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DIRECTED WALKS LATTICE MODELS

• Simple lattice models of polymers in solution
• Interface of combinatorics, probability theory and statistical physics
• There are many exact solutions of single and multiple directed walkers
• Focus on the exact generating function for fixed number of walks
• Interest is in adding multiple interactions
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EXACT SOLUTION OF DIRECTED LATTICE WALKS LATTICE

• Recurrence and functional equation for partition or generating function
• Rational, algebraic, Differentially-finite (D-finite)
• and non D-finite solutions (e.g. q-series) for generating functions
• Vicious walks are related to free fermions
• Six vertex model can be mapped to walks that touch (osculating)
• Bethe Ansatz & Lindström-Gessel-Viennot (LGV) Lemma
• LGV: multiple walks = determinant of single walks (partition functions)
• LGV problems result in generating functions that are D-finite
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INTERACTING MODELS

• Interactions have been applied to single walk problems of various types
• Also, multiple walks have been considered where interactions are

confined to a single walk
• Later interactions between walks
• and/or multiple interactions have been considered
• These can give non-D-finite solutions

Vicious No intersection

Osculating Shared sites but not lattice bonds (touch or kiss)

Friendly Shared sites and bonds
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SOME KNOWN EXACT SOLUTIONS: GEOMETRIES

No wall or interaction
• Many vicious directed walks: Fisher (’84), Lindström-Gessel-Viennot thm.

(’85), Essam & Guttmann (’95), Guttmann, Owczarek & Viennot (’98)
• Many friendly walks & Osculating walks: Brak (’97), Guttmann & Vöge

(’02), Bousquet-Mélou (’06)

With wall but no interaction (LGV)
• Many Vicious Walks: Krattenhaler, Guttmann & Viennot (’00)

Single walk involved in interactions (recurrence, Bethe Ansatz, LGV):
• Two Vicious walks: with wall interactions Brak, Essam & Owczarek (’98)
• Many Vicious walks: with wall interactions Brak, Essam & Owczarek (’01)
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EXACT SOLUTIONS: MULTIPLE WALKS AND INTERACTIONS

Extending the problems that can be solved exactly by increase in the numbers of
walks and adding different types of interactions

Inter-walk interactions using (obstinate) kernel method:
• Two Friendly walks: with both walks interacting with the wall

Owczarek, Rechnitzer & Wong (’12)
• Two Friendly walks: with both wall and inter-walk interactions

Tabbara, Owczarek, Rechnitzer (’14)
• Three Friendly walks: with symmetric inter-walk interactions

Tabbara, Owczarek, Rechnitzer, J. Phys. A: Math. Theor. 49 154004 (27pp)
(2016)
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ONE WAY TO FIND A SOLUTION: KERNEL METHOD

• Combinatorial decomposition of the set of walks
• Find a functional equation for an expanded generating function
• This leads to the use of extra catalytic variables
• Answer is a ‘boundary’ value
• Equation is written as ”bulk = boundary terms”
• Bulk term is product of a rational kernel and bulk generating function
• Set the value of a catalytic variable to make the kernel vanish
• Origin of kernel method due to Knuth (1968)
• From ≈ early ’00’s applied to a number of dir. walk problems
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OBSTINATE KERNEL METHOD

• Our problems have several catalytic variables
• Need multiple values of catalytic variables: obstinate kernel method
• Earliest combinatorial application due to Bousquet-Mélou (‘02).
• Bousquet-Mélou Math. and Comp. Sci 2 (2002)
• Bousquet-Mélou and Mishna Contemp. Math. 520 (2010)
• Solutions are not always D-finite
• Quarter plane random walk problems
• Diagonals of multi-variate rational functions
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THREE WALK WATERMELONS WITH GELATION INTERACTIONS

Model set of polymers in solution that can attract each other — gelation

Figure: A watermelon configuration, that starts and ends together, of length 8. There
are mc = 11 double shared contact sites (a triple contact counts two double contacts).
The Boltzmann weight for this configuration is c11.

Exact Solution of Asymmetric Gelation between Three Walks on the Square Lattice Owczarek



Introduction Symmetric Friendly Watermelons Asymmetric Osculating Stars Symmetric cases Asymmetric case Conclusion

THREE WALKS AND GELATION INTERACTIONS

Model set of polymers in solution that can attract each other — gelation

• Start with three walks in the ”bulk” (no walls) with interactions

• double visits fugacity: c
• total weight for triple visits: t = c2

• Walks start and end together: Watermelons

• mc is the number of double contacts between pairs of walks

• Partition function: Z(t)
n (c) =

∑
ϕ∈Ω̂,|ϕ|=n

cmc(ϕ)

• Generating function: Gf (c) ≡ Gf (c; z) =
∑
n≥1

Z(t)
n (c)zn
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GENERALISED GENERATING FUNCTION

We consider walks in a larger set, where they do not necessarily end together.

