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Abstract
We find and analyse the exact solution of a model of three different polymers
with asymmetric contact interactions in two dimensions, modelling a scenario
where there are different types of polymers involved. In particular, we find the
generating function of three directed osculating walks in star configurations
on the square lattice with two interaction Boltzmann weights, so that there is
one type of contact interaction between the top pair of walks and a different
interaction between the bottom pair of walks. These osculating stars are found
to be the most amenable to exact solution using functional equation techniques
in comparison to the symmetric case where three friendly walks in watermelon
configurations were successfully solved with the same techniques. We elucid-
ate the phase diagram, which has four phases, and find the order of all the
phase transitions between them. We also calculate the entropic exponents in
each phase.
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1. Introduction

Models of polymer gelation have received interest over an extended period of time based
upon understanding the phase behaviour of systems of multiple polymers [1]. Models of a
small fixed number of polymers have been studied in their own right for various reasons. For
example, models of the unzipping of DNA which naturally lead to the study of two polymers
with interpolymer interactions have been a research focus [2–10]. Two varieties of models
have the two polymers modelled via either self-avoiding or directed walk systems on lattices
in two and three dimensions with various types of contact interactions. The exact solution of
directed so-called friendly walkers, which can share edges and sites, on the square lattice with
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Figure 1. Three friendly walks in a watermelon configuration as considered previously.
Reproduced from [12]. © IOP Publishing Ltd. All rights reserved.

such interactions [9, 10] has led to the extension of a key combinatorial technique for lattice
paths, the obstinate kernel method [11]. More generally the binding of multiple polymers have
been studied for some time [12–19].

The modelling of three polymers has considered in the context of polymer binding/zipping
[12]. One source of motivation was the search for models of Efimov-like states in triple stran-
ded DNA [20, 21]. In [12] an exact solution was found for three interacting friendly directed
walks on the square lattice in the bulk. Two distinct interaction parameters were introduced:
one that acts on pairs of walks and one that acts when all three walks comes together. The
exact solution was found by the analysis of functional equations for the model’s corresponding
generating function by means of the obstinate kernel method. Without the triple walk inter-
action the model exhibits two phases which can be classified as free and gelated (or zipped),
with the system exhibiting a second-order phase transition between these phases. The inter-
actions between the different pairs of polymers were identical, modelling the situation where
the homopolymers are all of the same type. It is of general interest then to consider a general-
isation where the polymers may be different from one another so that the pairwise interaction
may differ. It is such a model we consider in the work.

In [12] the directed walk system consisted of three friendly walks (see figure 1) in which the
walks may share sites and edges though are considered never to cross. They were specifically
considered to start and end together. In our preliminary attempts to analyse a problem where
the interactions between different pairs of walks were different we were unable to solve the
corresponding functional equations as the breaking of the symmetry meant it appeared we
lacked sufficient equations to solve the model. Moreover, the D-finite nature of the generating
function in the symmetric case meant we were unable to guess a solution in the more general
case.

We turned to the study of other varieties of configuration in the hope that there may be a
more amenable type whilst still allowing the required interactions. We noticed that both two
and three osculating walks, where walks may share vertices but not edges, in star configura-
tions (see figure 2) and the final endpoints are summed over gave algebraic solutions for the
generating functions. As such it pointed to the idea that considering the asymmetric version
of a similar three walk system would be a prudent line of attack. It turned out to be so and
although we did not use the kernel method to solve the problem it was feasible to find the
algebraic equation satisfied by the solution. Along the way we could elucidate the solution,
provide the exact phase diagram and calculate all important exponents.
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Figure 2. Three osculating walks in a star configuration as considered in this work. An
example of an allowed configuration of length n= 9. The walks start one lattice spacing
apart (distance two) at coordinates (0, 0), (0, 2) and (0, 4), and end at x= n with any
allowed y. In this configuration the upper two walks end (rightmost) two lattice spacing
(distance four) apart whilst the bottom two walks end three lattice spacings (distance
six) apart. Here, we have ma = 3 shared sites between the upper two walks and mb = 2
shared sites between the lower two walks. Thus, the overall Boltzmann weight for this
configuration is a3b2.

