
Physica A 566 (2021) 125635

S

d
f
m
l
t
T

h
a
t
m
t
f
p
t
w
i

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Exact solution of directedwalkmodels of polymeric zipping
with pulling in two and three dimensions
Nicholas R. Beaton ∗, Aleksander L. Owczarek
chool of Mathematics and Statistics, University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 13 August 2020
Received in revised form 7 December 2020
Available online 10 December 2020

Keywords:
Polymers
Self-avoiding walks
Zipping
DNA
Exact solutions
Phase transitions

a b s t r a c t

We provide the exact solution of several variants of simple models of the zipping
transition of two bound polymers, such as occurs in DNA/RNA, in two and three
dimensions using pairs of directed lattice paths. In three dimensions the solutions are
written in terms of complete Elliptic integrals. In one case the transition occurs at infinite
temperature so is less interesting but in other cases occur at finite temperatures. We
analyse the phase transition associated in each model giving the scaling of the partition
function. We also extend the models to include a pulling force between one end of the
pair of paths.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Experimental techniques able to micro-manipulate single polymers [1–3] and the connection to modelling DNA
enaturation [4–10] have provided the impetus for studying models of polymer adsorption, pulling and zipping. See
or example [11,12] for thorough reviews. In the pursuit of exact solutions, idealised two-dimensional directed walk
odels have been constructed to capture the effects of adsorption, where a polymer grafts itself onto a surface at

ow temperature [13–16]; as well as zipping, where two polymers are entwined with one another (again at low
emperature) [17–19]. Recently, two-dimensional exactly solved polymer models have included multiple effects [20–24].
hese have led to rich mathematical results which display key physical characteristics of these polymer systems.
Here we pursue models of the zipping transition in three dimensions, modelling DNA denaturation, and demonstrate

ow different variations display modified, though broadly similar, behaviour. We analyse the scaling behaviour of the
ssociated partition function and the phase transitions that occur. We begin by reviewing and enlarging the range of
wo-dimensional models solved. The models each contain two directed paths on either the square or cubic lattice which
ay share sites. To these we add an attractive/repulsive potential energy each time they share a such site: this drives

he zipping transition where the polymers either come together on average or stay apart. Our solutions include a pulling
orce that separates the ends of the walks and so competes with the zipping interaction. In our models there are three
hases which we denote free, zipped and unzipped. These are characterised by two order parameters C (corresponding
o the limiting density of shared sites) and D (corresponding to the limiting scaled separation between the ends of the
alks), which are either zero or strictly positive, depending on the phase. It should be noted that without pulling, there

s still a ‘zipping’ transition, between the free and zipped phases.
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Fig. 1. The four types of two-dimensional pairs of paths: (a) asymmetric/osculating, (b) asymmetric/friendly, (c) symmetric/osculating, and (d)
symmetric/friendly.

2. Two dimensions

A directed path p on the square lattice Z2 is a sequence of vertices (p0, p1, . . . , pn), with p0 = (0, 0) and pi − pi−1 ∈

{(1, 0), (0, 1)} for i = 1, . . . , n. Equivalently, p can be viewed as a sequence of north (N) and east (E) steps.
Let p and q be a (ordered) pair of directed paths of the same length n. The pair p and q are asymmetric if x(pi) ≤ x(qi)

(equivalently, y(pi) ≥ y(qi)) for all i. A pair of paths without the asymmetric restriction are symmetric (so asymmetric
pairs form a subset of symmetric pairs). The pair is said to osculate if pi = qi ⇒ pi+1 ̸= qi+1 for all i. That is, the two paths
never occupy the same edge of the lattice. A pair of paths without the osculating restriction are friendly (again, osculating
pairs are therefore a subset of friendly pairs).

Let AO (resp. AF , SO and SF) be the set of asymmetric/osculating (resp. asymmetric/friendly, symmetric/osculating
and symmetric/friendly) pairs of paths.

We define the following three statistics on pairs of paths φ = (p, q) of length n:

• |φ| = n;
• v(φ) = |{i > 0 : pi = qi}|, that is, the number of shared vertices (excluding the origin);
• d(φ) =

1
√
2
∥qn − pn∥, that is, the (scaled) separation of the endpoints.

Note that d is equivalent to the minimum number of steps that p and q must take in order to come together. See Fig. 1
for examples.

