
Physica A 624 (2023) 128978

s
p
f
w
S
S
f
p

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Critical behaviour of the extended-ballistic transition for
pulled self-avoidingwalks
C.J. Bradly a,b,∗, A.L. Owczarek b

a Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand Institute of Advanced Study, and Centre for Theoretical
Chemistry and Physics, Massey University, Auckland 0632, New Zealand
b School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

a r t i c l e i n f o

Article history:
Received 23 March 2023
Received in revised form 12 May 2023
Available online 10 June 2023

Keywords:
Self-avoiding walk
Monte Carlo
Lattice polymer
Finite-size scaling
Critical phenomena
Pulled polymer

a b s t r a c t

In order to study long chain polymers many lattice models accommodate a pulling force
applied to a particular part of the chain, often a free endpoint. This is in addition to
well-studied features such as energetic interaction between the lattice polymer and a
surface. However, the critical behaviour of the pulling force alone is less well studied,
such as characterising the nature of the phase transition and particularly the values of
the associated exponents. We investigate a simple model of lattice polymers subject to
forced extension, namely self-avoiding walks (SAWs) on the square and simple cubic
lattices with one endpoint attached to an impermeable surface and a force applied to
the other endpoint acting perpendicular to the surface. In the thermodynamic limit the
system undergoes a transition to a ballistic phase as the force is varied and it is known
that this transition occurs whenever the magnitude of the force is positive, i.e. f > fc = 0.
Using well established scaling arguments we show that the crossover exponent φ for the
finite-size model is identical to the well-known exponent νd, which controls the scaling
of the size of the polymer in d-dimensions. With extensive Monte Carlo simulations we
test this conjecture and show that the value of φ is indeed consistent with the known
values of ν2 = 3/4 and ν3 = 0.587597(7). Scaling arguments, in turn, imply the specific
heat exponent α is 2/3 in two dimensions and 0.29815(2) in three dimensions.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Lattice models of polymers have been extended to model a huge variety of different physical situations. One well
tudied addition to lattice polymer models is the application of an external force that acts to deform the polymer chain,
ossibly with reference to some surface to which it is attached. These models apply to real applications with atomic
orce microscopy [1–4] or optical tweezer experiments [5]. The standard for lattice polymer models is the self-avoiding
alk (SAW) and its variants (self-avoiding trails, self avoiding polygons etc.) Typically, an applied force is included in a
AW model to complement some other interaction or geometric constraint. A force can be applied to a self-interacting
AW to transition from a collapsed to a stretched phase [6], or force desorption from an interacting surface [7–9]. The
orce can be applied in different ways such as applying it at the midpoint of the polymer [10] or an arbitrary interior
oint [11], or it can be applied to move two parallel slabs that confine the polymer [12]. A pulling force also appears
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n models of non-linear lattice polymers such as polygons [13], stars [14–16], or more general lattice animals as well as
lock copolymers [17].
The critical properties of this wide range of models have received a lot of attention, but less work has been applied

o the behaviour of lattice polymer models that feature only the applied force [6,12,18], perhaps because it is among
he simplest additions to the bare SAW model. When a force is applied to the endpoint of a SAW, with the other end
erminally attached to some surface, then the SAW behaves ballistically in that its size R from endpoint to endpoint is
roportional to the number of steps in the walk, i.e. R ∼ n. In the thermodynamic limit of long lengths this occurs for
ny magnitude of force so there is a critical point at zero force where the size of the walk scales like a standard SAW.
trictly speaking, it has been shown that the free SAW in the full lattice is sub-ballistic [19] but it is generally believed
hat size scaling of SAW in the half-lattice is the same as the full lattice. This location of this critical point at f = 0 has
een proved exactly [6,18], but further properties of this transition are less well understood. Some previous work [12]
as included Monte Carlo simulation of SAW models with a force applied in slightly different ways but provided limited
stimation of critical exponents.
Despite the simplicity of this model and its widespread use as a component in many more complicated models in

he literature, a deeper study has not appeared. In this paper we presume that the transition is not first order and apply
tandard (finite length) scaling arguments for a continuous transition when a pulling force is applied to the end of a
inite-length polymer in two and three dimensions (in fact, in any dimension d ≥ 2). This leads directly to a conjecture
or the finite-size crossover exponent φ and the strength of the transition, indicated by the exponent α which controls
he specific heat scaling near the critical point in the thermodynamic limit. If the size (say radius of gyration) scaling
xponent of a free extended polymer in dilute solution is νd in dimension d then our conjecture is that