2. Three osculating stars

2.1. Model definition

In the Euclidean plane with coordinates x and y consider three directed walks on the square
integer lattice which has been rotated by 45◦. The lattice has sites at coordinates (x,y) = (2i,2j)
and (2i+ 1,2j+ 1) for i, j ∈ Z. A square of the lattice is defined by the quartet of coordinates
(2i,2j), (2i+ 1,2j+ 1), (2i+ 1,2j− 1) and (2i+ 2,2j). The three directed walks consisting of
an equal number of steps n so that the total number of steps in a configuration is 3n. All walks
begin at x= 0 with y= 0,2,4, and end at x= nwith any heights. Walks do not cross. Moreover,
walks only can take steps in either the north–east (1, 1) or south–east (1,−1) direction along
edges of the squares. Finally, any pair of walks may share common site, however none of
the walks are able to share common edges. Such walks are typically referred to as osculating
walks. This contrasts to the model considered in [12] where (infinitely) friendly walks were
considered where walks may share edges and sites without restriction, but may not cross. The
other difference between the models is that in [12] the walks always ended at the same site
(or otherwise close by at a fixed distance), known as a watermelon configuration; here we
consider stars where we sum over all possible end points. Let Ω3 denote the class of allowed
triple walks of any length. An example of an allowable configuration is given in figure 2. For
any configuration φ ∈ Ω3, we assign a weight a to thema(φ) shared contact sites and a weight
b to themb(φ) shared contact sites between the top-to-middle and the middle-to-bottom walks
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respectively. Note, all three walks cannot share the same site. The partition function for our
model consisting of n triple steps is

Zn (a,b) =
∑

φ∈Ω3,|φ|=n

ama(φ)bmb(φ), (2.1)

where |φ| denotes the length of the configuration φ. The reduced free energy κ(a,b) is given
by

κ(a,b) =− lim
n→∞

1
n
logZn (a,b). (2.2)

And generating function G3(a,b;z) for three walks is defined as

G3 (a,b;z) =
∞∑
n=0

Zn (a,b)z
n. (2.3)

In the usual manner, where z is conjugate to the length of the configuration. Importantly, the
relation between the free energy κ and the radius of convergence of G(a,b;z) is given by

κ(a,b) = logzs (a,b) , (2.4)

where zs(a,b) is the real and positive singularity of the generating function that is closest to
the origin. Moreover, it is expected that for any fixed a and b the partition function scales as

Zn (a,b)∼ A(a,b) µ(a,b)n nγ−1. (2.5)

Which defines the standard polymer exponent known as the entropic exponent γ, the value of
which is expected to depend upon the phase or phase boundary at which the partition function
is evaluated [22–24]. The growth rate µ is a function of a and b and is given by

µ(a,b) = zs (a,b)
−1

= e−κ(a,b). (2.6)

From the generating function solution we will find the location of the singularity zs(a,b)which
then effectively gives us the growth rate µ and free energy κ.

We show that there are four possible natural phases in our system which we will fully
delineate in our analysis below. The phases are characterised by canonical order parameters
related to the number of contacts between the walks and conjugate to the Boltzmann weights
a and b. So, as such, we introduce the order parametersA(a,b) and B(a,b) being the limiting
average density of contacts between the top two and bottom two walks respectively as

A(a,b) = lim
n→∞

⟨ma⟩
n

= a
∂κ

∂a
, (2.7)

and

B (a,b) = lim
n→∞

⟨mb⟩
n

= b
∂κ

∂b
. (2.8)

We can then characterise the possible phases in the following way. We say that the system is
in a free phase when

A= B = 0. (2.9)

A top zipped phase with the top two walks only bound together is indicated by the situation
when

A> 0 with B = 0. (2.10)
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Whilst a bottom zipped phase with the bottom two walks only bound together is indicated by
the situation when

B > 0 with A= 0. (2.11)

When both

B > 0 and A> 0. (2.12)

All three walks are bound, which we refer to as fully zipped.
Phase transitions are defined by non-analytic behaviour of the free energy and so are indic-

ated by a non-analytic change in the singularity of the generating function. It is usual to define
the standard polymer exponent α [24, 25] as related to the non-analyticity in the free energy
κnon as

κnon ∼ K t2−α as t→ 0, (2.13)

where t measures in Boltzmann weights a and b (or temperature) the distance to the phase
transition and K is a constant. This implies that the associated order parameter M=A,B
behaves as

M∼M t1−α as t→ 0+. (2.14)

A standard scaling argument [24, 25] connects this to the scaling of the number of contacts
evaluated exactly at the transition

⟨ma,b⟩(n)∼ C nϕ , (2.15)

where

ϕ = 2−α. (2.16)

Here which contact number ma or mb is considered is related to the order parameter(s) that are
changing from zero to a non-zero value as the phase transition point is traversed.