For each of the four sets X , define the partition functions

Xn(c, y) =

∑
φ∈X
|φ|=n

cv(φ)yd(φ). (1)

The variables c and y are Boltzmann weights, and can be interpreted as c = eα/kT and y = ef , where α is the energy
associated with a contact between the two polymers, T is absolute temperature, k is Boltzmann’s constant and f is a force
applied to the endpoints of the polymers, pulling them apart when f > 0 and together when f < 0.
2
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The free energy of the system is

ψX(c, y) = lim
n→∞

1
n
log Xn(c, y). (2)

It will also be useful to define the generating functions

PX(t; c, y) =

∑
n

Xn(c, y)tn =

∑
φ∈X

t |φ|cv(φ)yd(φ). (3)

These will be viewed as power series in t with coefficients in Z[c, y]. Note that if tX(c, y) is the radius of convergence of
this series, then

ψX(c, y) = − log tX(c, y). (4)

For brevity we will often write PX(y) instead of PX(t; c, y).
There are two relevant order parameters for these models. The limiting density of shared sites is C(c, y), defined as

C(c, y) = lim
n→∞

cXn(c, y)
nXn(c, y)

= c
∂

∂c
ψX (c, y). (5)

Similarly, the limiting scaled endpoint separation D(c, y) is defined as

D(c, y) = lim
n→∞

yXn(c, y)
nXn(c, y)

= y
∂

∂y
ψX (c, y). (6)

2.1. Asymmetric and friendly pairs of paths

The four two-dimensional models can all be solved with a now-classical tool called the kernel method [25]. We will
give the details for asymmetric/friendly pairs.

Pairs of paths are iteratively grown one pair of steps at a time. Initially, a pair consists only of a single vertex. After
this, each of the two paths (p, q) can step N or E, subject to the asymmetric constraint that p cannot step to the right of
q. When p steps N and q steps E, v increases by 1; when p steps E and q steps N, v decreases by 1; and in the other two
cases v does not change. In addition, when the pair step to a shared vertex, c increases by 1.

This all gives the functional equation

PAF(y) = 1 + t(2 + y + y)PAF(y) − tyPAF(0) + 2t(c − 1)PAF(0) + t(c − 1)[y1]PAF(y), (7)

here y =
1
y and [y1] is the linear operator which extracts the coefficient of y1 from each term of a power series. For

example, if

F (t; y) =
1

1 − (1 + y)t
= 1 + t(1 + y) + t2(1 + 2y + y2) + t3(1 + 3y + 3y2 + y3) + · · · (8)

hen

[y1]F (t; y) = ty + 2t2y + 3t3y + · · · (9)

=

∞∑
n=1

ntny (10)

=
ty

(1 − t)2
. (11)

We can eliminate the [y1]PAF(y) term by considering those pairs which end together:

PAF(0) = 1 + 2tcPAF(0) + tc[y1]PAF(y). (12)

ombining (7) and (12),

K (y)PAF(y) = c + (1 − c − ty)PAF(0), (13)

here K (y) ≡ K (t; y) = 1 − t(2 + y + y) and c =
1
c .

The kernel K (y) has two roots in y; one of them,

Y ≡ Y (t) =
1 − 2t −

√
1 − 4t

2t
, (14)

as a power series expansion around t = 0. Substituting into (13) cancels the left side, yielding

PAF(0) =
Y

. (15)

tc + (1 − c)Y

3
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ubstituting this into (13) then gives the overall solution

PAF(y) =
t(y − Y )

yK (y)(tc + (1 − c)Y )
(16)

=
2
(
1 − 2t(1 + t) +

√
1 − 4t

)(
1 + 2t − 2t(2 + t)c +

√
1 − 4t

) (
1 − 2t(1 + y) +

√
1 − 4t

) . (17)

For given c and y, the radius of convergence of PAF(c, y) is given by the absolute value of the dominant singularity,
i.e. the closest point of non-analyticity to the origin. In PAF(c, y), there are three possible sources of singularities — the
ranch point of the square root in Y , roots of K (y), and roots of tc + (1 − c)Y .
These singularities all play a part in the asymptotics of the model, and their locations are respectively

1
4
,

y
(1 + y)2

, and
1 − c ±

√
c(c − 1)

c
. (18)

y examining how these functions vary with c and y, it is straightforward to determine that the dominant singularity of
he model is

tAF(c, y) =

⎧⎪⎨⎪⎩
1
4 if y ≤ 1 and c ≤

4
3

y
(1+y)2

if y ≥ max{1, f (c)}
1−c+

√
c(c−1)

c if c ≥
4
3 and y ≤ f (c)

(19)

here

f (c) = c − 1 +

√
c(c − 1).