φ = νd, α = 2 −
1
νd

. (1)

n particular, for two dimensions

φ = ν2 =
3
4
, α =

2
3

(2)

whilst for three dimensions

φ = ν3 = 0.587597(7), α = 0.29815(2), (3)

based on the best estimate of ν3 [20]. It should be noted that νd ≥ 1/2 for all dimensions d ≥ 2. It is sometimes
inferred [12] that this crossover exponent φ is close to 1/2 as it is for the adsorption transition but our numerical evidence
discounts this assumption. Lastly, these numerical values (in particular α < 1) indicate that the transition is indeed
continuous. We support this conjecture with strong numerical evidence from Monte Carlo simulations of SAWs on the
square and cubic lattices in half spaces where one end is attached to the surface (wall) and a force perpendicular to the
wall is applied to the other end.

2. Model and scaling arguments

We consider single polymers in dilute solution modelled as self-avoiding walks (SAWs) on a square or simple cubic
lattice. If the coordinates of each vertex of the walk lie in the space of coordinates defined by (x1, . . . , xd) with xi ∈ Z for
i = 1, . . . , d, giving a d-dimensional hypercubic lattice Zd, then we consider walks that are restricted to the half-space
defined by xd ≥ 0. One endpoint of the walk is tethered to the surface at the origin and the other endpoint is pulled by
a force f perpendicular to the impermeable surface at xd = 0. This situation is illustrated for two dimensions in Fig. 1.
Let the coordinates of the vertices be denoted as (x1,j, . . . , xd,j) for j = 0, . . . , n. We denote by h = xd,n the height of the
pulled endpoint and by anh the number of such walks on the lattice that are of length (number of steps) n. The number of
all walks of length n confined to one half-space is

∑
h anh and it is known that this quantity has the same large n limit as

unrestricted SAWs on a hypercubic lattice [21]. That is, limn→∞
1
n log

∑
h anh = logµd, where µd is the growth constant

f the d-dimensional hypercubic lattice [22].
If the height of the endpoint is due to a force f then we associate a Boltzmann factor yh where y = exp(f /kBT ). The

anonical partition function of such walks of length n with endpoint at height h is

Zn(f ) =

∑
h

anh yh. (4)

he (reduced) finite-length free energy is

λn(f ) = −
1
n
log Zn(f ). (5)

and we consider the average height per step

hn(f ) =
⟨h⟩(f )

=
1

∑
h h anh yh

= −
dλn(f ) (6)
n n Zn(f ) df
2
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Fig. 1. A self-avoiding walk on the square lattice with one endpoint attached to an impermeable surface and the other pulled away from that surface
by a force f . The height of the pulled endpoint above the surface is h.

and its variance

cn(f ) =
var(h)

n
=

⟨h2
⟩ − ⟨h⟩2

n
=

dhn(f )
df

, (7)

which we also call the specific heat since it can be expressed as the second derivative of the free energy.

2.1. Thermodynamic scaling

In the thermodynamic, or long-length, limit the free energy is λ(f ) = limn→∞ λn(f ) and it is known that λ(f ) is singular
t exactly fc = 0, or equivalently yc = 1, which is the location of the extended-ballistic transition [6,18,23]. This holds for
ll dimensions d ≥ 2. Considering the thermodynamic limits

H(f ) = lim
n→∞

hn(f ) (8)

and

C(f ) = lim
n→∞

cn(f ) (9)

then the transition is signified by the behaviour

H(f ) = C(f ) = 0 for f ≤ 0 (10)

and

H(f ) > 0 and C(f ) > 0 for f > 0 (11)

the average height per step can be considered an order parameter for the transition.
The definition of the critical exponent α is

C(f ) ∼ (f − fc)−α as f → fc, (12)

and a continuous transition is signified by α < 1. The standard crossover scaling Ansätze for a continuous transition near
a critical point fc at large length n are

cn(f ) ∼ nαφ C̃
(
[f − fc] nφ

)
as n → ∞ as f → fc (13)

where φ < 1 is the crossover exponent, and

hn(f ) ∼ nαφ−φH̃
(
[f − fc] nφ

)
as n → ∞ as f → fc. (14)

hese two expressions are simply related by differentiation. The specific heat is consistent with the definition of α through
12) by requiring that the scaling function C̃(z) ∼ zα for z → ∞.

