstinate kernel method
• D(a, a) can be found via obstinate kernel method or other methods
• Solution is not D-finite — LGV lemma does not apply directly
• Interesting discrete maths
• Phase diagram with second and first order transitions
• Interesting physics
• Scaling of partition function calculated
• Owczarek, Rechnitzer, and Wong, J. Phys. A: Math. Theor., 45 425002,

(2012)
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UNZIPPING ADSORPTION MODEL

Simple model of DNA as two friendly walks near a boundary

The model Fn. eqns Obs. kernel method Decomp. G(a, c) G(a, 1) & G(1, c) Phase trans.

An example
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Figure: An allowed configuration of length 10. The overall weight is a3c7

Rami Tabbara Uni. Melb.

Adsorption model of de-naturating DNA

Figure : An allowed configuration of length 10. The overall weight is a3c7

• Energy −εa for visits of the bottom walk only (single visits) to the wall
• Energy −εc when both walks visit the same site (contacts)
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MODEL

• number of visits to the wall denoted ma,
• number of joint visits (or contacts) denoted mc.

The partition function is

Z(u)
n (a, c) =

∑
ϕ̂3 |ϕ̂|=n

e(ma(ϕ̂)·εa+md(ϕ̂)·εc)/kBT

where a = eεa/kBT and c = eεd/kBT.

• a is associated with (weights or counts) each single visit to the wall
• c is associated with (weights or counts) each joint visit of the two walks to site

The generating function is

U(a, c; z) =
∞∑

n=0

Z(u)
n (a, c)zn.
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SUMMARY FOR UNZIPPING-ADSORPTION MODEL

• Exact solution of generating function can be found
• Used combinatorial decomposition to obtain linear functional equation
• Obstinate kernel method with a generalisation for inclusion of

interactions
• ”Group of walk” has eight elements
• U(a, c) can be written in terms of U(a, 1) and U(1, c) using observed

functional equation relationship after applying obstinate kernel method
• No obvious combinatorial explanation (e.g. primitive pieces)
• U(a, 1) = D(a, a) already known
• U(1, c) can be found via obstinate kernel method
• Explicit series solutions for U(a, 1) and U(1, c)
• Also used Zeilberger-Gosper algorithm to find linear DE for U(1, c)
• Phase diagram with four phases and second order transitions
• Scaling of partition function calculated
• R. Tabbara, A. L. Owczarek and A. Rechnitzer, J. Phys. A.: Math. Theor,

47, 015202 (34pp), 2014
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THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — gelation

• Start with three walks in the ”bulk” (no walls) with interactions

Consider three directed walks along the square lattice.
Let our model contain the class of allowed configs. with n steps as described:

• all walks begin at (0, 0), end at (2n,m) where m is not fixed.
• directed: can only take steps in the (±1, 0) directions.
• (∞) - friendly: walks can share sites, but cannot cross

• Energy −εc for visits of any two walks to a single lattice site
• An extra energy −εd when all three walks visit a single site
• That is, a total energy (−2εc − εd) when all three walks visit a single site
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WEIGHTS

• double visits weight: c ≡ eεc/kBT

• triple visits extra weight factor: d ≡ eεd/kBT

• total weight for triple visits: t = c2d
• trivial walk consisting of zero steps has weight 1.

• number of shared contact sites between the top-to-middle and the
middle-to-bottom walks is denoted mc

• number of triple shared contact sites where all three walks coincide is
denoted md
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THE MODEL

Figure : An example of an allowed configuration of length 8. Here, we have mc = 11
double shared contact steps and md = 3 triple shared contact steps. Thus, the overall
Boltzmann weight for this configuration is c11d3 = c5t3
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GENERATING FUNCTION

• Partition function: Z(t)
n (c, d) =

∑
ϕ∈Ω̂,|ϕ|=n

cmc(ϕ)dmd(ϕ)

• Generating function: G(c, d) ≡ G(c, d; z) =
∑
n≥1

Z(t)
n (c, d)zn

• Reduced free energy:

κ(c, d) = lim
n→∞

n−1 log Z(t)
n (c, d) = log zs(c, d)

where zs(c, d) is dominant singularity of G w.r.t. z
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PRIMITIVE PIECES

• Let Ω̂P be the subclass where all three walks share a common site only at
the very beginning and end of the configuration.