The three regions correspond respectively to the free, unzipped and zipped phases. The free-zipped boundary is at c =
4
3 ,

he free-unzipped boundary is at y = 1, and the zipped–unzipped boundary is at y = f (c). The order parameter C(c, y) is
in the free and unzipped phase, and in the zipped phase it is

C(c, y) =
−2 + c +

√
c(c − 1)

2(c − 1)
. (20)

he order parameter D(c, y) is 0 in the free and zipped phases, while in the unzipped phase it is

D(c, y) =
y − 1
y + 1

. (21)

o in the free phase we have neither a positive density of shared sites nor a positive scaled endpoint separation; in the
ipped phase only the density of shared sites is strictly positive; and in the unzipped phase only the scaled endpoint
eparation is strictly positive.
Note that in the zipped phase C(c, y) → 1 as c → ∞, and similarly in the unzipped phase D(c, y) → 1 as y → ∞.

2.2. Asymmetric and osculating pairs of paths

A similar application of the kernel method yields

PAO(t; c, y) =
t(y − Y )

yK (y)(tc + (1 − c + 2tc)Y )
(22)

=
2
(
1 − 2t(2 − t) + (1 − 2t)

√
1 − 4t

)(
1 − 2t − 2t2c +

√
1 − 4t

) (
1 − 2t(1 + y) +

√
1 − 4t

) . (23)

he dominant singularity is

tAO(c, y) =

⎧⎪⎨⎪⎩
1
4 if y ≤ 1 and c ≤ 4

y
(1+y)2

if y ≥ max{1, g(c)}
√
c−1
c if c ≥ 4 and y ≤ g(c)

(24)

where

g(c) =
√
c − 1.

he three regions correspond respectively to free, unzipped and zipped phases. The free-zipped boundary is at c = 4, the
free-unzipped boundary is at y = 1, and the zipped–unzipped boundary is at y = g(c). In the zipped phase the order
parameter C(c, y) is

C(c, y) =
−2 + c −

√
c

(25)

2(c − 1)

4
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hile in the unzipped phase D(c, y) is as per (21). Note that in the zipped phase C(c, y) →
1
2 as c → ∞.

.3. Symmetric and friendly pairs of paths

For symmetric pairs the paths can cross, but we will weight the endpoint separation regardless of which path is above
r below.
Another application of the kernel method gives the generating function as

PSF(t; c, y) =
t(y − Y )(1 + yY )

yK (y)(2tc + (1 − 2c + 2tc)Y )
(26)

=
t(1 − y2) − y

√
1 − 4t(

1 − c + c
√
1 − 4t

) (
t(1 + y)2 − y

) (27)

The dominant singularity is then

tSF(c, y) =

⎧⎪⎨⎪⎩
1
4 if y ≤ 1 and c ≤ 1

y
(1+y)2

if y ≥ max{1, h(c)}
2c−1
4c2

if c ≥ 1 and y ≤ h(c)

(28)

here

h(c) = 2c − 1.

n the zipped phase, the order parameter C(c, y) is

C(c, y) =
2(c − 1)
2c − 1

(29)

hich approaches 1 as c → ∞.

.4. Symmetric and osculating pairs of paths

The kernel method gives the generating function as

PSO(t; c, y) =
t(y − Y )(1 + yY )

yK (y)(2tc + (1 − 2c + 4tc)Y )
(30)

=
t(1 − y2) − y

√
1 − 4t(

1 − c + 2tc + c
√
1 − 4t

) (
t(1 + y)2 − y

) (31)

he dominant singularity is

tSO(c, y) =

⎧⎪⎨⎪⎩
1
4 if y ≤ 1 and c ≤ 2

y
(1+y)2

if y ≥ max{1,m(c)}
√
2c−1
2c if c ≥ 2 and y ≤ m(c)

(32)

here

m(c) =
√
2c − 1.