By standard tricritical scaling arguments [24] it follows from the crossover scaling expressions Eqs. (13) and (14) and
he free energy scaling of 1

n that there is a relation between φ and α

2 − α =
1

, (15)

φ

3
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Table 1
Size exponent values for the phases in our model. The exponents ν(h) , ν(x) and ν(s) are defined by Eq. and characterise
the scaling of the endpoint height h, endpoint horizontal extensions x and total height s, respectively. The critical point
is at fc = 0, or equivalently yc = 1.
Phase f ν(h) ν(x) ν(s)

Extended (pushed) f < fc 0 νd νd

Critical point f = fc νd νd νd

Ballistic (pulled) f > fc 1 1
2 1

so that when f = fc = 0 we have

hn(0) ∼ H0 nφ−1 (16)

nd

cn(0) ∼ C0 n2φ−1. (17)

he constants H0 and C0 are the values of the scaling functions H̃ and C̃ at f = 0.
Now at f = 0 given that the height of the polymer end will scale in proportion to the size of the polymer generally

iven the polymer has a free end it would also be expected that

⟨h⟩(0) ∼ A nνd , (18)

or some constant A and where νd is the isotropic free d-dimensional size scaling exponent: in two dimensions it is
redicted that ν2 = 3/4 and in three dimensions the best estimate is ν3 = 0.587597(7) [20]. Hence, by comparing Eq. (18)

with Eq. (16) (recall that hn = ⟨h⟩/n) we can deduce a particular scaling relation for this pulling–pushing transition

φ = νd. (19)

Although this relation is simple, it will hold in all models with a force that changes from pulling to pushing.
Away from the critical point where the endpoint is subject to a pulling or pushing force, the value of ν can change

and we should look at some other size-related quantities. Let the end point of our walks be at (x1,n, h) or (x1,n, x2,n, h) for
two and three dimensions respectively, and let the walk fit into a slab or slit of no less than s = max{xd,j, j = 0, . . . , n}
units high (that is, all sites of the walk have height less than and or equal to s. We note s ≥ h, and

rx =

[
d−1∑
i=1

x2i,n

]1/2

(20)

s shorthand for the distance from the origin to the projection of the endpoint onto the impermeable surface, generalised
or all dimensions d. Similar to the discussion above, we define size exponents ν(h), ν(x) and ν(s) at fixed f

⟨h⟩(f ) ∼ H0 nν(h) , (21a)

⟨rx⟩(f ) ∼ X0 nν(x) , (21b)

⟨s⟩(f ) ∼ S0 nν(s) . (21c)

The expected values of these exponents in each phase and at the critical point is summarised in Table 1. In the extended
hase, where f < 0, or equivalently y < 1, the endpoint is pushed into the surface, that is, ⟨h⟩ = 0 and hence ν(h)

= 0.
owever, the pushing force is local to the endpoint and the size of the rest of the polymer is also characterised by the
ame exponents νd. As f → −∞, or equivalently y → 0, the pushed endpoint is effectively fixed in the surface, equivalent
o a self-avoiding loop [25]. The ballistic phase, f > 0, is so named because it is characterised by the behaviour hn ∼ O(1)
and thus it is known that ν(h)

= 1 for SAWs [23]. Since s is an alternate measure of the extension of the polymer when
ulled away from the surface, we expect ν(s)

= 1 as well.
For ν(x) in the ballistic phase note that the polymer is stretched so the component of the endpoint position parallel

o the surface is small. Intuitively, the endpoint is the unique highest point so it is like a simple random walk in a d − 1
imensional plane parallel to the impermeable surface and thus we have ν(x)

= 1/2. Another approach is to assume that
a stretched polymer in the ballistic phase corresponds to a certain directed self-avoiding walk. In particular, a free SAW
without pulling but that only allows steps parallel or away from the surface. In this case the size scaling orthogonal to
the directed axis is n1/2 [26].

2.2. Simulation details

Walks are simulated using the flatPERM algorithm [27], an extension of the pruned and enriched Rosenbluth method
(PERM) [28]. The simulation works by growing a walk on a given lattice up to some maximum length N . At each step
max

4
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Fig. 2. Thermodynamic quantities for pulled SAWs in 2D (a-c) and 3D (d-f), for several different lengths n. From left to right are the average
xtension above the surface hn , the specific heat cn , and the third derivative of the free energy tn .