3. Functional equations for the generating function

We can establish a functional equation for G(a,b;z) by considering the effect of appending a
triplet of steps to the end of any given configuration φ ∈ Ω3. To begin, we define Ω3(i, j) to
be the class of triple osculating walks that consists of configurations with final top to middle
walk distance i and middle to bottom distance j, that still obey the osculating constraints. The
full combinatorial class Ω3 is then the union

Ω3 ≡
∪

i⩾0,j⩾0

Ω3 (i, j) . (3.1)

Equippedwith our refined combinatorial classes we can introduce its corresponding generating
function G(a,b;z) that encodes information about the number of steps and shared contacts for
each configurationφ ∈ Ω3. However, determiningwhether appending a triple-step onto a given
configuration φ results in a new and allowable configuration (i.e. φ remains in Ω3) further
requires knowledge of the final step distances between the three walks. Hence, solely for the
purpose of establishing our functional equation for G(a,b;z), we additionally introduce two
catalytic variables r and s to construct the expanded generating function F(r,s,a,b;z) where

F(r,s,a,b;z)≡ F(r,s) =
∑
φ∈Ω3

z|φ|rh(φ)/2sf(φ)/2ama(φ)bmb(φ). (3.2)
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And again z is conjugate to the length |φ| of a configuration φ ∈ Ω3, r and s are conjugate to
half the distance h(φ) and f(φ) between the final vertices of the top to middle and middle to
bottom walks respectively. For each φ ∈ Ω3, powers of r and s in F(r,s) track the final step
distances between the three walks. Due to the allowed step directions, both h(φ) and f(φ)must
always be even, ensuring that F(r,s) contains only integer powers of r and s. Thus, we consider
F(r,s) as an element of Z[r,s,a,b][[z]]: the ring of formal power series in z with coefficients
in Z[r,s,a,b].

We aim to solveF(1,1,a,b;z)≡ G3(a,b;z) by establishing a functional equation forF(r,s).
Specifically, we construct a suitable mapping from Ω3 onto itself by considering the effect of
appending an allowable triple-step onto a configuration, translating this map into its action on
the generating function.

We then follow the procedure suitably modified found in [12] to construct the functional
equation:

K(r,s)F(r,s) = rs−
(
(1+ r)(r+ s+ rs)z

rs
+

1− b
b

)
F(r,0)

−
(
(1+ s)(r+ s+ rs)z

rs
+

1− a
a

)
F(0,s) ,

(3.3)

where the kernel, K(r,s), is

K(r,s)≡ K(r,s;z) = 1− z(r+ 1)(s+ 1)(r+ s)
rs

. (3.4)

4. Exact solution of osculating stars

4.1. Two interacting osculating star walks

We start by reproducing the solution for two osculating walks with contact interaction [19,
26, 27]. Analogous to our definitions for the generating function of three walks we have the
extended generating function

F(s,a;z)≡ F(s) =
∑
φ∈Ω2

z|φ|sd(φ)/2am(φ), (4.1)

where m(φ) counts the number of contacts between the two walks and d(φ) the distance
between the final vertices of the two walks. We want the generating function for star con-
figurations given by G2(a,z) = F(1,a;z). Here Ω2 denote the class of allowed pairs of walks
of any length.

The functional equation for F(s) is

(1− z(s+ 2+ 1/s))F(s) = s+

(
a− 1
a

− z(2+ 1/s)

)
F(0) , (4.2)

where s is now conjugate to the distance between the endpoints of the two walks. Note that
the walks start 1 lattice spacing apart.

This equation can be solved using the now fairly standard approach of the kernel-method.
Solving the kernel gives two roots

s= σ± (z) =
1− 2z±

√
1− 4z

2z
. (4.3)
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Table 1. The growth rate and entropic exponent for two walk stars.

Phase region µ γ

Free 4 1/2
Zipped a√

a−1 1

Free to Zipped transition 4 1

Of which only one, σ−(z), is combinatorial (being analytic at zero). Substituting this into the
functional equation then eliminates the unknownF(s) leaving a single equation for F(0), which
yields:

F(0;a,z) =
aσ− (z)2

az+σ− (z)(1− a(1− 2z))
. (4.4)

Back substitution into equation (4.2) and setting s= 1 then gives

G2 (a,z) =
1+(3z− 1)a

2z(1+ a(2z− 1)+ z2a2)
√
1− 4z

− 1+ a(3z− 1)+ 2z2a2

2z(1+ a(2z− 1)+ z2a2)
. (4.5)

This generating function has two physical singularities; a square-root singularity when z=
1/4 and a simple pole when z=

√
a−1
a . These meet at a= 4 and the singularities coalesce

giving

G2 (4,z) =
16z

(3+ 4z)(1− 4z)
− 3

2z(3+ 4z)
√
1− 4z

− 3
2z(3+ 4z)

. (4.6)

And the behaviour is dominated by a simple pole at z= 1/4 with a confluent one-on-square-
root singularity. The asymptotic behaviour of m(a) the average number of contacts between
the two walks as a function of a is given explicitly by

m(a) = ⟨m⟩=


a

(4−a) +O
(
n−1
)

a< 4
1√
π
·
√
n+O(1) a= 4

a−
√
a−2

2(a−1) · n+O(1) a> 4.

