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Abstract
We consider partially directed walks crossing a L×L square weighted accord-
ing to their length by a fugacity t. The exact solution of this model is computed
in three different ways, depending on whether t is less than, equal to or greater
than 1. In all cases a complete expression for the dominant asymptotic beha-
viour of the partition function is calculated. The model admits a dilute to
dense phase transition, where for 0< t< 1 the partition function scales expo-
nentially in L whereas for t> 1 the partition function scales exponentially in
L2, and when t= 1 there is an intermediate scaling which is exponential in
L logL. As such we provide an exact solution of a model of the dilute to dense
polymeric phase transition in two dimensions.

Keywords: self-avoiding walk, exact solutions, polymers, phase transition

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of self-avoiding walks (SAWs) crossing a square [2, 13, 18, 27], or walks or
polygons simply contained in a square [3, 9, 10] in two dimensions, or inside a cubic box in
three dimensions [26], has attracted attention over an extended period including recently, with
various rigorous and numerical (Monte Carlo and series analysis) results being accumulated.
These problems provide a simple model of a confined polymer which illustrate a different lens
through which to consider single polymer behaviour. When a length fugacity is added to the
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basic set-up the models can be shown to demonstrate a phase transition between a dilute phase
for low fugacity and a dense phase for large fugacity [2, 18, 27]. The scaling of the partition
function is fundamentally different in these two regimes, with exponential scaling linear in the
side of the square (box) in the dilute phase and exponential in the area of the square (volume
of the box) in the dense phase.

Let cL,n be the number of n-step SAWs on the square lattice which cross an L×L square
from the south-west corner to the north-east corner, and define the partition function

CL(t) =
∑
n

cL,nt
n. (1.1)

Then it is known rigorously (e.g. [18, 27]) that the limits

λ1(t) = lim
L→∞

CL(t)
1/L (1.2)

λ2(t) = lim
L→∞

CL(t)
1/L2 (1.3)

exist or are infinite. More precisely, λ1(t) is finite for 0< t⩽ µ−1 and infinite for t> µ−1,
where µ is the connective constant of the lattice; and λ2(t) = 1 for 0< t⩽ µ−1 and is finite
and> 1 for t> µ−1. Moreover λ1(t)< 1 for t< µ−1 and λ1(µ

−1) = 1; otherwise the values of
λ1(t) and λ2(t) are not known for t< µ−1 and t> µ−1 respectively. These results generalise
to higher dimensions. The precise nature of the ‘subexponential’ behaviour of CL(t) is not
known, however it has been recently shown by Whittington [26] that

CL(1) = λL
2+O(L) (1.4)

with λ= λ2(1). A similar result holds for higher dimensions. This accords with the conjec-
ture [9, 10] that

CL(1)∼ λL
2+bL+cLg (1.5)

for constants b, c and g. Note that here and below in the sequel the notation aL ∼ bL indicates
that limL→∞

aL
bL

= 1.
Burkhardt and Guim [5] used the connection between SAWs and the N→ 0 limit of the

O(N) model to conjecture the finite-size scaling form

CL(t)≈ L−ηc f [L1/ν(t−µ−1)], t≈ tc (1.6)

where f is a scaling function, ν = 3
4 is the metric exponent for SAWs (in two dimensions) and

ηc =
5
2 is the corner exponent (for a 90◦ corner) of the magnetisation of the O(N) model, as

per Cardy [6]. Consequently it is expected that

CL(tc)∼ const ·L−ηc , L→∞. (1.7)

Numerical evidence [2] agrees with this conjecture.
One can instead first take the thermodynamic limit and then consider the scaling of the

resulting limiting free energy. With fi(t) = logλi(t) it is known [18] that

f1(t)∼ m(t), t→ (µ−1)− (1.8)

where m(t) is the so-called mass of SAWs (see e.g. [18, 19] for a precise definition). This
function is known to exist but its precise form is unknown; it is however conjectured to behave
as

m(t)∼ const · (µ−1 − t)ν , t→ (µ−1)−. (1.9)
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Similarly when t approaches the critical point from above it is believed (see again [18]) that

f2(t)∼ const · (t−µ−1)dν , t→ (µ−1)+. (1.10)

It is natural to also consider the average length ⟨n⟩L(t) of SAWs in the L×L box, according
to the Boltzmann distribution which assigns probability t|ω|/CL(t) to each walk ω. This is
given by

⟨n⟩L(t) =
t ddtCL(t)

CL(t)
. (1.11)

Then it is known [27] that as L→∞

⟨n⟩L(t) =

{
Θ(L), t< µ−1

Θ(L2), t> µ−1
(1.12)

where f(x) = Θ(g(x)) means that there exist constants c1,c2 such that c1g(x)⩽ f(x)⩽ c2g(x).
At the critical point, the conjectured scaling form (1.6) implies that

⟨n⟩L(µ−1)∼ const ·L1/ν . (1.13)

Here we consider a variation of this model, namely partially directed walks (PDWs) cross-
ing an L×L square. These are walks which take steps (1,0),(0,1) and (0,−1)while remaining
self-avoiding. This is, of course, a simpler model than SAWs, but directed and partially direc-
ted walks have been shown to display complex critical behaviour for a range of models, from
adsorption to collapse (see e.g. [4, 8, 11, 12, 15, 17, 20, 21, 23, 24, 28]). Here we compute
the exact solution of PDWs crossing a square and provide the full dominant asymptotics of the
partition function and average number of steps as a function of the length fugacity t.

