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DIRECTED WALKS LATTICE MODELS

• Simple lattice models of polymers in solution
• Interface of combinatorics, probability theory and statistical physics
• There are many exact solutions of single and multiple directed walkers
• Focus on the exact generating function for fixed number of walks
• Interest is in adding multiple interactions
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EXACT SOLUTION OF DIRECTED LATTICE WALKS LATTICE

• Recurrence and functional equation for partition or generating function
• Rational, algebraic, Differentially-finite (D-finite)
• and non D-finite solutions (e.g. q-series) for generating functions
• Vicious walks are related to free fermions
• Six vertex model can be mapped to walks that touch (osculating)
• Bethe Ansatz & Lindström-Gessel-Viennot (LGV) Lemma
• LGV: multiple walks = determinant of single walks (partition functions)
• LGV problems result in generating functions that are D-finite
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INTERACTING MODELS

• Previously, interactions applied to single walk of various types
• Multiple walks where interaction confined to a single walk
• Recently interactions between walks
• and/or multiple interactions have been considered
• These can give non-D-finite solutions

Vicious No intersection

Osculating Shared sites but not lattice bonds (touch or kiss)

Friendly Shared sites and bonds
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SOME KNOWN EXACT SOLUTIONS: GEOMETRIES

No wall or interaction
• Many vicious directed walks: Fisher (’84), Lindström-Gessel-Viennot thm.

(’85), Essam & Guttmann (’95), Guttmann, Owczarek & Viennot (’98)
• Many friendly walks & Osculating walks: Brak (’97), Guttmann & Vöge

(’02), Bousquet-Mélou (’06)

With wall but no interaction (LGV)

• Many vicious walks: Krattenhaler, Guttmann & Viennot (’00)

Single walk involved in interactions (recurrence, Bethe Ansatz, LGV):
• Two Vicious walks: with wall interactions Brak, Essam & Owczarek (’98)
• Many Vicious walks: with wall interactions Brak, Essam & Owczarek (’01)
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EXACT SOLUTIONS: MULTIPLE WALKS AND INTERACTIONS

How can we extend the numbers of walks with complex and different types of
interactions that can be solved exactly?

Inter-walk interactions using (obstinate) kernel method:
• Two Friendly walks: with both walks interacting with the wall

Owczarek, Rechnitzer & Wong (’12)
• Two Friendly walks: with both wall and inter-walk interactions

Tabbara, Owczarek, Rechnitzer (’14)
• Three Friendly walks: with two types of inter-walk interactions

in progress/almost complete (’15)
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SO HOW DO WE FIND A SOLUTION: KERNEL METHOD

• Combinatorial decomposition of the set of walks
• Find a functional equation for an expanded generating function
• This leads to the use of extra catalytic variables
• Answer is a ‘boundary’ value
• Equation is written as ”bulk = boundary terms”
• Bulk term is product of a rational kernel and bulk generating function
• Set the value of a catalytic variable to make the kernel vanish
• Origin of kernel method due to Knuth (1968)
• From ≈ early ’00’s applied to a number of dir. walk problems
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OBSTINATE KERNEL METHOD

• Our problems have several catalytic variables
• Need multiple values of catalytic variables: obstinate kernel method
• Earliest combinatorial application due to Bousquet-Mélou (‘02).
• Bousquet-Mélou Math. and Comp. Sci 2 (2002)
• Bousquet-Mélou, Mishna Contemp. Math. 520 (2010)
• Solutions are not always D-finite
• Quarter plane random walk problems
• Diagonals of multi-variate rational functions
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UNZIPPING ADSORPTION MODEL

Simple model of DNA as two friendly walks near a boundary

The model Fn. eqns Obs. kernel method Decomp. G(a, c) G(a, 1) & G(1, c) Phase trans.

An example
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Figure: An allowed configuration of length 10. The overall weight is a3c7

Rami Tabbara Uni. Melb.

Adsorption model of de-naturating DNA

Figure : An allowed configuration of length 10. The overall weight is a3c7

• a is a fugacity for each single visit to the wall
• c is a fugacity for each contact of the two walks to site
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MODEL

• number of visits to the wall denoted ma,
• number of joint contacts denoted mc.

The partition function is

Z(u)
n (a, c) =

∑

ϕ̂3 |ϕ̂|=n

ama cmc

The generating function is

G(u)(a, c; z) =
∞∑

n=0

Z(u)
n (a, c)zn.
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GENERALISED GENERATING FUNCTION

We consider walks ϕ in the larger set, where each walk can end at any possible height.

