Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	0

SAW in a box

[†]Aleks Owczarek and [†]Chris Bradly

[†]School of Mathematics and Statistics, The University of Melbourne

February, 2022

Symposium in honour of Richard Brak

তwczarek

00 000000 000 00000 00000 0	Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
	00	0000000	000	00000	00000	000000	0

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	O
Moti	VATIONS					

- rigour/simulation/scaling
- scaling arguments
- asymptotic matching: crossover scaling form is consistent with fixed parameter scaling
- polymers in mesoscopic pores

SAW in a box

Owczarek

Figure: Example SAWs with increasing degree of confinement to a box of side length L = 8. (a) Unconfined, (b) confined to the box (our model), (c) crossing a square and (d) a Hamiltonian path crossing a square.

Introduction Counting SAW Length fugacity SAW in a. box Scaling theory Monte Carlo results Conclusion Conclusion OCO SAW WITHOUT ANY RESTRICTION

- The problem we all know: Self-avoiding walks on the square lattice of length *n* without further restriction.
- Let the number of them be denoted w(n)
- It is known that the growth constant exists (Hammersley 1957)

$$\mu = \lim_{n \to \infty} w(n)^{1/n}$$

- with a best estimate of μ most recently μ = 2.63815853032790(3) (Jacobsen, Scullard and Guttmann, 2016)
- It is expected that

$$w(n) \sim A\mu^n n^{\gamma-1}$$

where $\gamma = 43/32$.

イロト イヨト イヨト イヨト

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	○●○○○○○	000	00000	00000	000000	O
Size c	F A SAV	V				

The "size" of the SAW scales as

$$\langle R^2(n) \rangle \sim A n^{2\nu}$$

In two-dimensions ν is known exactly to be 3/4 for non-dense polymers and this has been confirmed numerically to high precision (Clisby 2010).

All measures of size should behave similarly: end-to-end distance, radius of gyration and maximum span L(n), so

$$L(n) \sim Cn^{\nu}$$

イロト イロト イヨト イヨト

• Now consider SAWs with end points fixed at two opposing vertices of a square of side *L* bonds and all sites of the walk lie within or on the boundary of the square

$$2L \le n \le L^2 + 2L$$

- This problem has a long history too: Whittington and Guttmann 1990, Madras 1995 and Bousquet-Mélou, Guttmann and Jensen 2005 and Knuth 1976 introduced a similar problem
- Recent extensions to links by Janse van Rensburg and Orlandini 2021

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	0
SAW	CROSSIN	g a Squ	ARE LAT	TICE II		

Introduction Counting SAW Length fugacity SAW in a. box Scaling theory Monte Carlo results Conclusion OCO SAW CROSSING A SQUARE III

Let the number of such SAW be s_L . It has been proven (Abbott and Hanson 1978 and Whittington and Guttmann 1990) that the limit

 $\lambda_S = \lim_{L \to \infty} s_L^{1/L^2}$

exists so that $s_L = \lambda_S^{L^2 + o(L^2)}$ The best estimate of this growth constant (Bousquet-Mélou, Guttmann and Jensen 2005) $\lambda_S = 1.744550(5)$ The average number of steps N(L) is expected to scale as

 $N(L) \sim CL^{1/\nu}$

(ロ) (同) (E) (E) (E) (E)

 Introduction
 Counting SAW
 Length fugacity
 SAW in a. box
 Scaling theory
 Monte Carlo results
 Conclusion

 00
 00000●0
 0000
 00000
 00000
 00000
 0

HAMILTONIAN WALKS I

Introduction Counting SAW COORDINATION Length fugacity COORDINATION CONTRACT CONTRAC

Walks that visit every vertex of a finite patch of lattice are known as Hamiltionian

Let the number of such walks be h_L and the limit

 $\mu_H = \lim_{L \to \infty} h_L^{1/L^2}$

exists and has been estimated as $\mu_H = 1.472801(1)$ (Bousquet-Mélou, Guttmann and Jensen 2005)

Note: Whether the walks start and finish at opposite corners is not relevant.

(ロ) (同) (E) (E) (E) (E)

SAW WITH LENGTH FUGACITY

Length fugacity

Consider weighting the length by a fugacity e^{β} with $-\infty < \beta < \infty$.