• Generalised generating function:

F(r, s) ≡ F(r, s, c; z) =
∑
ϕ∈Ω̂

z|ϕ|rh(ϕ)/2sf(ϕ)/2cmc(ϕ)

• Gf (c) = F(0, 0): r = s = 0 gives watermelon configurations

where h(ϕ) and f (ϕ) are half the distance between the final vertices of the top
to middle and middle to bottom walks respectively.
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ESTABLISHING A FUNCTIONAL EQUATION

The decomposition of the set of walks gives

K(r, s)F(r, s) =
1
c2 −

(r− cr + cz + csz)

cr
F(0, s)

− (s− cs + cz + crz)

cs
F(r, 0)− (c− 1)2

c2 F(0, 0)

The kernel K(r, s) is

K(r, s) ≡ K(r, s; z) = 1− z(r + 1)(s + 1)(r + s)
rs

.

The kernel is symmetric under the following two transformations, which are
involutions:

(r, s) 7→ (s, r) , (r, s) 7→
(

r,
r
s

)
Transformations generate a family of 12 symmetries (‘group of the walk’)
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FRIENDLY WATERMELON GENERATING FUNCTION

Gf (c; z) =
1

(c− 1)2

(
1 +

c
(
c2z + c2 − 3c

)√
1− 4cz

D(c; z)

)
where

D(c; z) = −1− c2z− c3z + c(2z + 1)

+
√

1− 4cz
[
−cz + c2z− c3z +

(
−2c2z + 2c3z

)
J(c; z)

]
.

and

J(c; z) =
∑
i≥3

zi
i−1∑
m=1

cm
i−m−1∑

k=1

(m
k

) i−m−1∑
j=k

{
k

i − m − 1

(i − m − 1
j

)(i − m − 1
j − k

)
[(m + i − k

i − j

)
+
(m + i − k

i − j − 2

)]
−

k
i − m

(i − m
j

)(i − m
j − k

)(m + i − k − 1
i − j − 1

)}

−
∑
i≥2

zi
i−1∑
m=1

cm
i−m∑
k=1

(m
k

) k
i − m

( i − m
i − k − m

)(m + i − k − 1
m − 1

)

Exact Solution of Asymmetric Gelation between Three Walks on the Square Lattice Owczarek



Introduction Symmetric Friendly Watermelons Asymmetric Osculating Stars Symmetric cases Asymmetric case Conclusion

GENERALISING

Can we solve a model where the interaction between the top two walks is different to
the interaction between the bottom two walks?

• We tried!
• However, the breaking of the symmetry meant we didn’t have enough

equations arising in the obstinate kernel method to solve the problem.
• The complication of the symmetric solution: D-Finite but of high order

DE meant ”guessing” was difficult
• So let’s try a different walk problem: back to osculating!
• Stars vs Watermelons
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OSCULATING STARS

Figure: Three osculating walks in a star configuration of length n = 9. We have ma = 3
shared sites between the upper two walks and mb = 2 shared sites between the lower
two walks. The Boltzmann weight is a3b2.
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THREE WALK OSCULATING STARS

For any configuration ϕ ∈ Ω3, we assign a weight a to the ma(ϕ) shared contact
sites and a weight b to the mb(ϕ) shared contact sites between the top-to-middle
and the middle-to-bottom walks respectively. Note, all three walks cannot
share the same site. The partition function for our model consisting of n triple
steps is

Zn(a, b) =
∑

ϕ∈Ω3,|ϕ|=n

ama(ϕ)bmb(ϕ),

where |ϕ| denotes the length of the configuration ϕ.

G3(a, b; z) =

∞∑
n=0

Zn(a, b)zn
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FREE ENERGY, GROWTH CONSTANT AND ORDER PARAMETERS

The free energy κ is
κ(a, b) = log zs(a, b),

where zs(a, b) is the real and positive singularity of the generating function
that is closest to the origin. Moreover, it is expected that for any fixed a and b
the partition function scales with growth constant µ as

Zn(a, b) ∼ A(a, b) µ(a, b)n nγ−1,

µ(a, b) = zs(a, b)−1 = e−κ(a,b).

A(a, b) = lim
n→∞

〈ma〉
n

= a
∂κ

∂a
,

and
B(a, b) = lim

n→∞

〈mb〉
n

= b
∂κ

∂b
.
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PHASES

We can then characterise the possible phases in the following way. We say
that the system is in a free phase when

A = B = 0.