(4.7)

Hence the associated order parameter

M(a) = lim
n→∞

⟨m⟩
n

= a
∂κ

∂a
, (4.8)

is given by

M(a) =

{
0 a⩽ 4
a−

√
a−2

2(a−1) a> 4.
(4.9)

This implies that for a< 4 there is a free phase where the two walks do not share a macro-
scopic number of sites whilst they are zipped together for a> 4 sharing a non-zeromacroscopic
density of sites. Our generating function leads us to provide the table of entropic exponents in
table 1.

Finally, we note that the phase transition is a continuous one withα= 0 (the order parameter
decays linearly on approaching the transition) and ϕ = 1/2. There is a jump in the specific heat
on traversing the transition at a= 4.

7



J. Phys. A: Math. Theor. 58 (2025) 425001 A L Owczarek and A Rechnitzer

4.2. Three walks: symmetric interactions a=b

We can explicitly solve the functional equation (3.3) for three osculating walks when a= b
following the same method applied by Bousquet-Mélou [11, 18]. This reproduces the results
found by Essam [16]. When a= b the physical variable conjugate to a counts the total number
of shared sites between pairs of osculating walks in three walk stars.

The kernel K(r,s) does not depend explicitly on a and b whilst the function equation is

K(r,s)F(r,s) = r2 −
(
(1+ r)(r+ s+ rs)z

rs
+

1− a
a

)
F(r,0)

−
(
(1+ s)(r+ s+ rs)z

rs
+

1− a
a

)
F(0,s) .

(4.10)

We immediately notice the symmetry r↔ s, which facilitates the solution and that this sym-
metry is broken when a ̸= b.

The generating function G3(a,a;z) = F(1,1,a,a,z) is

G3 (a,a;z) =
(6az− a+ 1)(az+ 1)(az− 1)

4z2 (a2z− a+ 2)(4a2z2 + 4az− a+ 1)
·
√
1− 4z

+
−8a4z4 + 2a2 (a− 20)z3 + a(a+ 7)(a− 4)z2 +(10a− 4)z− a+ 1

4z2 (a2z− a+ 2)(4a2z2 + 4az− a+ 1)
.

(4.11)

We immediately notice that this is an algebraic function and this contrasts to the D-finite
non-algebraic solution for the generating function for three friendly walks in a watermelon
configuration found in [12]. This provides a pointer to why we could extend the current model
to the asymmetric solution below whilst could not similarly extend the work in [12].

The analysis of this generating function is very similar to that of the two-walk problem.
When a is small, the asymptotics are dominated by the square-root singularity at z= 1/8.
When a is large, the problem is dominated by a simple pole at z= a−2

a2 . We note that there is

an additional pole at z=
√
a−1
2a but it is dominated by the other. All three singularities coalesce

when a= 4 and the generating function simplifies to

G3 (4,4;z) =
1

1− 8z
+

3(1− 4z)(4z+ 1)

8z2 (8z+ 3)
√
1− 8z

−
3
(
8z2 + 4z+ 1

)
8z2 (8z+ 3)

. (4.12)

And the system is dominated by a simple pole at z= 1/8. Hence the singularity closest to the
origin is given by

zc =

{
1
8 a⩽ 4
a−2
a2 a> 4.

(4.13)

The asymptotic behaviour of average total number of contacts m(a) between pairs of oscu-
lating walks as a function of a is given by

m(a) =


a(192−8a−a2)
(4−a)(64−a2) +O

(
n−1
)

a< 4
3√
π
·
√
n+O(1) a= 4

a−4
a−2 · n+O(1) a> 4.

(4.14)

Hence the associated order parameter is given by

M(a) =

{
0 a⩽ 4
a−4
a−2 a> 4.

(4.15)
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Table 2. The growth rates and entropic exponents for three walk stars with symmetric
interactions.

Phase region µ γ

Free 8 −1/2

Fully zipped a2

a−2 1

Free to fully zipped 8 1

Once again the transition is continuous with α= 0 and ϕ = 1/2. Also, as with two walk
stars when a< 4 there is a free phase where the none of the pairs of walks share a macroscopic
number of sites whilst they are all zipped together (fully zipped) for a> 4 sharing a non-zero
macroscopic density of sites. Our generating function leads us to provide the table of entropic
exponents in table 2.