The free-zipped boundary is c = 2, the free-unzipped boundary is y = 1, and the zipped–unzipped boundary is y = m(c).
Note that tSO(c, y) = tAO(2c, y). In the zipped phase we have

C(c, y) =
2c − 2 −

√
2c

2(2c − 1)
(33)

hich approaches 1
2 as c → ∞.

2.5. Comparing the four models

See Fig. 2 for a plot of the four different phase boundaries.
For fixed y, the zipping transitions occur with increasing c in the order

SF < AF < SO < AO.

By looking at the entropic loss involved in a contact, this makes sense: SF loses no entropy at a contact, AF loses one of
its four ‘‘choices’’, SO loses two of four choices, and AO loses three of four.

In all four cases, the free-zipped and free-unzipped phase boundaries are second-order, while the zipped–unzipped
phase boundaries are first-order.
5
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Fig. 2. The phase boundaries for the four two-dimensional models. The vertical lines are the boundaries between the free and zipped phases; the
horizontal lines are the boundaries between free and unzipped; and the sloping curves are the unzipped–zipped boundaries.

Fig. 3. An asymmetric/osculating pair of paths φ with |φ| = 10, v(φ) = 2, dx(φ) = −1, dy(φ) = 1 and dz (φ) = 0. The red path is p and the blue
ath is q.

. Three dimensions

In three dimensions we again take a pair φ = (p, q) of directed paths (i.e. paths which step in the positive x, y or z
irections) which start at the origin. However, unlike in two dimensions, there is no longer a sensible notion of the paths
‘crossing’’. In order to generalise the notion of symmetric and asymmetric pairs to three dimensions, we will say that the
air is asymmetric if they satisfy the following: if pi = qi, then

• pi+1 − pi = (1, 0, 0) ⇒ qi+1 − qi ̸= (0, 0, 1)
• pi+1 − pi = (0, 1, 0) ⇒ qi+1 − qi ̸= (1, 0, 0)
• pi+1 − pi = (0, 0, 1) ⇒ qi+1 − qi ̸= (0, 1, 0).

That is, if p and q share vertex i and p’s next step is +x (resp. +y,+z), then q’s next step is not +z (resp. +x,+y).
Symmetric pairs are not restricted in this way.

Osculating and friendly paths are defined as for two dimensions (friendly paths may share edges, osculating paths may
not).

As in 2D, we let AO (resp. AF , SO and SF) be the set of asymmetric/osculating (resp. asymmetric/friendly,
symmetric/osculating and symmetric/friendly) pairs of paths.

If φ = (p, q) is a pair of paths, we again let |φ| be the length of p and q and v(φ) be the number of shared vertices,
xcluding the origin. However, the statistic d(φ) must be defined slightly differently in three dimensions. We will postpone
ts definition for now. We instead introduce two new measurements: dx(φ) = x(pn) − x(qn) and dy(φ) = y(pn) − y(qn).
ote that we can also define dz(φ) = z(pn) − z(qn), but

dz(φ) = (n − x(pn) − y(pn)) − (n − x(qn) − y(qn)) = −(dx(φ) + dy(φ)), (34)

so this is not really necessary. See Fig. 3 for an example.
6
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For each of the four models, we define a partition function

Xn(c, u, v) =

∑
φ∈X
|φ|=n

cv(φ)udx(φ)vdy(φ) (35)

nd generating function

PX (t; c, u, v) ≡ P(u, v) =

∑
n

Xn(c, u, v)tn =

∑
φ∈X

t |φ|cv(φ)udx(φ)vdy(φ). (36)

Note that, since dx and dy can be negative, Xn(c, u, v) ∈ Z[c, u, v, u, v].

.1. Symmetric and friendly pairs of paths

.1.1. The generating function with zipping only
Having not yet defined d(φ), we will first only consider the model with a weight c associated with shared vertices (but

o pulling force).
Pairs of paths are grown iteratively in the same way as for two dimensions. A pair of paths is either a single vertex, or

an be constructed by appending a new step to each path. Each path has three choices: +x, +y or +z. When both paths
tep in the same direction, neither dx nor dy change. When one of paths steps +z and the other steps +x (resp. +y), only
x (resp. dy) changes. When neither path steps +z, both dx and dy change. And when the paths step to the same vertex,
he pair gains a factor of c.