he number of bulk interactions m and straight segments s are calculated and the cumulative Rosenbluth & Rosenbluth
eight [29] is compared with the current estimate of the weights of all samples Wnh. If the current state has relatively low
eight the walk is ‘pruned’ back to an earlier state. On the other hand, if the current state has relatively high weight, then
icrocanonical quantities h are measured andWnh is updated. The state is then ‘enriched’ by branching the simulation into
everal possible further paths (which are explored when the current path is eventually pruned back). When all branches
re pruned a new iteration is started from the origin. FlatPERM enhances this method by altering the prune or enrich
hoice such that the sample histogram is flat in the microcanonical parameters n and h. Further improvements are made
o account for the correlation between branches that are grown from the same enrichment point, which provides an
stimate of the number of effectively independent samples. The main output of the simulation are the weights Wnh,
hich are an approximation to the athermal density of states an,h in Eq. (4), for all n ≤ Nmax.
Once the simulation is finished thermodynamic quantities are determined by specifying the Boltzmann weight y and

sing the weighted sum

⟨Q ⟩n =

∑
h QnhyhWnh∑

h yhWnh
. (22)

n particular, we calculate hn and its variance cn according to Eqs. (6) and (7) as well as ⟨x⟩ and ⟨s⟩. Similarly we also
calculate the third derivative of the free energy λn(f )

tn(f ) =
d3λn(f )

df
=

⟨h3
⟩ − 3⟨h⟩⟨h2

⟩ + 2⟨h⟩3

n
. (23)

We use the flatPERM algorithm to simulate walks up to length Nmax = 1024. Because this model is simple we can
fford to run very long simulations to obtain good statistics. For both 2D and 3D models we have 1.2 × 107 iterations,

obtaining 5.2 × 1012 samples for 2D walks and 6.3 × 1012 samples for 3D walks. For each case or simulation mentioned
in this work the results are comprised of a composite of ten independent simulations in order to obtain some measure
of statistical error. In the following section this error falls within the line or marker width of the plots, or is otherwise
marked. We ran separate smaller simulations (Nmax = 512) to obtain data for ⟨s⟩ in order to verify scaling predictions.

3. Results

We first show in Fig. 2 several thermodynamic quantities for the 2D walks (a-c) and 3D walks (d-f) as functions of the
Boltzmann weight y = ef /kBT . The left plots show the average extension above the impermeable surface, hn, the specific
heat cn and the third derivative of the free energy tn. All plots show example curves for n = 256, 512, 1024. There is a
clear signal of a transition near y = 1 (f = 0), most notably as a peak in cn that grows with n. The behaviour of hn is
suggestive of a continuous transition.
5
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Table 2
Critical exponents α and φ estimated from the scaling of thermodynamic quantities at the critical point fc for pulled
SAWs on the square and simple cubic lattices.
lattice hn cn tn
squ α 0.6630 ± 0.0024 0.6673 ± 0.0031 0.638 ± 0.020

φ 0.7479 ± 0.0009 0.7504 ± 0.0011 0.734 ± 0.007

sc α 0.2997 ± 0.0029 0.3038 ± 0.0033 0.300 ± 0.009
φ 0.5881 ± 0.0009 0.5896 ± 0.0010 0.5882 ± 0.0026

Fig. 3. The peak values of cn as an estimate for the location of the transition y(n)c for (a) the square lattice and (b) the simple cubic lattice.

In order to verify the type of transition we estimate the critical exponents using a correction-to-scaling method. That
s, for a quantity ⟨Q ⟩n that has power-law leading order behaviour nb for some expected exponent b, we fit the data to

⟨Q ⟩n ∼ A nb (
1 + C n−∆

)
, (24)

here A and C are fitting parameters and ∆ is a correction to scaling parameter. There are a range of corrections to scaling
ethods that have been seen in the literature where n−∆ is only the first correction term of an infinite series. We do not
ave the necessary numerical precision to estimate ∆ independently for this model and the results only weakly depend
n its value as long as ∆ = O(1). Hence, for our numerical simulations we use a single term with ∆ = 1/2 for three
imensions and ∆ = 1 for two dimensions, which are typical values seen in the literature [20,30–33]. All reported results
or exponents φ and α are derived from a model of the form of Eq. (24), although in most cases the effect of adding the
orrection-to-scaling term is weak, usually in the third decimal place.
Three estimates of the exponents have been made using correction-to-scaling models with the following leading order

xponents. First, we fit the average extension at the critical point hn(fc) with leading order exponent φ−1, as per Eq. (16).
econd, we fit the specific heat at the critical point cn(fc) with leading order exponent 2φ − 1, as per Eq. (17). Third, we
it the critical point values of tn(fc). By similar scaling arguments to the previous section the peak value of tn is expected
o scale with leading-order exponent (α + 1)φ = 3φ − 1. This can be obtained by differentiating Eq. (13) and using the
tandard relation Eq. (15). The values of φ determined from these fits are reported in Table 2. In all cases the value of α
s then derived from the relation in Eq. (15) and is not an independent estimate, but is reported for ease of comparison.