4.3. Three walks: asymmetric interactions for stars r= s= 1

We have not been able to use the kernel method to directly solve the above equation (3.3)
for the watermelon case, namely r= s= 0, nor for general r,s by using any variant of the
kernel method. We believe that this is due to the breaking of the r↔ s symmetry when a ̸= b.
We were, however, able to determine a quartic equation satisfied by the generating function
of the star case, namely r= s= 1 by analytically guessing the solution and then confirming
that it is indeed the solution. Given the solution of the symmetric problem is algebraic, and,
in particular quadratic, there is some hope that the solution of the asymmetric problem might
satisfy a low degree algebraic equation. We note that this is precisely the case for a related
problem—Kreweras walks—in which the symmetric problem satisfies a polynomial of degree
6 [28] and the asymmetric problem satisfies a polynomial of degree 12 [28–30]. Consequently
we searched for low degree algebraic equations.

We note that Bousquet-Mélou [18] derived a quadratic solution in the non-interacting
case r= s= a= b= 1. We found that for r= s= 1 and general a= b the generating
function also satisfied a quadratic. For particular values of a ̸= b (for example (a,b) =
(1,2),(2,3),(2,4),(3,4) and so on ) we generated long series and were able to guess quartic
Equations using the Ore Algebras package [31] for the Sage computer algebra system. By
computing these quartics at sufficient particular values of a ̸= b we were able to construct the
general a ̸= b equation. We give the quartic Equation in the appendix for the generating func-
tion G≡ G3(a,b;z): it is of the standard form

4∑
j=0

cj (a,b;z)G
j = 0, (4.16)

where the coefficients cj(a,b;z) are polynomials in a, b and z. Hence we could write a closed
form solution forG3(a,b;z) is terms of the classical solution of a quartic. It would be unwieldy
and we can provide the asymptotic results required by directly analysing the quartic. Important
in this regard is that the coefficient of G4 is

c4 (a,b;z) = 4z6
(
4b2z2 + 4bz− b+ 1

)(
4a2z2 + 4az− a+ 1

)
×
(
a2b2z2 + 2abz− ab+ a+ b

)2
. (4.17)
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5. Phase diagram and exponents

As described in the definition of the model, its natural quantities, the two candidate order
parameters, point to four possible phases depending on whether those two order parameters
are non-zero or not.

Given that non-analyticities in the free energy are governed by the change of singularities
closest to the origin of the generating function the location of those possible singularities are
central to delineating the possible phases. Since we know the quartic satisfied by the generating
function, we can, in principle, compute the generating function in closed form. Unfortunately,
that proves to be rather unwieldy for general a,b, but is useful for confirming the location of
singularities for particular fixed choices of a,b. Instead, we locate possible singularities by
examining its discriminant and the zeros of the leading coefficient. We can also locate poten-
tial singularities by converting the algebraic Equation to a (second order) linear differential
equation and examining the zeros of its highest order term. In so doing, we find four inde-
pendent singularities (zfree,ztop,zbottom,zfully) of the generating function which correspond to
these four phases when they are the singularity closest to the origin at some value of a and b:

zc =


zfree = 1

8

ztop =
√
a−1
2a

zbottom =
√
b−1
2b

zfully =
−1+

√
(a−1)(b−1)
ab .

(5.1)

Notice that when b= a we recover the results in equation (4.13). Additionally, note that
zfree,ztop,zbottom are precisely half the critical point of the two-walk model; this is commen-
surate with adding a third (effectively) non-interacting directed walk to the system.

From this we can find the phase boundaries by looking where the singularities above are
equal.

• The singularities zfree and ztop meet when 1
8 =

√
a−1
2a which happens at a= 4 and b⩽ 4, which

we shall label t1;
• The singularities zfree and zbottom meet when 1

8 =
√
b−1
2b which happens at b= 4 and a⩽ 4,

which we shall label t2;
• The singularities ztop and zfully meet, which we shall label tt, when

√
a− 1
2a

=
−1+

√
(a− 1)(b− 1)
ab

. (5.2)

Which happens along the curve

a=
b2

(b− 2)2
for b< 4; (5.3)

• The singularities zbottom and zfully meet, which we shall label tb, when
√
b− 1
2b

=
−1+

√
(a− 1)(b− 1)
ab

. (5.4)

Which happens along the curve

b=
a2

(a− 2)2
for a< 4. (5.5)

10



J. Phys. A: Math. Theor. 58 (2025) 425001 A L Owczarek and A Rechnitzer

Figure 3. The phase diagram of our model. The dashed lines indicate the asymptotes of
the phase boundaries along b= 2 for large a and a= 2 for large b.

We note that for large a the transition boundary tt is asymptotic to the line b= 2 and so there
is utility in inverting the curve a= b2

(b−2)2 as

bc (a) =
2
√
a√

a− 1
for a> 4. (5.6)

Similarly, the phase transition boundary tb occurs when

ac (b) =
2
√
b√

b− 1
for b> 4. (5.7)

Hence we deduce that the closest singularity to the origin is given by

zc (a,b) =


zfree = 1

8 when a< 4 and b< 4

ztop (a) =
√
a−1
2a when a> 4 and 0⩽ b< 2

√
a√

a−1

zbottom (b) =
√
b−1
2b when 0⩽ a< 2

√
b√

b−1
and b> 4

zfully (a,b) =
−1+

√
(a−1)(b−1)
ab otherwise.