• Generalised generating function:

F(r, s) ≡ F(r, s, a, c; z) =
∑

ϕ∈Ω

ama(ϕ)cmc(ϕ)risjzn

G(u)(a, c) = F(0, 0)

The model Fn. eqns Obs. kernel method Decomp. G(a, c) G(a, 1) & G(1, c) Phase trans.

Generalised generating function

! To find G(a, c), consider larger class of configs.

! Generalised gen. fn:

F (r , s) ≡ F (r , s, a, c ; z)

=
∑

L,i ,j≥0

∑

w∈ΩL,i,j

ama(w)cmc (w)r i s jzL
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Rami Tabbara Uni. Melb.

Adsorption model of de-naturating DNA
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ESTABLISHING A FUNCTIONAL EQUATION

• Adding a single column onto a configuration leads to a decomposition
• Translating back to generating functions we end up with

K(r, s)F(r, s) =
1
ac

+

(
c− 1

c
− zr

s

)
F(r, 0)

+

[
a− 1

a
− z

r
(s + 1)

]
F(0, s)−

(
a− 1

a

)(
c− 1

c

)
F(0, 0)

where the kernel K(r, s) is

K(r, s) ≡ K(r, s; z) =
(

1− z
[

r +
s
r
+

r
s
+

1
r

])
.
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SYMMETRIES OF THE KERNEL

The kernel is symmetric under the following two transformations, which are
involutions:

(r, s) 7→
(

r,
r2

s

)
, (r, s) 7→

( s
r
, s
)

Transformations generate a family of 8 symmetries (‘group of the walk’)

(r, s),
(

r,
r2

s

)
,
( s

r
,

s
r2

)
,

(
r
s
,

1
s

)
,

(
1
r
,

1
s

)
,

(
1
r
,

s
r2

)
,

(
r
s
,

r2

s

)
, and

( s
r
, s
)

• Use of four of these which only involve positive powers of r.
• Then eliminate some of the unknown generating functions
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COMBINING THE EQUATIONS

Key idea
• Treat K as function of r or s to get roots r̂ and ŝ
• Then use subset of F to get system of eqns. E.g. Using r̂:

(̂r, s) F(̂r, 0) F(0, s) F(0, 0)
(̂r, r̂2/s) F(̂r, 0) F(0, r̂2/s) F(0, 0)
(̂r/s, r̂2/s) F(̂r/s, 0) F(0, r̂2/s) F(0, 0)
(̂r/s, 1/s) F(̂r/s, 0) F(0, 1/s) F(0, 0)

• These combinations generalise the alternating sum of the orbit sum in previous
applications of the obstinate kernel method

• Factors that look like Bethe amplitudes
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ROOTS OF THE KERNEL

• The kernel has two roots as function of either r or s
• Choose the one which gives a positive term power series expansion in z
• with Laurent polynomial coefficients in s (r):

r̂(s; z) ≡ r̂ =
s
(

1−
√

1− 4 (1+s)2z2

s

)

2(1 + s)z
=
∑

n≥0

Cn
(1 + s)2n+1z2n+1

sn ,

where Cn = 1
n+1

(2n
n

)
is a Catalan number.

• Make the substitution r 7→ r̂ or s 7→ ŝ
• Use Lagrange Inversion to find r̂k as a series
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SOLUTION FOR G(u)(1, c)

Exact solution for G(u)(a, 1) was already known though it can be found using
the method described

• No known previous solution for G(u)(1, c)

We can write functional equation as

G(u)(1, c) = F(0, 0, 1, c; z) = [r1]
ŝ
(
r2 − 1

) [
r− cr + cz

(
1 + r2 − ŝ

)]

(c− 1) (̂s− ĉs + crz)
,

expanding RHS as power series in c and so obtain, after some work:

G(u)(1, c; z) = 1 + c2z2 + c3 (1 + 2z) z4

+
∞∑
i=3

z2i
2i∑

m=3

cm
m∑

k=3

(−1)k+1 k(k − 1)(k − 2)(2i − k + 1)(i − k + 2)
i2(i − 1)2(i + 1)(i − 2)

(m
k

)(2i − k
i − 2

)(2i − k − 1
i − 3

)
.
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SOLUTION FOR G(u)(1, c)