For SAW in the bulk consider the grand partition function

$$G_w(\beta) = \sum_{n=0}^{\infty} w(n) e^{\beta n},$$

which converges for $\beta < -\log \mu$. Note that

$$\langle n \rangle = \frac{\partial \log G_w(\beta)}{\partial \beta}$$

is finite when G_w is finite and diverges as a simple pole.

イロト イヨト イヨト イヨト

For walks that cross a square define the partition function

$$Z^{(S)}(\beta)_L = \sum_n s_L(n) e^{\beta n}$$

and we can define the free energy as the limit

$$f^{(S)}(\beta) = \lim_{L \to \infty} \frac{1}{L^2} \log Z^{(S)}(\beta)_L$$

Note

$$f^{(S)}(0) = \log \lambda_S$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion			
00	0000000	000	00000	00000	000000	0			
DEFINITION DECOROLIS ROLINDS									

PREVIOUS RIGOROUS BOUNDS

Previous rigorous results and bounds on the free energies are summarized as

$$f^{(S)}(\beta) = 0, \quad \text{for } \beta < -\log \mu$$

 $\log \mu_H + \beta \leq f^{(S)}(\beta) \leq \log \mu + \beta, \quad \text{for } \beta \geq -\log \mu$

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	O
SELF-A	VOIDIN	G WALKS	IN A BC	DX I		

Our problem:

SAW in a box of side length L without restriction of their endpoints

$$Z_L^{(B)}(\beta) = \sum_n c_L(n) e^{\beta n},$$

where $c_L(n)$ is the number of walks of length *n* that fit in the box and e^{β} is the fugacity of each step.

It is useful to also consider the number of walks $\hat{c}_L(n)$ that are unique up to translation with the corresponding partition function $\hat{Z}_L^{(B)}(\beta)$

イロト イロト イヨト

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	0
SELF-A	AVOIDIN	G WALKS	IN A BC	DX II		

We define the free energy in a similar way to walks that cross a square as

$$f^{(B)}(\beta) = \lim_{L \to \infty} \frac{1}{L^2} \log Z_L^{(B)}(\beta)$$

and similarly for $\hat{f}^{(B)}(\beta)$ It can be easily seen that if the limit $\hat{f}^{(B)}(\beta)$ exists so does $f^{(B)}(\beta)$.

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	000€0	00000	000000	O
Rigor	ROUS RES	SULTS				

It can be proved using standard arguments that

$$f^{(B)}(\beta) = \hat{f}^{(B)}(\beta) = 0$$
 for $\beta < -\log \mu$

and

 $\log \mu + \beta \ge f^{(B)}(\beta) = \hat{f}^{(B)}(\beta) \ge f^{(S)}(\beta) \ge \log \mu_H + \beta \quad \text{ for } \beta \ge -\log \mu.$

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	0000●	00000	000000	O
FREE	ENERGY	BOUNDS				

Figure: The free energies of confined SAW models. We do not know that the free energy for our model of confined SAW is strictly greater than that of SAW that cross a square. The top and bottom dotted lines mark bounds derived from unconstrained SAWs and Hamiltonian paths, respectively.

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	•0000	000000	O
SCAL	ING QUA	ANTITIES				

We define the average density via a derivatve

$$\rho(\beta) = \frac{\partial f^{(B)}(\beta)}{\partial \beta}.$$

Standard critical scaling implies the existence of an exponent α

$$f^{(B)}(\beta) \sim |\beta - \beta_{\rm c}|^{2-\alpha}, \quad \beta \to \beta_{\rm c}^+,$$

and that

$$\rho(\beta) \sim |\beta - \beta_{\rm c}|^{1-\alpha}, \quad \beta \to \beta_{\rm c}^+.$$

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	0000	000000	0

FINITE SIZE SCALING: DENSITY

For finite *L*

$$\rho_L = \frac{\partial f_L}{\partial \beta} = \frac{\langle n \rangle}{L^2}$$

and finite size scaling suggests that

$$\rho_L(\beta) \sim L^q \psi\left(\left(\beta - \beta_c\right) L^{1/\nu}\right)$$

Scaling arguments imply

$$q = -(1 - \alpha)/\nu$$

and that $\alpha = 1/2$

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	0

FINITE SIZE SCALING: DENSITY

Density Scaling Ansatz

$$\rho_{\rm L}(\beta) \sim L^{-2/3} \psi\left((\beta - \beta_{\rm c}) L^{4/3} \right).$$