A top zipped phase with the top two walks only bound together is indicated
by the situation when

A > 0 with B = 0,

whilst a bottom zipped phase with the bottom two walks only bound together
is indicated by the situation when

B > 0 with A = 0.

When both
B > 0 and A > 0

all three walks are bound, which we refer to as fully zipped.

Exact Solution of Asymmetric Gelation between Three Walks on the Square Lattice Owczarek



Introduction Symmetric Friendly Watermelons Asymmetric Osculating Stars Symmetric cases Asymmetric case Conclusion

PHASE TRANSITIONS

Phase transitions are defined by non-analytic behaviour of the free energy
and so are indicated by a non-analytic change in the singularity of the
generating function. It is usual to define the exponent α as related to the
non-analyticity in the free energy κnon as

κnon ∼ K t2−α as t→ 0, (1)

where t measures in Boltzmann weights a and b (or temperature) the distance
to the phase transition and K is a constant. This implies that the associated
order parameterM = A,B behaves as

M∼ M t1−α as t→ 0+. (2)

A standard scaling argument connects this to the scaling of the number of
contacts evaluated exactly at the transition

〈ma,b〉(n) ∼ C nφ, (3)

where
φ = 2− α. (4)
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FUNCTIONAL EQUATION

F(r, s, a, b; z) ≡ F(r, s) =
∑
ϕ∈Ω3

z|ϕ|rh(ϕ)/2sf(ϕ)/2ama(ϕ)bmb(ϕ),

K(r, s)F(r, s) = rs−
(

(1 + r)(r + s + rs)z
rs

+
1− b

b

)
F(r, 0)

−
(

(1 + s)(r + s + rs)z
rs

+
1− a

a

)
F(0, s),

where the kernel, K(r, s), is

K(r, s) ≡ K(r, s; z) = 1− z(r + 1)(s + 1)(r + s)
rs

.

Want ‘stars’ with r = s = 1

G3(a, b; z) = F(1, 1, a, b; z)

Still not clear we have enough equations ...
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TWO INTERACTING OSCULATING STAR WALKS

Two walks have previously been studied1. The generating function is a
quadratic algebraic equation

G2(a, z) =
1 + (3z− 1)a

2z(1 + a(2z− 1) + z2a2)
√

1− 4z
− 1 + a(3z− 1) + 2z2a2

2z(1 + a(2z− 1) + z2a2)
.

The asymptotic behaviour of the average number of contacts, m(a), is

m(a) = 〈m〉 =


a

(4−a) + O(n−1) a < 4
1√
π
·
√

n + O(1) a = 4
a−
√

a−2
2(a−1) · n + O(1) a > 4.

The associated order parameter

M(a) = lim
n→∞

〈m〉
n

= a
∂κ

∂a
=

{
0 a ≤ 4
a−
√

a−2
2(a−1) a > 4.

1Fisher J. Stat. Phys 34: 667 1984, Katori and Inui, Trans. Mat. Res. Soc.- Japan, 26: 405, 2001,
Guttmann and Vöge, J. Stat. Plan. Inf 10: 107 2002
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TWO INTERACTING OSCULATING STAR WALKS

The phase transition is a continuous one with α = 0 (the order parameter
decays linearly on approaching the transition) and φ = 1/2. There is a jump
in the specific heat on traversing the transition at a = 4.

Table: The growth rate and entropic exponent for two walk stars.

Phase region µ γ

Free 4 1/2
Zipped a√

a−1 1
Free to Zipped transition 4 1
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THREE SYMMETRIC OSCULATING STAR WALKS

For r = s = 1 (stars) and general a = b (symmetric case) the generating
function is quadratic.

G3(a, a; z) =
(6az− a + 1) (az + 1) (az− 1)

4z2 (a2z− a + 2) (4a2z2 + 4az− a + 1)
·
√

1− 4z

+
−8a4z4 + 2a2 (a− 20) z3 + a (a + 7) (a− 4) z2 + (10a− 4) z− a + 1

4z2 (a2z− a + 2) (4a2z2 + 4az− a + 1)
.

The asymptotic behaviour of the average number of contacts, m(a), is

m(a) =


a(192−8a−a2)

(4−a)(64−a2)
+ O(n−1) a < 4

3√
π
·
√

n + O(1) a = 4
a−4
a−2 · n + O(1) a > 4.

The associated order parameter is given by

M(a) =

{
0 a ≤ 4
a−4
a−2 a > 4.
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PHASE DIAGRAM

The transition is continuous with α = 0 and φ = 1/2. Also, as with two walk
stars when a < 4 there is a free phase where the none of the pairs of walks
share a macroscopic number of sites whilst they are all zipped together (fully
zipped) for a > 4 sharing a non-zero macroscopic density of sites.