These estimates are consistent with α ≈ 2/3 and φ = 3/4 for the square lattice, confirming that φ = ν2 in this
ase. For the simple cubic lattice the values of φ are close to the expected φ = ν3 ≈ 0.587597(7), or equivalently by
the hyperscaling relation Eq. (15) α = 0.29815(5). For both two and three dimensions these exponents confirm that the
extended-ballistic transition is continuous.

The location of the extended-ballistic transition is rigorously known [6,18] so we have the luxury of immediately
looking at the scaling of thermodynamic quantities at exactly yc = 1 (fc = 0). This saves a lot of additional work to
accurately locate the critical point, for which one needs some easily identifiable signal of the transition. In general for a
finite-size system, the critical point deviates from the long chain limit as

y(n)c − yc ∼ n−φ, (25)

where the crossover exponent φ appears again. An obvious choice for y(n)c is the location of the peak value of the specific
heat c(peak)n , which occurs near, but slightly above, the transition point. In the thermodynamic limit the specific heat at the
critical point diverges and so cn(0) should also diverge with n if the crossover exponent φ > 1/2. This is the case for our
model and one could even approximate cn(0) ≈ c(peak)n . By comparison, locating the critical point is a significant issue for
other systems, e.g. polymer adsorption where φ ≤ 1/2 and so the peaks of the specific heat are not a good indicator of
the transition [34,35]. Thus, while our earlier estimates of the exponents are justified, it is nevertheless worth comparing
the known exact value of the transition point to estimates from the simulations using the peak values of cn. This also
provides a further estimate of φ.

In Fig. 3 we show a log–log plot of y(n)c −yc = c(peak)n −1. First, it is clear that in both cases the long-length limit yc = 1
is good. The dashed lines are least-squares fits to a simple power law (without correction to scaling) to the larger values
6
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Fig. 4. The size exponent ν from several quantities across the ballistic transition for (a) 2D and (b) 3D. At the critical point yc = 1 the exponents
coincide with value νd . Estimates for ν(h) and ν(x) are from simulations up to nmax = 1024 while estimates for ν(s) are from additional simulations
up to nmax = 512.

of n. Particularly for the square lattice, this is the case where we see the largest finite-size effect at small n. Without
the correction to scaling we find φ = 0.705 ± 0.008 for the square lattice and 0.557 ± 0.001 for the simple cubic
lattice. When a correction-to-scaling model is used with expected leading order exponent −φ according to Eq. (25), we
find improved estimates of φ = 0.76 ± 0.05 for the square lattice and φ = 0.567 ± 0.003 for the simple cubic lattice.
These values closely match the estimates from the scaling of thermodynamic quantities presented above and thus are
again in good agreement with the relation φ = νd. Our results disagree with φ ≈ 1/2 found in [12], which also estimated
φ from the shift of the critical point at finite lengths.

Lastly, we look at the size scaling of the walks via the quantities in Eq. . Additional simulations with smaller maximum
length nmax = 512 were run to obtain data for ⟨s⟩. Estimates for the scaling exponents of these quantities were obtained by
simple power-law fits (without finite-size corrections to scaling) for a range of values of y spanning the extended-ballistic
transition. In Fig. 4 we plot the exponents ν(h), ν(x) and ν(s), for the square (a) and simple cubic (b) lattices. Broadly, the
values of these exponents match what is outlined in Table 1. In particular, the values of the different exponents coincide at
the critical point yc = 1 where it is expected that all exponents have value νd. However, the estimates for the simple-cubic
lattice show a larger spread compared to the square. We expect that this is due to finite size effects, particularly in the
estimate of ν(s) that was obtained from simulations with a smaller nmax.

4. Conclusion

We have investigated the critical behaviour of a pulled SAW near the known extended-ballistic transition at zero force
fc = 0 (yc = 1). With standard scaling analysis we find that the exponent φ governing the crossover from the finite
size behaviour to the thermodynamic limit is the same as the size exponent ν. The exponent α governing the scaling of
the specific heat follows from standard scaling relations. We have verified these scaling relations through independent
estimation of exponents in different quantities. In two and three dimensions α < 1, indicating that the extended-ballistic
transition is a continuous transition. Although this model is simple, the scaling relation and other critical properties of
the transition have not been explicitly stated in the literature, despite the widespread use of a pulling force in lattice
polymer models. Monte Carlo simulation showed that this result is verified in the scaling of thermodynamic quantities at
the critical point. It is also verified in the drift of the finite-size critical point y(n)c from the thermodynamic limit yc = 1,
as represented by a typical signature, namely the location of the specific heat peak. Furthermore, we looked at the size
exponent in both the extended and ballistic phases by way of several quantities that are related to the extension of the
polymer away from the surface. The scaling of these quantities shows consistent estimations of the size exponent ν.
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