(5.8)

These give us the growth constant µ and free energy κ in each phase. Given these singularities
we can now analysis the scaling of the generating function/ partition function and the two
types of contact (hence the order parameters). Our phase diagram in figure 3 is derived from
the singularity structure given in equation (5.8) and our analysis below

11
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5.1. Free phase

For low a,bwhen a< 4,b< 4 the dominant singularity is zc = zfree = 1
8 . In this region we find

that

Zn ∼ 8n n−3/2. (5.9)

Leading to µ= 8 and γ =−1/2.
In this phase we have calculated that

ma (a,b) =
a(ab+ 8b− 192)
2(4− a)(ab− 64)

+O
(
n−1
)
,

mb (a,b) =
b(ab+ 8a− 192)
2(4− b)(ab− 64)

+O
(
n−1
)
.

(5.10)

So that

A= B = 0 when a< 4 and b< 4. (5.11)

Which could be deduced by the constancy of the free energy in this region. So we label this
as a Free phase where the three walks are effectively repulsive and share few (a finite number)
sites with one another. Notice that when b= a we recover the a< 4 case in equation (4.14).

5.2. Partially zipped phase: top zipped

The singularity in this phase arises from the factor of (a2z2 + 2az− a+ 1) in the coefficient
c4 of G4 in the quartic. In the region (a> 4 and 0⩽ b< 2

√
a√

a−1 ) where ztop =
√
a−1
2a dominates

we have a phase where the free energy is independent of b so B = 0 but

A=
a

ztop (a)

∂ztop (a)

∂a
=
a−

√
a− 2

2(a− 1)
. (5.12)

So in this phase we expect the top two walks share a macroscopic number of sites osculating
frequently effectively zipped together whilst the bottom walk is repelled from the upper two
walks. We refer to this phase as Top Zipped.

In this region we find that

Zn ∼ z−n
top n

−1/2. (5.13)

Leading to

µ=
1
ztop

=
2a√
a− 1

(5.14)

and γ = 1/2.
In this region we have

ma (a,b) =
a−

√
a− 2

2(a− 1)
· n+ o(n) ,

mb (a,b) = O(1) .

(5.15)

We expect that mb(a,b) = const+ o(1) in this region, however we have not been able to com-
pute more precise value of this statistic. Although there is no theoretical impediment to this
calculation, we have found that various computer algebra systems have been unable to expand
G3(a,b;z) about z= ztop(a). Despite this we were able to guess the expressions but it is so
convoluted it appears that they are too complicated to be manipulated readily.

12
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5.3. Partially zipped phase: bottom zipped

In the region (0⩽ a< 2
√
b√

b−1
and b> 4 ) where zbot dominates we have a phase where the free

energy is independent of a so A= 0 but

B =
b

zbot (b)
∂zbot (b)

∂b
=
b−

√
b− 2

2(b− 1)
. (5.16)

So in this phase we expect the bottom two walks share a macroscopic number of sites osculat-
ing frequently effectively zipped together whilst the top walk is repelled from the lower two
walks. We refer to this phase as bottom zipped.

In this region we find that

Zn ∼ z−n
bot n

−1/2. (5.17)

Leading to

µ=
1
zbot

=
2b√
b− 1

(5.18)

and γ = 1/2.
In this region we have

ma (a,b) = O(1) ,

mb (a,b) =
b−

√
b− 2

2(b− 1)
· n+ o(n) .

(5.19)

Again, we expect thatma(a,b) = const+ o(1) in this region, but we have been unable to further
elucidate the value of this statistic simply.

5.4. Fully zipped

Finally, when both a,b are large there is a simple pole and it is given by a zero of the leading
coefficient in the algebraic equation; namely,

0= a2b2z2 + 2abz− ab+ a+ b, (5.20)

which gives

zc = zfully =
−1+

√
(a− 1)(b− 1)
ab

. (5.21)

And, moreover, the simple pole in the generating function results in the scaling of the partition
function as

Zn ∼ znfully. (5.22)

Leading to

µ(a,b) =
1

zfully (a,b)
(5.23)

and γ= 1.

13
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Finally, we calculate the order parameters, both of which are non-zero which implies that
all three walks are zipped together as hence we refer to this phase a fully zipped:

A(a,b) =
a

ztop (a)

∂ztop (a)

∂a
=

1
2(a− 1)

(
a− 2+

a

1+
√
(a− 1)(b− 1)

)
,

B (a,b) =
b

zbot (b)
∂zbot (b)

∂b
=

1
2(b− 1)

(
b− 2+

b

1+
√
(a− 1)(b− 1)

)
.