For fixed values of β we have

$$\langle n \rangle (\beta) \sim \begin{cases} A & \text{for } \beta < \beta_c , \\ B L^{4/3} & \text{for } \beta = \beta_c , \\ C L^2 & \text{for } \beta > \beta_c \end{cases}$$

with

$$A \sim (\beta_c - \beta)^{-1}$$
 as $\beta \to \beta_c^-$ and $C \sim (\beta_c - \beta)^{\frac{1}{2}}$ as $\beta \to \beta_c^+$

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	0

The scaling ansatz for the partition function can be written as

$$Z_L^{(B)}(\beta) \sim L^p \phi\left(\left(\beta - \beta_c\right) L^{1/\nu}\right),$$

with scaling argument implying that

$$p = 2 - \eta = \gamma/\nu$$

so that

$$Z_L^{(B)}(\beta_{\rm c}) \sim BL^{2-\eta}$$

 η is predicted to have exact value 5/24 in two dimensions (Nienhuis1982).

Ξ

イロト イヨト イヨト イヨト

Introduction Cour	nting SAW Le	ength fugacity 5	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00 000	00000 0	00	00000	00000	000000	0

Partition Function Scaling Ansatz

$$Z_L^{(B)}(\beta) \sim L^{43/24} \phi\left((\beta - \beta_c) L^{4/3}\right)$$

The fixed β scenario is

$$Z_L^{(B)}(\beta) \sim \begin{cases} D(\beta) & \text{for } \beta < \beta_c \ ,\\ E L^{43/24} & \text{for } \beta = \beta_c \ ,\\ \exp\left(f^{(B)}(\beta) \left[L^2 + o\left(L^2\right)\right]\right) & \text{for } \beta > \beta_c \ . \end{cases}$$

with

$$D \sim (\beta_c - \beta)^{-43/32}$$
 as $\beta \to \beta_c^-$

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	00000	0

Figure: A sample SAW of length n = 24, considered to be confined in a bounding box of side length L = 7. The possible next steps are shown with arrows; the only restriction is that the step to the right is forbidden if the limit for the simulation was chosen to be $L_{\text{max}} = 7$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction 00	Counting SAW 0000000	Length fugacity 000	SAW in a. box 00000	Scaling theory 00000	Monte Carlo results 000000	Conclusion O
			(<i>a</i>)	-2 $\begin{pmatrix} b \\ 0 \\ \beta \end{pmatrix}$		
		0 (⁻¹ (⁻¹ (⁻¹) (⁻¹) (⁻¹) (⁻²) (⁻³) (⁻³⁾)(⁻³⁾ (⁻³⁾)(

Figure: Thermodynamic quantities for SAWs confined to a box of size L = 9. Plots show (a) the free energy f_L , (b) the density ρ_L , (c) the logarithm of the variance $L^2 \text{var}(\rho_L)$, and (d) the average size r.

200

(ロ) (同) (E) (E) (E) (E)

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
	000000	000	00000	00000	0000	Ų

Figure: (a) The critical density $\rho_L(\beta_c)$ plotted against the expected scaling $L^{-2/3}$ and (b) the scaling function $\psi(x)$ for confined SAWs.

Ξ

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	O
0		- Ta				

Our exponent Estimates: ν and α

We fitted the data to our scaling form at $\beta = \beta_c$ assuming $\nu = 3/4$ yielding the critical exponent

 $\alpha = 0.4996(8)$

Then we considered the crossover exponent in the scaling variable so obtain the estimate

 $\nu = 0.756(4)$

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	0

Figure: The critical exponent of the confined SAW partition function $Z_L(\beta_c)$ versus the upper bound of the range of *L* values used to fit the data, with (top) and without (bottom) a correction-to-scaling term.

∃ ∃ ≥

Image: A math and A

Our exponent Estimates: η

We fitted the data to our scaling form at $\beta = \beta_c$ yielding the critical exponent

$$2 - \eta = 1.785(3)$$

to be compared to the conjectured value of $43/24 = 1.791\dot{6}$

E

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Counting SAW	Length fugacity	SAW in a. box	Scaling theory	Monte Carlo results	Conclusion
00	0000000	000	00000	00000	000000	•

- Introduce a model of polymers in mesoscopic pores
- In context of unrestricted SAW and SAW crossing a square
- Some rigorous bounds
- Scaling theory
- Monte Carlo confirmation
- What is the value of λ_B ? Is it the same as λ_S ?
- Are the free energies for walks in a box and crossing a square the same?

(ロ) (部) (E) (E) (E)