Table: The growth rates and entropic exponents for three walk stars with symmetric
interactions.

Phase region µ γ

Free 8 −1/2
Fully Zipped a2

a−2 1
Free to Fully Zipped 8 1
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ASYMMETRIC SOLUTION

For particular values of a 6= b (for example (a, b) = (1, 2), (2, 3), (2, 4), (3, 4)
and so on ) we generated long series and were able to guess quartic equations
using the Ore Algebras package2 for the Sage computer algebra system.
By computing these quartics at sufficient particular values of a 6= b we were
able to construct the general a 6= b equation.

4∑
j=0

cj(a, b; z)Gj = 0,

where the coefficients cj(a, b; z) are polynomials in a, b and z.

c4(a, b; z) = 4z6(4b2z2 +4bz−b+1)(4a2z2 +4az−a+1)(a2b2z2 +2abz−ab+a+b)2.

2Kauers, Jaroschek, and Johansson. In Computer Algebra and Polynomials: Applications of
Algebra and Number Theory, pages 105–125. Springer, 2015)
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SINGULARITIES

We located possible singularities by examining its discriminant of the quartic
and the zeros of the leading coefficient. We can also locate potential
singularities by converting the algebraic equation to a (second order) linear
differential equation and examining the zeros of its highest order term. In so
doing, we found four independent singularities (zfree, ztop, zbottom, zfully) of the
generating function

zc(a = a, b) =


zfree = 1

8 when a < 4 and b < 4
ztop(a) =

√
a−1
2a when a > 4 and 0 ≤ b < 2

√
a√

a−1

zbottom(b) =
√

b−1
2b when 0 ≤ a < 2

√
b√

b−1
and b > 4

zfully(a, b) =
−1+
√

(a−1)(b−1)
ab otherwise.

(5)

Phase boundaries were found by looking where the singularities are equal.
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PHASE DIAGRAM
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FREE PHASE

For low a, b when a < 4, b < 4 the dominant singularity is zc = zfree = 1
8 . In

this region we find that
Zn ∼ 8n n−3/2.

Leading to µ = 8 and γ = −1/2.
In this phase we have calculated that

ma(a, b) =
a(ab + 8b− 192)

2(4− a)(ab− 64)
+ O(n−1),

mb(a, b) =
b(ab + 8a− 192)

2(4− b)(ab− 64)
+ O(n−1).

so that
A = B = 0 when a < 4 and b < 4,
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PARTIALLY ZIPPED PHASES

For top zipped
Zn ∼ z−n

top n−1/2.

Leading to

µ =
1

ztop
=

2a√
a− 1

and γ = 1/2.
In this region we have

ma(a, b) =
a−
√

a− 2
2(a− 1)

· n + o(n),

mb(a, b) = O(1).

For bottom zipped b replaces a.
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FULLY ZIPPED

Zn ∼ zn
fully.

Leading to

µ(a, b) =
1

zfully(a, b)
=

ab
−1 +

√
(a− 1)(b− 1)

and γ = 1.
The order parameters, both of which are non-zero which implies that all
three walks are zipped together as hence we refer to this phase a Fully Zipped:

A(a, b) =
a

ztop(a)

∂ztop(a)

∂a
=

1
2(a− 1)

(
a− 2 +

a
1 +

√
(a− 1)(b− 1)

)
,

B(a, b) =
b

zbot(b)

∂zbot(b)

∂b
=

1
2(b− 1)

(
b− 2 +

b
1 +

√
(a− 1)(b− 1)

)
.
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SUMMARY OF RESULTS

Table: The growth rates and entropic exponent for three walk stars with asymmetric
interactions. In the top part of the table each of the primary phases are listed whilst in
the bottom part of the table the phases boundaries are listed.

Phase regions µ γ

free 8 −1/2
partially zipped (top) 2a√

a−1 1/2
partially zipped (bottom) 2b√

b−1
1/2

fully zipped ab√
(a−1)(b−1)−1

1

Phase boundaries µ γ

free to partially zipped (top) 8 1/4
free to partially zipped (bottom) 8 1/4
free to fully zipped 8 1
partially zipped (top) to fully zipped 2a√

a−1 1
partially zipped (bottom) to fully zipped 2b√

b−1
1
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CONCLUSION

• Model of asymmetric gelation with three osculating walks on the square
lattice has been solved
• Solution is a algebraic and, in particular, quartic as opposed to

symmetric case which is quadratic
• Focus was on osculating stars since friendly watermelons proved more

difficult to analyse (D-Finite not algebraic)
• Found solution my using Sage package at a number of fixed integer

values of the parameters
• Current writing up work on four walks

Owczarek and Rechnitzer, arXiv:2507.17111 (’25)
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