• While we have an explicit solution for G(u)(1, c) it is advantageous for
analysis to directly read off the singularities

• Alternative — find differential equation satisfied by generating function
• Use Zeilberger-Gosper algorithm: Maple: DETools package, Zeilberger

hyperexp. implementation
• Result: DE for G(u)(1, c) is order 6 with poly. coeff of degz = 12
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FORTUNATE DECOMPOSITION OF G(u)(a, c)

Using various combinatorial relationships between the generating functions
we can re-write G(a, c) in terms of G(a, 1) and G(1, c):

G(u)(a, c) =
1

(a− 1)(c− 1)

+
p1(a, c, z)

p2(a, c, z) + p3(a, c, z)G(u)(a, 1) + p4(a, c, z)G(u)(1, c)

where pi are polynomials in a, c and z: quadratics in z2.

Key point: With solutions to G(u)(a, 1) and G(u)(1, c) we additionally have
solved for G(u)(a, c).
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ANALYSING G(a, c)

• Singularities: Look at G(u)(a, 1), G(u)(1, c) and root of above denom.
• Four Phases: Free, zipped, adsorbed and zipped-adsorbed

The dominant singularity zs(a, c) of the generating function G(u)(a, c; z) is one
of four types associated with the four phases

zs(a, c) =





zb ≡ 1/4, a ≤ 2, c ≤ 4/3
za(a) ≡

√
a−1
2a , a > 2, c ≤ α(a)

zc(c) ≡ 1−c+
√

c2−c
c , a ≤ γ(c), c > 4/3

zac(a, c), a > γ(c), c > α(a)

• α(a) is boundary between adsorbed and zipped-adsorbed phases
• γ(c) is the boundary between zipped and zipped-adsorbed phases
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PHASE DIAGRAM

Phase diagram
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Figure : All transitions are second-order while the critical point where all
boundaries meet (filled circle) occurs when a = 2 and c = 4/3

Rami Tabbara Uni. Melb.

Multiple interacting directed walks

All transitions found to be second order

Low-temp argument gives
• c→∞, γ(c)→ 2
• a→∞, α(a)→

√
5− 1
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ASYMPTOTICS

Table : The growth rates of the coefficients Zn(a, c) modulo the amplitudes of the full
generating function G(u)(a, c; z) over the entire phase space.

phase region Zn(a, c) ∼
free 4nn−5

free to adsorbed boundary 4nn−3

free to zipped boundary 4nn−3

a = 2, c = 4/3 4nn−3

adsorbed za(a)−nn−3/2

zipped zc(c)−nn−3/2

adsorbed to adsorbed-zipped boundary (α(a)) za(c)−nn−1/2

zipped to adsorbed-zipped boundary (γ(c)) zc(c)−nn−1/2

adsorbed-zipped zac(a, c)−nn−1
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DOUBLE INTERACTION ADSORPTION MODEL

Two walks above a surface — both walks can interact with wall

Figure : Two directed walks with single and “double” visits to the wall the surface.
This walk has weight a2d2.

• a is a fugacity for each single visit to the wall
• d is a fugacity for each double visit to the wall
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MODEL

• number of single visits to the wall denoted ma,
• number of double visits to the wall denoted md.

The partition function is

Z(d)
n (a, d) =

∑

ϕ̂3 |ϕ̂|=n

ama(ϕ̂)dmd(ϕ̂)

The generating function

G(d)(a, d; z) =
∞∑

n=0

Zn(a, d)zn.

can be found by the obstinate kernel method.

Exact Solutions of Interacting Friendly Directed Walkers Owczarek



Introduction Unzipping model Double adsorption Gelation model Conclusion

PHASE DIAGRAM

a-rich

d-rich

d
es
o
rb
ed

0 5 10

a

0

10

20

d

The first-order transition is marked with a dashed line, while the two
second-order transitions are marked with solid lines. The three boundaries
meet at the point (a, d) = (a∗, d∗) =

(
2, 16(8−3π)

64−21π

)
. Note that d∗ is not

algebraic.