For PDWs the dilute-dense phase transition occurs at t= 1. Interestingly, each regime
(dilute, dense, and at the critical point) requires a different mathematical approach to elu-
cidate the solution. For small t< 1 the generating function is found via the kernel method, and
the asymptotics of the partition function follow via saddle point methods. For large t> 1 a
transfer matrix method is required, and is analysed with a Bethe ansatz type solution and the
asymptotics follow a subtle analysis of the Bethe roots. The solution at t= 1 is simply found
via a direct combinatorial argument.

The structure of the remainder of the paper is as follows. In section 2 we define the model of
interest and state the main results, namely theorem 1 (the asymptotics of the partition function)
and lemma 1 (the asymptotics of the mean number of steps). Section 3 covers the unweighted
case t= 1. In section 4 we focus on the dilute case t< 1 and in section 5 the dense case t> 1.
Finally section 6 contains some further discussion.

2. Model and central results

Let PL,n be the set of n-step PDWs which cross an L×L square from the south-west corner to
the north-east corner, and let pL,n = |PL,n|. Define the partition function

PL(t) =
∑
n

pL,nt
n. (2.1)

For a given value of t> 0, the Boltzmann distribution on PL =
⋃
nPL,n assigns probability

PL(t,ω) =
t|ω|

PL(t)
(2.2)

3
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Figure 1. PDWs in a box of size L= 20 sampled from the Boltzmann distribution, at
(a) t= 0.8, (b) t= 1 and (c) t= 1.2. The respective lengths are 92, 170 and 326.

to the PDW ω, where |ω| is the length of ω. See figure 1 for some PDWs in the box of size
L= 20 sampled from the Boltzmann distribution at various values of t.

We then define the mean number of steps for walks in the L×L square to be

⟨n⟩L(t) =
∑

n npL,nt
n∑

n pL,nt
n
=
t ddtPL(t)

PL(t)
. (2.3)

Our main result is the following.

Theorem 1. The partition functions PL(t) satisfy the following.

(i) For t= 1,
PL(1) = (L+ 1)L ∼ e · eL logL. (2.4)

(ii) For 0< t< 1,

PL(t)∼
1√
π
·
(
1− t2

1+ t2

)2

·L−1/2 ·
(

4t2

1− t2

)L

. (2.5)

(iii) For t> 1,

PL(t)∼


(

t4

t2 − 1

)L

tL
2

L even

t2 − 1
t2

·L2 ·
(

t3

t2 − 1

)L

· tL
2

L odd.

(2.6)

See figure 2 for plots of PL(t) for t= 1
2 and t= 2.

Lemma 1. The mean number of steps ⟨n⟩L(t) satisfies the following.

(i) For t= 1,

⟨n⟩L(1) =
L(L2 + 7L+ 4)

3(L+ 1)
∼ L2

3
+ 2L− 2

3
. (2.7)

(ii) For 0< t< 1,

⟨n⟩L(t)∼
2L

1− t2
− 8t2

1− t4
. (2.8)

4
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Figure 2. (a) Plot of PL(t) divided by the expression (2.5) against 1
L at t= 1

2 for L up to
100. (b)–(c) Plots of PL(t) divided by the expression (2.6) against 1

L at t= 2 for L up to
100, for (b) even L and (c) odd L.

(iii) For t> 1,

⟨n⟩L(t)∼


L2 +

2(t2 − 2)L
t2 − 1

L even

L2 +
(t2 − 3)L
t2 − 1

+
2

t2 − 1
L odd.

(2.9)

Parts (ii) and (iii) of lemma 1 follow by applying (2.3) to the respective results in theorem 1.
Part (i) follows by applying (2.3) to (5.2). See figure 3 for plots of ⟨n⟩L(t) for t= 1

2 , t= 1 and
t= 2.

3. The unweighted case t=1

When t= 1 we are simply interested in counting the number of PDWs in the box. Let PL be
the set of PDWs which cross the L×L box from the bottom left corner to the top right corner.
Then there is a simple bijection between PL and the set

WL := {(w1,w2, . . . ,wL) ∈ ZL : 0⩽ wi ⩽ L}, (3.1)

where we encode a PDW by the heights of its horizontal steps, reading left to right.
Clearly

|WL|= PL(1) = (L+ 1)L. (3.2)

5
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Figure 3. (a) Plot of ⟨n⟩L− 8L
3 against 1

L at t= 1
2 for L up to 100. The points are

approaching − 8t2

1−t4 =− 32
15 . (b) Plot of

1
L (⟨n⟩L−

L2

3 ) against
1
L at t= 1 for L up to 100.