• Then the primitive generating function P(c; z)

P(c; z) =
∑
ϕ∈Ω̂P

z|ϕ|cmc(ϕ) (1)

• Importantly any ϕ ∈ Ω̂ can be uniquely decomposed into a sequence of
primitive walks. Hence

G(c, d; z) =
1

1− dP(c; z)

G(c, d; z) =
G(c, 1; z)

d [1− G(c, 1; z)] + G(c, 1; z)
.

Hence solve for our full model it suffices to solve for the model that ignores triple
shared contact effects with corresponding generating function G(c, 1; z)
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GENERALISED GENERATING FUNCTION

We consider walks ϕ in the larger set, where each walk can end at any possible
position and not necessarily together.

• Let Ω(i, j) be the class of triple walks that consists of configurations with
final top to middle walk distance i and middle to bottom distance j, that
still obey friendly constraints

• To find G(c, 1), consider larger class of configurations Ω̂ ≡
⋃

i≥0,j≥0 Ω(i, j)

• Generalised generating function:

F(r, s) ≡ F(r, s, c; z)

=
∑
ϕ∈Ω̂

z|ϕ|rh(ϕ)/2sf(ϕ)/2cmc(ϕ)

• G(c, 1) = F(0, 0)

where z is conjugate to the length |ϕ| of a configuration ϕ ∈ Ω̂, r and s are
conjugate to half the distance h(ϕ) and f (ϕ) between the final vertices of the
top to middle and middle to bottom walks respectively.
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ESTABLISHING A FUNCTIONAL EQUATION

• By considering the addition of a single column onto a configuration, and
the types of walks obtained, we can find a decomposition of all
configurations

• Translating back to generating functions we end up with

K(r, s)F(r, s) =
1
c2 −

(r− cr + cz + csz)

cr
F(0, s)

− (s− cs + cz + crz)

cs
F(r, 0)

− (c− 1)2

c2 F(0, 0)

where the kernel K(r, s) is

K(r, s) ≡ K(r, s; z) = 1− z(r + 1)(s + 1)(r + s)
rs

.
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SYMMETRIES OF THE KERNEL

The kernel is symmetric under the following two transformations, which are
involutions:

(r, s) 7→ (s, r) , (r, s) 7→
(

r,
r
s

)
Transformations generate a family of 12 symmetries (‘group of the walk’)
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• We make use these to produce multiple equations making sure we have either
only positive powers of r or s.

• Re-combine to leave only say F(0, 0), F(1/s, 0) and F(0, s)

N1(s; z)F (1/s, 0) + N2(s; z)F(0, s) + N3(s; z)
[
(c− 1)2F(0, 0)− 1

]
= 0

where Nj can be considered simple polynomials of r̂, s and z.

Three Interacting Friendly Directed Walks; A Simple Model of Polymer Gelation Owczarek



Introduction and motivations The model Analysis of solution Conclusion

ROOTS OF THE KERNEL

• Substitute root of the kernel
• Use Lagrange inversion to find answer term-by-term

• The kernel has two roots as function of either r or s
• choose the one which gives a positive term power series expansion in z
• with Laurent polynomial coefficients in s (r):

r̂±(s; z) =
s− z

(
s2 + 2s + 1

)
±
√

s2 − 2zs(1 + s)2 + z2 (s2 − 1)2

2z(s + 1)

r̂(s; z)k =
∑
n≥k

k
n

zn(1 + s)n
n∑

j=k

(
n
j

)(
n

j− k

)
sj−n
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SOLUTION FOR G(c, 1)

G(c, 1; z) =
1

(c− 1)2

(
1 +

c
(
c2z + c2 − 3c

)√
1− 4cz

Gb(c, 1; z)

)
where

Gb(c, 1; z) = −1− c2z− c3z + c(2z + 1)

+
√

1− 4cz
[
−cz + c2z− c3z +

(
−2c2z + 2c3z

)
J(c; z)

]
.

and

J(c; z) =
∑
i≥3

zi
i−1∑
m=1

cm
i−m−1∑

k=1

(m
k

) i−m−1∑
j=k

{
k

i − m − 1

(i − m − 1
j

)(i − m − 1
j − k

)
[(m + i − k

i − j

)
+
(m + i − k

i − j − 2

)]
−

k
i − m

(i − m
j

)(i − m
j − k

)(m + i − k − 1
i − j − 1

)}

−
∑
i≥2

zi
i−1∑
m=1

cm
i−m∑
k=1

(m
k

) k
i − m

( i − m
i − k − m

)(m + i − k − 1
m − 1

)
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DE FOR G(c, 1)