Exact Solutions of Interacting Friendly Directed Walkers Owczarek



Introduction Unzipping model Double adsorption Gelation model Conclusion

DOUBLE INTERACTION ADSORPTION MODEL

• Exact solution of generating function can be found in the same way
• Exactly the same kernel (two walks above a wall)
• Key idea here: one can prove that the solution is not D-finite
• LGV lemma does not apply directly
• Phase diagram with second and first order transitions
• Scaling of partition function calculated
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THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — gelation

Figure : An example of an allowed configuration of length 8. Here, we have mc = 11
double shared contact steps and md = 3 triple shared contact steps. Thus, the overall
Boltzmann weight for this configuration is c11d3 = c5t3
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THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — gelation

• Start with three walks in the ”bulk” (no walls) with interactions

• double visits fugacity: c and triple visits fugacity: d
• total weight for triple visits: t = c2d
• Walks start and end together

• mc is the number of double contacts between pairs of walks
• md is the number of triple contacts between all three walks

• Partition function: Z(t)
n (c, d) =

∑

ϕ∈Ω̂,|ϕ|=n

cmc(ϕ)dmd(ϕ)

• Generating function: G(c, d) ≡ G(c, d; z) =
∑

n≥1

Z(t)
n (c, d)zn
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PRIMITIVE PIECES

• Primitive walks [P(c; z)] only have triple visits at either end
• Any walk can be uniquely decomposed into a sequence of primitive

pieces:

G(c, d; z) =
1

1− dP(c; z)

G(c, d; z) =
G(c, 1; z)

d [1− G(c, 1; z)] + G(c, 1; z)
.

Hence it suffices to solve for G(c, 1; z)
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GENERALISED GENERATING FUNCTION

We consider walks in a larger set, where they do not necessarily end together.

• Generalised generating function:

F(r, s) ≡ F(r, s, c; z) =
∑

ϕ∈Ω̂

z|ϕ|rh(ϕ)/2sf(ϕ)/2cmc(ϕ)

• G(c, 1) = F(0, 0)

The decomposition of the set of walks gives

K(r, s)F(r, s) =
1
c2 −

(r− cr + cz + csz)
cr

F(0, s)

− (s− cs + cz + crz)
cs

F(r, 0)− (c− 1)2

c2 F(0, 0)
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KERNEL

The kernel K(r, s) is

K(r, s) ≡ K(r, s; z) = 1− z(r + 1)(s + 1)(r + s)
rs

.

The kernel is symmetric under the following two transformations, which are
involutions:

(r, s) 7→ (s, r) , (r, s) 7→
(

r,
r
s

)

Transformations generate a family of 12 symmetries (‘group of the walk’)

(r, s), (s, r),
(

r,
r
s

)
,

(
s,

s
r

)
,

(
r
s
, r
)

,

(
s
r
, s
)

,

(
r
s
,

1
s

)
,

(
s
r
,

1
r

)
,(

1
s
,

r
s

)
,

(
1
r
,

s
r

)
,

(
1
r
,

1
s

)
,

(
1
s
,

1
r

)
.

• Proceed in a similar way to previously
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SOLUTION FOR G(c, 1)

G(c, 1; z) =
1

(c− 1)2

(
1 +

c
(
c2z + c2 − 3c

)√
1− 4cz

Gb(c, 1; z)

)

where

Gb(c, 1; z) = −1− c2z− c3z + c(2z + 1)

+
√

1− 4cz
[
−cz + c2z− c3z +

(
−2c2z + 2c3z

)
J(c; z)

]
.

and

J(c; z) =
∑
i≥3

zi
i−1∑
m=1

cm
i−m−1∑

k=1

(m
k

) i−m−1∑
j=k

{
k

i − m − 1

(i − m − 1
j

)(i − m − 1
j − k

)
[(m + i − k

i − j

)
+
(m + i − k

i − j − 2

)]
− k

i − m

(i − m
j

)(i − m
j − k

)(m + i − k − 1
i − j − 1

)}

−
∑
i≥2

zi
i−1∑
m=1

cm
i−m∑
k=1

(m
k

) k
i − m

( i − m
i − k − m

)(m + i − k − 1
m − 1

)
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CONCLUSION

• Simple model of gelation with three friendly walks in the bulk
• Used combinatorial decomposition to obtain linear functional equation
• G(c, d) can be written in terms of G(c, 1) via ”primitive piece” argument
• Used obstinate kernel method to solve functional equations
• Explicit series solutions for G(c, 1)
• Also have used Zeilberger-Gosper algorithm to find linear DE for

denominator of G(c, 1)
• Full analysis of asymptotics and phase diagram almost complete
• All transitions seem to be first order

How far can we extend this? — where does integrability end?
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