(c) Plot of 1
L (⟨n⟩L− L2) against 1

L at t= 2 for L up to 100. For even L the points are

approaching 2(t2−2)
t2−1 = 4

3 and for odd L they are approaching t2−3
t2−1 =

1
3 .

We thus have neither λL1 nor λ
L2
2 growth, but instead something in between, namely

PL(1) = e · eL logL
(
1− 1

2L
+

11
24L2

+O(L−3)

)
(3.3)

which establishes theorem 1 (i).
Note that this method is of no use when computing ⟨n⟩L at t= 1. To do this we use the

expression (5.2), taking its derivative and setting t= 1.

4. The dilute case t<1

4.1. Computing generating functions

For the dilute case we will compute the generating function using the kernel method and derive
the asymptotics using the saddle point method. The origin of the kernel method is often attrib-
uted to Knuth [14]; the particular version we use here is similar to the implementation in [22].

We generalise from PDWs crossing a box to PDWs in a strip, i.e. SL = {(x,y) ∈ Z2 : 0⩽
y⩽ L}. The walks all start at (0,0). We use three generating functions:

6
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• H(t,s,v)≡ H(v): Counts the empty walk and walks ending with a horizontal step, with t
conjugate to length, s conjugate to horizontal span (i.e. number of horizontal steps) and v
conjugate to the height of the endpoint.

• U(t,s,v)≡ U(v): Counts walks ending with an up step.
• D(t,s,v)≡ D(v): Counts walks ending with a down step.

Then by appending one step at a time, we have the functional equations

H(v) = 1+ ts(H(v)+U(v)+D(v)) , (4.1)

U(v) = tv(H(v)+U(v))− tv
(
vL[vL]H(v)+ vL[vL]U(v)

)
, (4.2)

D(v) = tv(H(v)+D(v))− tv
(
[v0]H(v)+ [v0]D(v)

)
, (4.3)

where the notation [vh]G(v) means to take the coefficients of all terms which contain vh from
the generating function G(v). Additionally by considering the bottom and top boundaries, we
have

[v0]H(v) = 1+ ts
(
[v0]H(v)+ [v0]D(v)

)
(4.4)

H(v) = ts
(
[vL]H(v)+ [vL]U(v)

)
. (4.5)

Combining all the above and eliminating all the U and D terms gives(
1− ts+

t2s
t− v

− t2sv
1− tv

)
H(v) = 1− t

t− v
+

t
t− v

H0 −
tvL+1

1− tv
HL (4.6)

where H0 = [v0]H(v) and HL = [vL]H(v).
We now apply the kernel method to solve this equation. The kernel is

K(t,s,v)≡ K(v) = 1− ts+
t2s
t− v

− t2sv
1− tv

(4.7)

which has two roots in v, namely

v= V=
1− ts+ t2 + t3s−

√
(1− ts+ t2 + t3s)2 − 4t2

2t
(4.8)

= t+ st2 + s2t3 + s3t4 +(s2 + s4)t5 + · · · (4.9)

and

v= V−1 = t−1 − s− s2t3 − s3t4 − (s2 + s4)t5 + · · · . (4.10)

Since H(v) has only finite powers of v (namely, v0 to vL), both of the kernel roots can be
substituted into (4.6) with H(v) still being a well-defined (Laurent) series in t. We thus cancel
the LHS and get a pair of equations with unknowns H0 and HL, which can be solved. We get

HL =
VL(t−V)(1− tV)(1−V2)

t((t−V)2V 2L+2 − (1− tV)2)
(4.11)

and similar for H0.

7
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Figure 4. (a) Plot of s1 (blue) and s2 (orange). (b) Plot of s0 (blue) and s1 (orange).

4.2. Extracting coefficients

We know that for any fixed L, HL is a rational function, though the exact way in which all the
square roots cancel from (4.11) is far from obvious. To get PDWs crossing a box, we want

PL(t) = t−1[sL+1]HL. (4.12)

Since HL is rational, it is meromorphic in the complex s plane for any real (or complex) t. So
we have

PL(t) =
1

2π it

˛
HL

sL+2
ds (4.13)

where the contour integral is a simple closed curve around the origin.
The form of (4.11) is not particularly conducive to computing the above contour integral.

Let us rewrite it slightly as

HL =
VL(t−V)(1−V2)

−t(1− tV)
· 1
1− (t−V)2V 2L+2/(1− tV)2

. (4.14)

In taking the contour integral we may assume that |s| is small (the exact radius will be determ-
ined shortly) so that |V| is close to t. Then∣∣∣∣ (t−V)2V2L+2

(1− tV)2

∣∣∣∣∼ |s2|t2L+6 (4.15)

for large L. This is thus small, and so we can approximate HL as

HL ∼ H∗
L =

VL(t−V)(1−V2)

−t(1− tV)
. (4.16)

However, we now have a problem. HL was a rational (i.e. meromorphic) function but H∗
L is

not. So there may now be branch cuts to contend with. These arise from the square root term
in V, which is √

(1− ts+ t2 + t3s)2 − 4t2 (4.17)

The term inside the square root is 0 at

s1 =
1− t
t(1+ t)

and s2 =
1+ t
t(1− t)

. (4.18)

We have 0< s1 < s2 for t ∈ (0,1), with s1 → 0 as t→ 1. See figure 4(a).