(5.24)

Notice that A(a,a)+B(a,a) = a−4
a−2 and so recovers the large a behaviour given in

equation (4.14).

5.5. Phase transition boundary scaling

We have also calculated the scaling of the number of the two types of contacts on each of the
phase boundaries.

• For the phase boundary t1, when a= 4 and b< 4 we have

Zn ∼ 8nn−3/4,

ma ∼
π
√
2

4Γ(3/4)2
·
√
n+O

(
n−1/2

)
,

mb ∼
b(40− b)

2(4− b)(16− b)
+O

(
n−1
)
.

(5.25)

Which implies that µ= 8, γ = 1/4 and ϕ = 1/2,
• For the phase boundary t2, when a< 4 and b= 4 we have

Zn ∼ 8nn−3/4,

ma ∼
a(40− a)

2(4− a)(16− a)
+O

(
n−1
)
,

mb ∼
π
√
2

4Γ(3/4)2
·
√
n+O

(
n−1/2

)
,

(5.26)

which implies that µ= 8, γ = 1/4 and ϕ = 1/2,
• For the phase boundary tt, when b=

2
√
a√

a−1 and a> 4 we have

Zn ∼
(

2a√
a− 1

)n

n0,

ma ∼
a−

√
a− 2

2(a− 1)
· n+O(1) ,

mb ∼ O
(√

n
)
+O

(
n−1/2

)
.

(5.27)

Which implies that µ= 2a√
a−1 and γ= 1. As before, we have not been able to compute more

detailed asymptotics for mb along this boundary.
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Table 3. The growth rates (growth rates give the free energies) and entropic exponent
for three walk stars with asymmetric interactions. In the top part of the table each of the
primary phases are listed whilst in the bottom part of the table the phases boundaries are
listed.

Phase regions µ γ

Free 8 −1/2

Partially zipped (top) 2a√
a−1 1/2

Partially zipped (bottom) 2b√
b−1

1/2

Fully zipped ab√
(a−1)(b−1)−1

1

Phase boundaries µ γ

Free to partially zipped (top) 8 1/4

Free to partially zipped (bottom) 8 1/4

Free to fully zipped 8 1

Partially zipped (top) to fully zipped 2a√
a−1 1

Partially zipped (bottom) to fully zipped 2b√
b−1

1

• For the phase boundary tb, when a= 2
√
b√

b−1
for b> 4 we have

Zn ∼
(

2b√
b− 1

)n

n0,

ma ∼ O
(√

n
)
+O

(
n−1/2

)
,

ma ∼
b−

√
b− 2

2(b− 1)
+O(1) .

(5.28)

Which implies that µ= 2b√
b−1

and γ =1. As before, we have not been able to compute more
detailed asymptotics for ma along this boundary.

• For special critical point at a= b= 4 we have

Zn ∼ 8nn0,

ma ∼
3

2
√
π
·
√
n+O

(
n−1/2

)
,

mb ∼
3

2
√
π
·
√
n+O

(
n−1/2

)
.

(5.29)

Which implies that µ= 8 and γ= 1 with ϕ = 1/2. Notice thatma+mb gives the a= 4 result
in (4.14).
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5.6. Results summary

The phase diagram is delineated by equation (5.8). We report that all of the phase transitions
between these phases in our model are second-order with α= 0 and ϕ = 1/2. We then sum-
marise the growth rates/free energy and entropic exponents in tables 3:

6. Conclusion

We have ascertained the exact solution of a model of three directed osculating walks with
asymmetric contact interactions in star configurations. We expect that similar models such as
friendly walks and watermelon configurations will behave similarly with similar phase dia-
grams though the entropic exponents will differ for watermelon type configurations. We have
delineated the order of the transitions and the associated exponents, especially the entropic
exponents at all points in the phase diagram. We note that the values of 1/4 on two of the
phase boundaries are somewhat novel. At high temperatures the system is in a free state where
the three polymers repel each other. At low temperatures the system is in a bound state where
all three polymers are bound together. Given any asymmetry there is a state at intermediate
temperatures where two of the polymers are bound whilst the third polymer is repelled by the
other pair. Regarding the method of exact solution of the model considered we note that we
moved to the osculating case after not being able to solve the friendly model with asymmetric
interaction though the symmetric model can be solved. A further understanding of the reasons
for this and why the watermelon configuration is less amenable to solution would be most
interesting.
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Appendix. Equation for asymmetric stars

The following is the quartic we found to be satisfied by the generating function G≡
G3(a,b;z).