• While we have an explicit solution for G(c, 1) it is advantageous for
analysis to directly read off the singularities

• Alternative — find differential equation satisfied by generating function
• Use Zeilberger-Gosper algorithm: Maple: DETools package, Zeilberger

hyperexp. implementation
• Result: DE for G(c, 1) is order 7 with poly. coeff of degz = 26
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ORDER PARAMETERS FOR THE FULL MODEL

Two order parameters:

C(c, d) = lim
n→∞

〈mc〉
n

and D(c, d) = lim
n→∞

〈md〉
n

,

The system is in a free phase when

C = D = 0,

while a partially-gelated phase is observed when

C > 0,D = 0

and finally we have a fully-gelated phase when

C > 0,D > 0.
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ANALYSING G(a, c)

The dominant singularity zs(c, d) of the generating function G(c, d; z)

zs(c, d) =



zb ≡ 1/8, c ≤ 4/3, d < 9/8
zb, c ≤ α(d), d ≥ 9/8
zp(c, d), c > α(d), d ≥ 9/8

zc(c) ≡ 1−c+
√

c2−c
2c , c > 4/3, d < β(c),

zp(c, d), c > 4/3, d ≥ β(c),

• α(d) is boundary between free and fully-gelated phases
• β(c) is the boundary between partially-gelated and fully-gelated phases

where each of the different singularities are associated with different phases:
• zb with the free phase
• zc(c) with the partially-gelated phase
• zp(c, d) with the fully-gelated phase
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PHASE DIAGRAM
Three interacting friendly walks 21
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Figure 9. The phase diagram of our full model. First and second order phase

transitions are observed when crossing solid and dashed lined boundaries respectively.

All phase boundaries coincide at c = 4/3 and d = 9/8.

Equipped with the phases of our system we plot the phase diagram in Figure 9. Note

that for c > 4/3 and for relatively low d, we do indeed in Figure 9 observe a partially-

gelated phase. Now, consider the generalised anti-symmetric model with weights c1 and

c2 for double shared contacts between the top-to-middle and middle-to-bottom walks

respectively. Here, for low d, and 4/3 < c1 < c2 or 4/3 < c1 < c2, one will observe c1-

rich or c2-rich partially-gelated phases respectively. In this instance, configurations with

coinciding top and middle (c1 > c2) or middle to bottom (c2 > c1) walks will dominate.

Hence, the partially-gelated phase of our original symmetric model where c = c1 = c2

represents the surface of the phase space where the c1-rich and c2-rich partially-gelated

phases coexist.

Recall from our analysis on G(c, 1) in Section 4.2, that we determined that the

singularities zb and zc(c) coincide with free and partially-gelated phases respectively.

Now in the full-model the additional estimated pole zp(c, d) coincides with the fully-

gelated phase as observed in Figure 9. By employing a low-temperature argument, we

can determine asymptotics for both boundaries α(d) and β(c). As either c → ∞ or

d → ∞, G(c, d; z) is dominated by those configurations where all three walks coincide

for every step – that is,

G(c, d; z) ∼ 1

1 − 2c2dz
, c → ∞ or d → ∞. (76)

Equating the singularity of the limiting generating function with zb and zc(c) we find

α(d) ∼ 0, c → ∞, β(c) ∼ 0, d → ∞ (77)

Note that our claim in Section 4.1 that G(c, 1; z) exhibits two critical points is now

verified as the fact that β(4/3) = 9/8 and β(c) → 0 as c → ∞ implies the existence of a

c⋆ such that β(c⋆) = 1. In table 1 we summarize the growth rate of the coefficients

Zn ≡ Zn(c, d) of the full generating function G(c, d) along the entire phase space.

Along the boundaries α(d) and β(c) the sub-exponential behaviour of our growth

Figure : The phase diagram of our full model. First and second order phase transitions
are observed when crossing solid and dashed lined boundaries respectively. All phase
boundaries coincide at c = 4/3 and d = 9/8.
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TRANSITIONS

Three interacting friendly walks 19

4.2. Phase transitions of G(c, 1)

Introducing the order parameter C(c) the limiting average number of shared contacts as

C(c) = lim
L→∞

⟨mc⟩
L

= c
∂

∂c
log zs(c, 1), (63)

we say that the system is in a free phase when

C = 0, (64)

while a partially-gelated phase is observed when

C > 0. (65)