8
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The term inside the square root is negative for s1 < s< s2 and positive (for real s) for s< s1
and s> s2. We may thus place the branch cut along the real axis between s1 and s2, and as long
as our contour integral is along a curve with |s|< s1 then we avoid the branch cut.

Next we need to check ifH∗
L has any poles that we need to take into consideration. From the

form of V we can see that the numerator presents no problem. For the denominator we need
to check only (1− tV), but a bit of rearranging shows that this has no roots in s.

So it remains to compute the asymptotics of

P∗
L(t) =

1
2π it

˛
H∗
L

sL+2
ds=

1
2π it

˛
VL(t−V)(1−V2)

−t(1− tV)sL+2
ds (4.19)

where the contour has to be within |s|< s1.

4.3. Asymptotics via the saddle point method

The most basic form of the saddle point method gives
ˆ
g(z)exp(nh(z))dz∼ i

√
2π

nh ′ ′(z0)
g(z0)exp(nh(z0)), n→∞ (4.20)

where z0 is a saddle point of h(z).
The form (4.19) is well set up for estimation using the saddle point method. The dependence

on L is from (
V
s

)L

= exp(Lh(s)) (4.21)

where h(s) = logV− logs. h has a saddle point at

s0 =
1− t2

2t(1+ t2)
. (4.22)

It is straightforward to check that 0< s0 < s1 for 0< t< 1 (see figure 4(b)). Both s0,s1 → 0
as t→ 1.

For us

g(s) =
(t−V)(1−V2)

−t(1− tV)s2
(4.23)

Substituting,

g(s0) = 4t2. (4.24)

Meanwhile

exp(h(s0)) =
4t2

1− t2
(4.25)

h ′ ′(s0) =
8t2(1+ t2)4

(1− t2)4
. (4.26)

Putting this all together,

P∗
L(t)∼

1
2π i t

· i4t2L−1/2

√
2π · (1− t2)4

8t2(1+ t2)4

(
4t2

1− t2

)L

(4.27)

=
1√
π
·
(
1− t2

1+ t2

)2

·L−1/2 ·
(

4t2

1− t2

)L

(4.28)

as in theorem 1 (ii).
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5. The dense case t>1

5.1. Transfer matrix formulation and Bethe ansatz solution

For the dense case we must use a completely different method to compute asymptotics, using
a transfer matrix approach. Define the (L+ 1)× (L+ 1) matrix

TL(t) =


t t2 t3 · · · tL+1

t2 t t2 · · · tL

t3 t2 t · · · tL−1

...
...

...
. . .

...
tL+1 tL tL−1 · · · t

 . (5.1)

Then

PL(t) = (1, t, t2, . . . , tL) ·TL(t)L · (0,0, . . . ,0,1)T (5.2)

=
1
t
(1,0,0, . . . ,0) ·TL(t)L+1 · (0,0, . . . ,0,1)T. (5.3)

For brevity, in the following we may drop subscripts or functional arguments. Let us con-
sider the eigen-equation

Tg= λg, (5.4)

that is
L+1∑
j=1

Ti,jgj = λgi for i= 1, . . . ,L+ 1. (5.5)

We begin with the ansatz gj = zj for some complex number z, giving

L+1∑
j=1

t|i−j|+1zj = λzi. (5.6)

Splitting the sum gives

i∑
j=1

t(i−j)+1zj+
L+1∑
j=i+1

t( j−i)+1zj = λzi (5.7)

or rather

zti
i−1∑
k=0

( z
t

)k
+ t1−i(tz)i+1

L−i∑
k=0

(tz)k = λzi. (5.8)

Summing the partial geometric series, we find

zti
[
1− ( zt )

i

1− z
t

]
+ zi+1t2

[
1− (tz)L−i+1

1− tz

]
= λzi. (5.9)

Collecting terms gives

t

[
ti−1z
1− z

t

− tL+2−izL+2

1− tz

]
+ tzi

[
tz

1− tz
−

z
t

1− z
t

]
= λzi. (5.10)

10
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Since this needs to hold for all i, we obtain the eigenvalue λ as

λ= λ(t,z) = t

[
tz

1− tz
−

z
t

1− z
t

]
=− z(1− t2)

(1− tz)(1− z
t )

=
t(1− t2)

1− t(z+ 1
z )+ t2

. (5.11)

We immediately note that

λ(t,z) = λ(t, 1z ) (5.12)

and so to remove the boundary terms we extend the ansatz to

gj = z j+C(t,z)z−j. (5.13)

The same λ as above still works, and cancels the zi and z−i terms.We are left with the boundary
equation

t

[
ti−1z
1− z

t

− tL+2−izL+2

1− tz

]
+Ct

[
ti−1

z(1− 1
tz )

− tL+2−iz−(L+2)

1− t
z

]
= 0 (5.14)

which after multiplying by ti−1 we rewrite as[
t2i−1z
1− z

t

− tL+2zL+2

1− tz

]
−C

[
t2i

1− tz
+
tL+2z−(L+2)