0= G4 · 4z6(4b2z2 + 4bz− b+ 1)(4a2z2 + 4az− a+ 1)(a2b2z2 + 2abz− ab+ a+ b)2

+G3 · 8z4(4b2z2 + 4bz− b+ 1)(4a2z2 + 4az− a+ 1)

· (a2b2z2 + 2abz− ab+ a+ b)(a2b2z3 + 5abz2 − abz+ 2az+ 2bz− 1)

+G2 · z2
(
96a6b6z10 + 48a5b5 (2a+ 2b+ 23) z9

− 4a4b4
(
6a2b+ 6ab2 − 6a2 + 41ab− 6b2 − 378a− 378b− 600

)
z8

− 4a3b3
(
9a2b2 + 120a2b+ 120ab2 − 172a2 − 99ab− 172b2 − 1080a− 1080b

)
z7

+ a2b2
(
5a3b3 + 51a3b2 + 51a2b3 − 160a3b− 679a2b2 − 160ab3 + 104a3 − 1732a2b

−1732ab2 + 104b3 + 2904a2 + 6040ab+ 2904b2
)
z6

+ 2ab
(
71a3b3 + 109a3b2 + 109a2b3 − 592a3b− 1845a2b2 − 592ab3 + 432a3 + 1402a2b

+1402ab2 + 432b3
)
z5

+
(
−11a4b4 − 4a4b3 − 4a3b4 + 127a4b2 + 987a3b3 + 127a2b4 − 208a4b− 1579a3b2

−1579a2b3 − 208ab4 + 96a4 + 432a3b+ 452a2b2 + 432ab3 + 96b4
)
z4

− 4ab
(
32a2b2 − 77a2b− 77ab2 + 50a2 − 12ab+ 50b2 + 52a+ 52b

)
z3

+
(
7a3b3 − 25a3b2 − 25a2b3 + 34a3b− 97a2b2 + 34ab3 − 16a3 + 194a2b

+194ab2 − 16b3 − 48a2 − 112ab− 48b2
)
z2

+
(
22a2b2 − 46a2b− 46ab2 + 24a2 + 30ab+ 24b2 − 4a− 4b

)
z

− (b− 1)(a− 1)(ab− a− b− 4)
)

+G1 · (a2b2z3 + 5abz2 − abz+ 2az+ 2bz− 1) ·
(
32a4b4z8 + 32a4b3z7 + 32a3b4z7

− 8a4b3z6 − 8a3b4z6 + 400a3b3z7 + 8a4b2z6 − 68a3b3z6 + 8a2b4z6 − 4a3b3z5

+ 520a3b2z6 + 520a2b3z6 + a3b3z4 − 160a3b2z5 − 160a2b3z5 + 15a3b2z4 + 224a3bz5

+ 15a2b3z4 + 484a2b2z5 + 224ab3z5 − 48a3bz4 − 215a2b2z4 − 48ab3z4 + 32a3z4

+ 32a2b2z3 + 112a2bz4 + 112ab2z4 + 32b3z4 − 2a2b2z2 − 24a2bz3 − 24ab2z3 + 2a2bz2 + 2ab2z2

− 32abz3 + 42abz2 − 12abz− 16az2 − 16bz2 + ab+ 8az+ 8bz− a− b− 4z+ 1
)

+
(
4a6b6z10 + 4a5b5 (a+ b+ 25) z9 − a4b4

(
a2b+ ab2 − a2 + 21ab− b2 − 130a− 130b− 625

)
z8

+ a3b3
(
a2b2 − 41a2b− 41ab2 + 56a2 − 187ab+ 56b2 + 1000a+ 1000b

)
z7

+ 4a2b2
(
a3b2 + a2b3 − 3a3b+ 4a2b2 − 3ab3 + 2a3 − 109a2b− 109ab2

+2b3 + 150a2 + 250ab+ 150b2
)
z6 − ab

(
a3b3 − 77a3b2 − 77a2b3 + 216a3b+ 397a2b2

+216ab3 − 160a3 − 220a2b− 220ab2 − 160b3
)
z5
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+
(
−5a4b3 − 5a3b4 + 21a4b2 + 48a3b3 + 21a2b4 − 32a4b

+17a3b2 + 17a2b3 − 32ab4 + 16a4 − 48a3b− 162a2b2 − 48ab3 + 16b4
)
z4

+
(
−a3b3 − 23a3b2 − 23a2b3 + 48a3b+ 139a2b2 + 48ab3 − 16a3 − 72a2b− 72ab2 − 16b3

)
z3

+
(
2a3b2 + 2a2b3 − 6a3b− 24a2b2 − 6ab3 + 4a3 + 22a2b+ 22ab2 + 4b3 − 4a2 − 4b2

)
z2

+
(
a2b2 − a2b− ab2 − 7ab+ 4a+ 4b

)
z+(b− 1)(a− 1)

)
.
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