For brevity, write W (i,j)
SF = [uivj]WSF(u, v). Then the above can be encoded with the functional equation

WSF(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WSF(u, v) + 3t(c − 1)W (0,0)
SF

+t(c − 1)W (1,0)
SF + t(c − 1)W (0,1)

SF + t(c − 1)W (−1,0)
SF

+t(c − 1)W (0,−1)
SF + t(c − 1)W (−1,1)

SF + t(c − 1)W (1,−1)
SF . (37)

It may seem that there are too many unknowns to handle here, but the model has many symmetries we can exploit.
If φ = (p, q) is a pair of paths, define Sxy(φ) to be the pair obtained by replacing every +x step with a +y step, and
vice versa, in p and q. Similarly define Sxz(φ) and Syz(φ). Note that, since dx(φ) = dy(Sxy(φ)) and dy(φ) = dx(Sxy(φ)), if
φ has a shared vertex at step i then so too does Sxy(φ). Similar arguments apply to Sxz(φ) and Syz(φ). It follows that
v(φ) = v(Sxy(φ)) = v(Sxz(φ)) = v(Syz(φ)), and hence

W (1,0)
SF = W (0,1)

SF = W (−1,0)
SF = W (0,−1)

SF = W (−1,1)
SF = W (1,−1)

SF . (38)

Thus

WSF(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WSF(u, v) + 3t(c − 1)W (0,0)
SF + 6t(c − 1)W (1,0)

SF . (39)

Next, by considering only those pairs which end at a shared vertex,

W (0,0)
SF = 1 + 3tcW (0,0)

SF + 6tcW (1,0)
SF . (40)

We then arrive at

WSF(u, v) =
1
c

+ t(3 + u + v + u + v + uv + uv)WSF(u, v) +

(
1 −

1
c

)
W (0,0)

SF . (41)

Write (41) in kernel form

K (u, v)WSF(u, v) =
1
c

+

(
1 −

1
c

)
W (0,0)

SF (42)

where K (u, v) = 1 − t(3 + u + v + u + v + uv + uv).
There are obvious similarities between (42) and (13). However, the key difference here is that the coefficients of

WSF(u, v) are Laurent polynomials in u and v. So while K (u, v) does have a root in u (or, by symmetry, v) which is a
ower series in t , it cannot be validly substituted into (42).
However, we have another way to approach this problem. Rearranging,

WSF(u, v) =
1

cK (u, v)
+

c − 1
cK (u, v)

W (0,0)
SF . (43)

et

X(t) ≡ X = [u0v0]
1

K (u, v)
(44)

= 1 + 3t + 15t2 + 93t3 + 639t4 + 4653t5 + · · · (45)
7
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=

∞∑
n=0

xntn (46)

here

xn =

n∑
k=0

(
2k
k

)(
n
k

)2

(47)

OEIS sequence A002893). The series X can be written in terms of K , the complete elliptic integral of the first kind:

X =
2
√
2

π

√
1 − 6t − 3t2 +

√
(1 − t)3(1 − 9t)

K

(
8t

3
2

1 − 6t − 3t2 +

√
(1 − t)3(1 − 9t)

)
(48)

Then by extracting the constant term with respect to u and v from (43), we find

W (0,0)
SF =

X
c + (1 − c)X

(49)

he generating function of asymmetric and friendly pairs of paths which start and end together.

.1.2. Incorporating the unzipping force
We can model zipping with this, but it does not allow us to model a force pulling on the two ends. For that, we

ubstitute back into (43):

WSF(u, v) =
1

cK (u, v)
+

(c − 1)X
cK (u, v)(c + (1 − c)X)

=
1

K (u, v)(c + (1 − c)X)
. (50)

With two directed paths in two dimensions, the statistic d(φ) was useful not only for modelling a force applied at the
ndpoints, but also played a part in the solutions to the functional equations, with the variable y temporarily serving as
‘‘catalytic variable’’. Here, the catalytic variables are u and v, but dx and dy are not exactly what we need in order to

ncorporate the force.
Let d∗(φ) be the Euclidean distance between the endpoints of the two paths. We have

d∗(φ) =

√
2
(
dx(φ)2 + dx(φ)dy(φ) + dy(φ)2

)
. (51)

ince this is not a linear function of dx and dy, there is no simple evaluation of u and v which allows us to introduce a
oltzmann weight of the form yd