1− t
z

]
= 0 (5.15)

that is

t2i
[ z

t

1− z
t

−C
1

1− tz

]
− tL+2

[
zL+2

1− tz
+C

z−(L+2)

1− t
z

]
= 0. (5.16)

This must hold for each i so we expect each term to be zero individually. We seek to set C so
that there is a common factor between the two, which can then be cancelled by z. Comparing
the two terms, we see that C=±zL+2 will make them the same, up to a simple factor. First
with C= zL+2, the above becomes

t2iα(t,z)+ tL+2α(t,z) = 0 (5.17)

where

α(t,z) =
z
t

1− z
t

− zL+2

1− zt
(5.18)

=− 1
(1− tz)(1− t

z )
· (1− tz− tzL+1 + zL+2). (5.19)

On the other hand with C=−zL+2, we get

t2iβ(t,z)− tL+2β(t,z) = 0 (5.20)

where

β(t,z) =
z
t

1− z
t

+
zL+2

1− zt
(5.21)

=− 1
(1− tz)(1− t

z )
· (1− tz+ tzL+1 − zL+2). (5.22)

The above thus gives that the eigenvectors gL,k of TL, where k= 1, . . . ,L+ 1, are of the
form

gL,k,j = zj+(−1)k+1zL+2−j with j= 1, . . . ,L+ 1 (5.23)
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where the z= zL,k are complex numbers. Specifically, the zL,k are roots of the polynomials
AL,k(t,z), which combine α and β from above:

AL,k(t,z) = 1− tz+(−1)kzL+1(t− z). (5.24)

Note that

zL+2AL,k(t, 1z ) = (−1)k+1AL,k(t,z) (5.25)

so that if z is a root then so too is 1
z . The property (5.25) makes AL,k a self-inversive polynomial,

and in particular it is palindromic for odd k, and antipalindromic for even k. Since the roots
come in reciprocal pairs, in the following zL,k can refer to either representative of a pair (it will
make no difference which value is chosen).

Next, we observe that AL,k is of degree L+ 2, however

• when L,k are both odd, AL,k(t,−1) = 0, but then at z=−1 we have gL,k,j = 0 for all j,
• when L is odd and k is even, AL,k(t,1) = 0, but then at z= 1 we again have gL,k,j = 0,
• when L,k are both even, AL,k(t,1) = AL,k(t,−1) = 0, but then at z=±1 we again have
gL,k,j = 0.

(Note that AL,k never has a double pole at z=±1, which is easily seen by checking deriv-
atives.) The roots at z=±1 are thus trivial and are not counted among the zL,k. Factoring out
the trivial (1± z) terms then gives the polynomials

BL,k(t,z) = 1+(1+ t)
L∑

n=1

(−1)nzn+ zL+1 L,k odd (5.26)

BL,k(t,z) = 1+(1− t)
L∑

n=1

zn+ zL+1 L odd, k even (5.27)

BL,k(t,z) = 1− (t− z)
L−1∑
n=1
n odd

zn L,k even (5.28)

BL,k(t,z) = 1− tz− tzL+1 + zL+2 L even, k odd (5.29)

whose roots are exactly the reciprocal pairs zL,k. It is easy to check that each of the BL,k(t,z)
are palindromic. Indeed, setting z= 1

z in (5.23) leads to

zL+2 [gL,k]z= 1
z
= (−1)k+1gL,k (5.30)

so that each reciprocal pair of roots gives the same eigenvalue/vector pair.
Next we diagonalise (using the fact that TL is real symmetric), to get

GL(t) =
1
t
(1,0, . . . ,0) ·

(
L+1∑
k=1

g̃TL,kλ
L+1
L,k g̃L,k

)
· (0, . . . ,0,1)T (5.31)

where

g̃L,k =
gL,k

∥gL,k∥
. (5.32)

12
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Now

∥gL,k∥2 =
L+1∑
j=1

(zjL,k+(−1)j+1zL+2−j
L,k )2 (5.33)

=
2z2L,k(1+(−1)k+1(L+ 1)zLL,k(1− z2L,k)− z2L+2

L,k )

1− z2L,k
. (5.34)

Substituting,

PL(t) =
1
t
(1,0, . . . ,0) ·

(
L+1∑
k=1

gTL,kλ
L+1
L,k gL,k

∥gL,k∥2

)
· (0, . . . ,0,1)T (5.35)

=
1
t
(1,0, . . . ,0) ·

(
L+1∑
k=1

gTL,kgL,k
(1− z2L,k)λ

L+1
L,k

2z2L,k(1+(−1)k+1(L+ 1)zLL,k(1− z2L,k)− z2L+2
L,k )

)
· (0, . . . ,0,1)T (5.36)

=
1
t

L+1∑
k=1

gL,k,1gL,k,L+1(1− z2L,k)λ
L+1
L,k

2z2L,k(1+(−1)k+1(L+ 1)zLL,k(1− z2L,k)− z2L+2
L,k )

(5.37)

=
(1− t2)L+1

2t

L+1∑
k=1

(−1)k+1(1+(−1)k+1zLL,k)
2(1− z2L,k)z

L+1
L,k

(1+(−1)k+1(L+ 1)zLL,k(1− z2L,k)− z2L+2
L,k )(zL,k− t)L+1( 1t − zL,k)L+1

.