Recall from Section 4.1 that zs(c, 1) = zb ≡ 1/8 for c < 4/3, implying that C = 0 over

the same region. Now, for 4/3 < c ≤ c⋆ ≈ 1.34865, zs(c, 1) = zc(c), giving

C(c) =
−2 + c +

√
(c − 1)c

2(c − 1)
, 4/3 < c ≤ c⋆. (66)

We further find that C(4/3) = 0 and thus our model exhibits a second-order phase

transition with a finite jump discontinuity in the second derivate of the free energy as

seen in Figure 8a. For, c ≥ c⋆, zs(c, 1) = zp(c), which is given implicitly as the smallest
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Figure 8. The limiting average number of shared contacts C when d = 1. There is a

second and first order phase transition at c = 4/3 and c = c⋆ ≈ 1.34865 respectively.

Figure (b) is a rescaling of the plot (a) to highlight the finite-jump discontinuity at

c = c⋆.

positive root of the expression

Gb(c, 1; z) = −1 − c2z − c3z + c(2z + 1) +
√

1 − 4cz
[
−cz + c2z − c3z +

(
−2c2z + 2c3z

)
J(c; z)

]
. (67)

Now, consider the expansion of Gb(c, 1; zp(c)) = 0 around z = zc(c) where here

J(c; zp(c)) is given as

J(c; zp(c)) ∼ B(zc(c) − zp(c))
−1/2, c → c⋆ (68)

due to the singular behaviour of J(c, z) described in (61) and thus our expansion of

Gb(c, 1; zp(c)) becomes

g0(c)(c
⋆ − c) + g1(c) (zc(c) − zp(c))

1/2 ∼ 0, c → c⋆ (69)

(a)
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c = c⋆.

positive root of the expression

Gb(c, 1; z) = −1 − c2z − c3z + c(2z + 1) +
√

1 − 4cz
[
−cz + c2z − c3z +

(
−2c2z + 2c3z

)
J(c; z)

]
. (67)

Now, consider the expansion of Gb(c, 1; zp(c)) = 0 around z = zc(c) where here

J(c; zp(c)) is given as

J(c; zp(c)) ∼ B(zc(c) − zp(c))
−1/2, c → c⋆ (68)

due to the singular behaviour of J(c, z) described in (61) and thus our expansion of

Gb(c, 1; zp(c)) becomes

g0(c)(c
⋆ − c) + g1(c) (zc(c) − zp(c))

1/2 ∼ 0, c → c⋆ (69)

(b)

Figure : The limiting average number of shared contacts C when d = 1. There is a
second and first order phase transition at c = 4/3 and c = c? ≈ 1.34865 respectively.
Figure (b) is a rescaling of the plot (a) to highlight the finite-jump discontinuity at
c = c?.
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ASYMPTOTICS

Table : The growth rates of the coefficients Zn(c, d) modulo the amplitudes of the full
generating function G(c, d; z) over the entire phase space.

phase region Zn(c, d) ∼
free 8nn−3

free to partial-gelation boundary 8nn−2

free to full-gelation boundary 8nn−1/2

c = 4/3, d = 9/8 8nn−1/2

partial-gelation zc(c)−nn−3/2

partial to full-gelation boundary zc(c)−nn−1/2

full-gelation zp(c, d)−nn0
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PHASE DIAGRAM IN DIFFERENT VARIABLES

Three interacting friendly walks 23
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Figure 10. The phase diagram of our full model when setting d = t/c2. First

and second order phase transitions are observed when crossing sold and dashed lined

boundaries respectively. All phase boundaries coincide at c = 4/3 and t = 2.

5. Conclusion

Appendix A. J(c, z): Leading coefficient of the differential equation

Figure : The phase diagram of our full model when setting d = t/c2. First and second
order phase transitions are observed when crossing sold and dashed lined boundaries
respectively. All phase boundaries coincide at c = 4/3 and t = 2.
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CONCLUSION

• Simple model of gelation with three friendly walks in the bulk
• Used combinatorial decomposition to obtain linear functional equation
• G(c, d) can be written in terms of G(c, 1) via ”primitive piece” argument
• Used obstinate kernel method to solve functional equations
• Explicit series solutions for G(c, 1)

• Also used Zeilberger-Gosper algorithm to find linear DE for G(c, 1)

• Full analysis of asymptotics and phase diagram
• Again interesting physics and mathematics
• Manuscript in preparation
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