∗(φ).
Instead, let d(φ) be the minimum number of steps required for the two paths p and q to reach a shared vertex. This

an be written as a piecewise linear function of dx and dy:

d(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx(φ) + dy(φ) if dx(φ), dy(φ) ≥ 0
−dx(φ) − dy(φ) if dx(φ), dy(φ) ≤ 0
dx(φ) if 0 ≤ −dy(φ) ≤ dx(φ)
−dy(φ) if 0 ≤ dx(φ) ≤ −dy(φ)
dy(φ) if 0 ≤ −dx(φ) ≤ dy(φ)
−dx(φ) if 0 ≤ dy(φ) ≤ −dx(φ)

(52)

See Fig. 4. This looks complicated, but we can again exploit the inherent symmetries of the model. By applying all
ossible combinations of the maps Sxz and Syz (note that Sxy is not necessary — this will be important later when we
ome to the asymmetric models), we have

WSF(u, v) = WSF(uv, v) = WSF(v, uv) = WSF(v, u) = WSF(uv, u) = WSF(u, uv). (53)

If a configuration has weight udx(φ)vdy(φ), with dx(φ) and dy(φ) satisfying one of the six conditions in (52), then (53) implies
that it can be uniquely mapped to a configuration which satisfies any one of the other five conditions. In other words,
there is a six-fold symmetry. To study the phase diagram it thus suffices to focus on only one of the six symmetry classes.
We will focus on the case dx(φ), dy(φ) ≥ 0.

Before proceeding with the solution, we are now also able to compare d∗(φ) and d(φ). With dx(φ), dy(φ) ≥ 0 and
anipulating (51),√

dx(φ)2 + 2dx(φ)dy(φ) + dy(φ)2 ≤ d∗(φ)

≤

√
2
(
dx(φ)2 + 2dx(φ)dy(φ) + dy(φ)2

) (54)

⇐⇒ d (φ) + d (φ) ≤ d∗(φ) ≤
√
2
(
d (φ) + d (φ)

)
(55)
x y x y

8
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Fig. 4. A plot of d(φ) versus dx(φ) and dy(φ).

⇐⇒ d(φ) ≤ d∗(φ) ≤
√
2d(φ) (56)

⇐⇒
1

√
2
d∗(φ) ≤ d(φ) ≤ d∗(φ). (57)

e thus see that, while d(φ) does not exactly correspond to the distance between the two endpoints, it is bounded above
nd below by constant multiples of this distance.
Let W++

SF (u, v) be the part of WSF(u, v) with non-negative powers in u and v. Then from (50),

W++

SF (u, v) =
X++(u, v)

c + (1 − c)X
(58)

here X++(u, v) is the part of 1
K (u,v) with non-negative powers in u and v. We wish to assign weight yd(φ), so let

X∗(t; y) ≡ X∗(y) (59)

= X++(u, v)|u=v=y (60)

= 1 + t(3 + 2y) + t2(15 + 16y + 4y2) + t3(93 + 120y + 54y2 + 8y3) + . . . (61)

nd define

W ∗

SF(t; c, y) =
X∗(y)

c + (1 − c)X
(62)

s the generating function we are interested in.

.1.3. The dominant singularity
Now there are three singularities of interest here: the dominant singularity of X , the dominant root of c + (1 − c)X ,

nd the dominant singularity of X∗(y). As for X , one finds that

X ∼

t→ 1
9

−
A log

(
1

1 − 9t

)
+ B + o(1), where A =

3
√
3

4π
and B = (3 log 2)A. (63)

hus

xn ∼ A ·
9n

n
. (64)

So X has radius of convergence 1
9 , and diverges as t →

1
9 from below. It follows that if 0 ≤ c < 1 then c + (1 − c)X

as no roots for t ∈ [0, 1
9 ]. If c > 1 then there will be a root, say ρSF (c), smaller than 1

9 .
Unfortunately the complicated nature of X means that we have no way of getting an explicit expression for ρSF (c). We

can, however, determine its behaviour as c → 1+ and as c → ∞. For small c , some numerical investigation shows that

ρSF(c) =
1

− exp
(

α
+ β + O(c − 1)

)
. (65)
c→1+ 9 c − 1
9



N.R. Beaton and A.L. Owczarek Physica A 566 (2021) 125635

S

w

T

T

W
b

d

T

ubstituting this into (63) and solving X =
c

c−1 , we find

α = −
4π

3
√
3

and β = −
4π

3
√
3

− log
(
9
8

)
. (66)

For large c , we can use Lagrange inversion and (47) to obtain an asymptotic expansion:

ρSF(c) =
c→∞

c − 2c2 − 2c3 + 8c5 + O
(
c6
)
, (67)

here c =
1
3c . The expression (67) becomes more accurate with increasing c.