(5.38)

We again note that the above sum is over the L+ 1 reciprocal pairs of roots, and for each k
it does not matter which of the pair is chosen. In the following subsection we will make things
more explicit.

5.2. The roots for t>1

The asymptotics of (5.38) depend on the values of the complex numbers zL,k. There are L+ 1
(pairs) of these; however, it turns out that for t> 1 only two of them contribute to the dominant
asymptotics. This is partly because of the following remarkable fact.

Lemma 2. For t> 1 and L> 2
t−1 , L− 1 of the reciprocal pairs of roots zL,k are on the unit

circle, and two pairs (one for even k and one for odd k) are real, positive and not on the unit
circle.

See figure 5 for an illustration at t= 6
5 .

We will make use of a result due to Vieira. First, we make precise a term we used in the
previous subsection. A polynomial

p(z) = a0 + a1z+ . . .+ anz
n (5.39)

with coefficients in C and with an ̸= 0 is self-inversive if it satisfies

p(z) = ωznp( 1z ) (5.40)

with |ω|= 1, where p(z) is the complex conjugate of p(z).

13
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Figure 5. The roots z20,k in the complex plane at t= 6
5 = 1.2. For the reciprocal pairs

on the unit circle we have chosen those with positive imaginary part, and for those on
the real line we have chosen those inside the unit circle. Note the two real roots z20,1 and
z20,2 close to 1

t =
5
6 .

Lemma 3 ([25]). Let p(z) = a0 + a1z+ . . .+ anzn be a self-inversive polynomial of degree n.
If

|an−l|>
1
2

n∑
k=0

k̸=l,n−l

|ak|, l<
n
2
, (5.41)

then p(z) has at least n− 2l roots on the unit circle.

Proof of lemma 2. The polynomials AL,k(t,z) and BL,k(t,z) are self-inversive with ω =
(−1)k+1 and ω= 1 respectively. For now it is simpler to work with the AL,k, keeping in mind
the two trivial roots at z=±1.

Take p(z) = AL,k(t,z) and set l= 1 in lemma 3. Then the condition (5.41) is simply t> 1,
so at least L of the L+ 2 roots of AL,k are on the unit circle (note that these include the trivial
roots), i.e. at most two are not on the unit circle. It remains to show that exactly two are not on
the unit circle, both for odd and even k.

For odd k, any root satisfies

zL+1 =
1− tz
t− z

= m(z). (5.42)

For z ∈ (0,1) we clearly have that zL+1 is a strictly increasing function (0,1)→ (0,1). On the
other hand

m ′(z) =− t2 − 1
(t− z)2

(5.43)

so m(z) is a strictly decreasing function mapping (0,1) to ( 1t ,−1). It follows that there must
be a root z= zL,1 ∈ (0,1). Since AL,k is self-inversive, there is another root at z= 1

zL,1
> 1.

For even k, any root satisfies zL+1 =−m(z). Now the RHS is a strictly increasing function
(0,1)→ (− 1

t ,1). To establish the existence of a root, note that

d
dz
zL+1 = (L+ 1)zL → (L+ 1) as z→ 1− (5.44)

14
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while

d
dz

(−m(z)) = t2 − 1
(t− z)2

→ t+ 1
t− 1

as z→ 1−. (5.45)

Thus if

L+ 1>
t+ 1
t− 1

⇐⇒ L>
2

t− 1
(5.46)

then as z→ 1−, zL+1 approaches 1 at a greater slope than−m(z), and hence zL+1 <−m(z) for
z ∈ (1− ϵ,1) for some ϵ> 0. So there is a real root z= zL,2 ∈ (0,1). Again by the self-inversive
property, there must be another at z= 1

zL,2
> 1.

It is the two roots zL,1 and zL,2 inside the unit circle which are now of interest, and the next
step is to compute the asymptotic behaviour of these as L grows large. First, observe that

AL,k(t, 1t ) = (−1)k( 1t )
L+1(t+ 1

t )→ 0 as L→∞, (5.47)

while for ε> 0 with 0< 1
t − ϵ < 1

t + ϵ < 1 we have

AL,k(t, 1t ± ϵ)→∓ϵt as L→∞. (5.48)

It follows that the two roots zL,1 and zL,2 must approach 1
t as L→∞. Next, rearrange the

equation AL,k(t,z) = 0 to get

zL+1 = (−1)k+1 1− tz
t− z

. (5.49)

This implies that zL,1 < 1
t while zL,2 >

1
t . Rearranging again,

log
[
(−1)k+1( 1t − z)

]
= (L+ 1) logz+ log t+ log(t− z) (5.50)

∼−(L+ 1) log t+ log t+ log(t− 1
t ) (5.51)

= log

(
t2 − 1
tL+3

)
. (5.52)

Hence for k= 1,2,

zL,k ∼ z∗L,k =
1
t
+(−1)k

(
t2 − 1
t3

)
t−L. (5.53)

It will turn out that the precision of these estimates is sufficient for even L but not enough for
odd L (this is because there is significant cancellation between the k= 1 and 2 terms of (5.38)
for odd L). However, we can compute more a precise estimate for zL,1 by iterating (5.50). That
is, we substitute z∗L,k into the RHS of (5.50). Taking the next-to-leading term then gives

zL,k ∼ z∗∗L,k =
1
t
+(−1)kt−L

(
t2 − 1
t3

)(
1+(−1)kt−LL

t2 − 1
t2

)
. (5.54)

5.3. Asymptotics

We will compute the leading asymptotics for PL(t) by taking only the k= 1 and 2 terms
from (5.38). We will then need to show that the remaining terms in the sum do not contribute
to the dominant asymptotics, which amounts to showing that the first factor in the denominator
of the summands is not too close to 0.
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5.3.1. Even L. We take only the k= 1,2 terms of (5.38). Any term of the form zLL,k or similar
approaches 0 very quickly, so for the purposes of asymptotics these are all set to 0, except
for the factor of zL+1

L,k in the numerator. This, and the other zL,k terms except for the important

( 1t − zL,k)L+1 term in the denominator, are then set to 1
t . This yields

∼ (1− t2)2M+1

2t

2∑
k=1

(−1)k+1(1− 1
t2 )t

−L−1

( 1t − t)L+1( 1t − zL,k)L+1
(5.55)

=
t2 − 1
2t3

(
1

( 1t − zL,1)L+1
− 1

( 1t − zL,2)L+1

)
. (5.56)

Now using the approximations z∗L,k this simplifies to

∼
(

t4

t2 − 1

)L

tL
2

, L even. (5.57)

5.3.2. Odd L. If we follow the same procedure as above but take L to be odd then everything
cancels and we just get 0. So we must instead switch to the more precise estimates z∗∗L,k. Sub-
stituting, we get

∼ t2L
2+7L+2

2(t2 − 1)L

(
1

(tL+2 −L(t2 − 1))L+1
− 1

(tL+2 +L(t2 − 1))L+1

)
(5.58)

∼ t2L
2+7L+2

2(t2 − 1)L
· 1
tL(L+2)

(
1

tL+2 −L(L+ 1)(t2 − 1)
− 1
tL+2 +L(L+ 1)(t2 − 1)

)
(5.59)

=
tL

2+3L−2

(t2 − 1)L
· L(L+ 1)(t2 − 1)

1− L2(L+1)2(t2−1)2

t2L+4

(5.60)

∼ t2 − 1
t2

·L2 ·
(

t3

t2 − 1

)L

· tL
2

, L odd. (5.61)

To get from the first to the second line above we have used (1+ x)L ∼ 1+Lx for each of the

two terms in the large parentheses.

5.3.3. The roots on the unit circle. With factors of the form tL
2
coming from the k= 1 and 2

terms in the sum (5.38), the remaining terms can only affect the dominant asymptotics if the
factor

DL,k(t) = 1+(−1)k+1(L+ 1)zLL,k(1− z2L,k)− z2L+2
L,k (5.62)

in the denominator is very close to 0. Here we show this is not the case. Firstly, (5.49) can be
used to eliminate the zLL,k and z

2L+2
L,k terms, giving

DL,k(t) = 1+(L+ 1)(1− z2L,k)
1− tzL,k

zL,k(t− zL,k)
− (1− tzL,k)2

(t− zL,k)2
. (5.63)

Since the zL,k are all on the unit circle and 0< t< 1, the asymptotics of this (for large L) are

DL,k(t) =
(1− tzL,k)(1− z2L,k)

zLk(t− zL,k)
L+O(1). (5.64)
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Now

m(z) =
1− tz
t− z

(5.65)

is a Möbius transformation which maps the unit circle to itself. Hence for z= eiθ on the unit
circle, ∣∣∣∣ (1− tz)(1− z2)

z(t− z)

∣∣∣∣= ∣∣∣∣1− z2

z

∣∣∣∣= 2|sinθ|. (5.66)

Let us assume we choose all the zL,k to be in the upper half unit circle. Then if we can show
that none of the roots are too close to±1, i.e. there are no roots of the form z= eiθ with θ close
to 0 or π, then |DL,k| cannot be very small. We will show that if zL,k = eiθ with 0< θ < π, then
in fact

π

L+ 1
⩽ θ ⩽ π − π

L+ 1
, (5.67)

from which it follows that

|DL,k(t)|⩾ 2π +O(L−1). (5.68)

(This bound is in fact tight—if we order the roots for k= 3, . . . ,L+ 1 anticlockwise from right
to left, then at k= 3 and k= L+ 1 we have |DL,k(t)| → 2π as L→∞, for all t> 1. We will
make no attempt to prove this here, however.)

We wish to show that if z= eiθ with 0< θ < π
L+1 or π− π

L+1 < θ < π, then z cannot be a
root of AL,k(t,z) = 0. There are a number of cases, which we will briefly consider in turn.

5.3.3.1. I. Odd k, small θ. We have zL+1 = m(z). If 0< θ < π
L+1 then the LHS will be in the

upper half of the unit circle. The RHS is a Möbius transformation which maps the upper half
of the unit circle to the lower half, so there is no root.

5.3.3.2. II. Odd k, even L, large θ. Write θ = π −ϕ. Then

zL+1 = eiθ(L+1) = eiπ(L+1)e−iϕ(L+1) =−e−iϕ(L+1) (5.69)

which is again in the upper half of the unit circle.

5.3.3.3. III. Odd k, odd L, large θ. This time zL+1 = e−iϕ(L+1) which is in the lower half of
the unit circle. However, observe that as ϕ ↗ π

L+1 we have

arg(zL+1)↘−π < arg(m(z)) (5.70)

(where we take arguments to be between −π and π). Then since

d
dθ

arg(m(eiθ)) =
t2 − 1

t2 + 1− 2tcosθ
< 1 (5.71)

while

d
dθ

arg(eiθ(L+1)) = L+ 1, (5.72)

we must have arg(zL+1)< arg(m(z)), so there can be no root for π− π
L+1 < θ < π.
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5.3.3.4. IV. Even k, odd L, large θ. With even k we have zL+1 =−m(z). The RHS is now a
Möbius transformation mapping the upper half of the unit circle to itself. The rest of this case
is analogous to case II above.

5.3.3.5. V. Even k, small θ. This uses the same argument as case III above—one shows that
arg(zL+1)> arg(−m(z)).

5.3.3.6. VI. Even k, even L, large θ. Similar to cases III and V above, this time showing that
arg(zL+1)< arg(−m(z)).

6. Discussion

We have examined a model of partially directed walks crossing an L×L square, weighted by a
fugacity t according to their length. We have obtained two different solutions for the partition
functions, using generating functions and the kernel method as well as transfer matrices and
a Bethe ansatz. The former allowed the calculation of the dominant asymptotics for the dilute
t< 1 regime and the latter worked for the dense t> 1 regime. As such we provide an exact
solution of a simplified model of the dilute to dense polymeric phase transition.

6.1. Comparison with SAWs

In section 1 we discussed what is known or believed about the model of SAWs crossing a box.
Some of these results can now be contrasted with those for PDWs. For example we have

f1(t) = log(4t2)− log(1− t2) and f2(t) = log t. (6.1)

Thus in the dilute phase we do not have power-law divergence as t→ 1−: instead f1(t) diverges
only logarithmically. On the other hand

f2(t)∼ (t− 1), t→ 1+. (6.2)

At the critical point things are also different—SAWs are expected to feature power-law beha-
viour as per (1.7), but PDWs instead have an L logL in the exponent as in (2.4).

For the asymptotics of the mean length ⟨n⟩L(t), away from the critical point PDWs and
SAWs both exhibit the same behaviour as per (1.12). Note that for PDWs the coefficient of
L for t< 1 diverges as t→ 1− (see (2.8)), and the same would be expected for SAWs. At the
critical point SAWs are expected to have L1/ν asymptotics while PDWs have L2.

We observe here that PDWs, having a ‘preferred’ direction, have two different values of
ν—namely ν∥ = 1 in the preferred direction and ν⊥ = 1

2 in the perpendicular direction [24].
Using the exponent ν⊥ we see that PDWs then match the expected behaviour for SAWs both
in the scaling of f 2 near criticality (see (1.10) and (6.2)) and the asymptotics of ⟨n⟩L(µ−1).

6.2. Other models

There are a number of other possible models of confined polymers whichmay be worth consid-
ering. It may be natural to consider randomwalks, that is, walks which lack any self-avoidance
constraint. However great care must be taken, because in that case the partition functions as
in (1.1) are no longer polynomials, but instead power series (because there are infinitely many
random walks between two points in the box). There would then be values of t for which these
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series diverge and things are not well defined. Whether phase transitions can still be observed
is an open question.

Interpolating between random walks and SAWs are weakly self-avoiding walks (see
e.g. [1]), which are weighted according to the number of vertices visited multiple times.

Some of the results and conjectures for SAWs apply in higher dimensions (e.g. [18]). There
are multiple ways to define PDWs in more than two dimensions (one has to choose how many
dimensions in which the walks are directed), but at least some partial results are probably
attainable.

There are also ways to change the model by varying the boundary conditions. This can
involve relaxing the restrictions on where the walks start and end—for example they can be
restricted to end on opposing edges instead of corners (e.g. [2]) or to simply be contained
within the square [3]. The boundaries themselves may also be periodic. See also [29] and
references therein for some recent work regarding SAWs and random walks in boxes, with
free and periodic boundary conditions, and their connections with the Ising model.

Finally, we remind the reader that the scaling limit of SAWs crossing a box is conjec-
tured to be the Schramm-Loewner evolution (SLE) with parameter κ= 8

3 (specifically the
chordal version of SLE, see e.g. [16]). The scaling limit for PDWs has been studied recently
(see e.g. [7, 17], including results for PDWs with nearest-neighbour interactions). In the
unweighted case the scaling limit will be some version of Brownianmotion; for t ̸= 1, however,
it remains an open question.
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