Next we turn to X∗(y). This is a D-finite function but we do not have a simple explicit expression. However, we can
compute the asymptotic behaviour of the coefficients (and thus the dominant singularity). Observe that

[tn]
1

K (u, v)
= (3 + u + v + u + v + uv + uv)n (68)

=

∑
k1+···+k7=n

(
n

k1, . . . , k7

)
3k1uk2−k4+k6−k7vk3−k5−k6+k7 . (69)

hen

[tn]X∗(y) =

∑
k1+···+k7=n

−k2+k4≤k6−k7≤k3−k5

(
n

k1, . . . , k7

)
3k1yk2+k3−k4−k5 . (70)

This six-fold sum can be written out over the ranges

k2 = 0, . . . , n (71)

k3 = 0, . . . , n − k2 (72)

k4 = 0, . . . , n − k2 − k3 (73)

k5 = 0, . . . , n − k2 − k3 − k4 (74)

k6 = 0, . . . , n − k2 − k3 − k4 − k5 (75)

k7 = max{0,−k3 + k5 + k6}, . . . ,min{n − k2 − k3 − k4 − k5 − k6, k2 − k4 + k6} (76)

k1 = n − k2 − k3 − k4 − k5 − k6 − k7. (77)

o compute the asymptotics we replace the sums with integrals and apply Stirling’s approximation:

n! ∼
√
2πn

(n
e

)n (
1 + O

(
1
n

))
.

hen y > 1, the sum (integral) is dominated by terms with k1, . . . , k7 all O(n). We thus set ki = κin for constants κi (to
e determined), where κ1 = 1 − κ2 − · · · − κ7. The dominant term in the integrand is then

In(y) =
3κ1ny(κ2+κ3−κ4−κ5)n

8n3π3

7∏
i=1

κ
−(κin+1/2)
i . (78)

We wish to find the values of the κi which maximise this, or rather, its growth rate. To do this, we take 1
n log In, take the

erivative with respect to κi for i = 2, . . . , 6 (separately), and then take the limit n → ∞ in each. This gives the six terms

log y − log 3 − log κ2 + log κ1 (79)

log y − log 3 − log κ3 + log κ1 (80)

− log y − log 3 − log κ4 + log κ1 (81)

− log y − log 3 − log κ5 + log κ1 (82)

− log 3 − log κ4 + log κ1 (83)

− log 3 − log κ5 + log κ1 (84)

o maximise we set all of these to 0, and arrive at the solutions

κ1 =
3y

(2 + y)(1 + 2y)
(85)

κ2 = κ3 =
y2

(86)

(2 + y)(1 + 2y)

10
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w

T

w

T
w

3

A

κ4 = κ5 =
1

(2 + y)(1 + 2y)
(87)

κ6 = κ7 =
y

(2 + y)(1 + 2y)
(88)

Note that for y > 1, the condition (76) is automatically satisfied. That is, when y > 1 it is the first of the six conditions
n (52) which dominates.)

Upon substitution back into (78), we find that the growth rate of In(y), and hence of [tn]X∗(y), is (2+y)(1+2y)
y . (We could

actually compute the integral to find the full asymptotics of [tn]X∗(y), but this is not necessary to get the free energy.)
For y > 1, the critical point of X∗(y) is thus σSF(y) =

y
(2+y)(1+2y) .

Putting all this together and determining which singularities dominate where, we find

tSF(c, y) = min{
1
9 , ρSF(c), σSF(y)} (89)

=

⎧⎨⎩
1
9 if c ≤ 1 and y ≤ 1
σSF(y) if y ≥ max{1, f (ρSF(c))}
ρSF(c) if c ≥ 1 and y ≤ f (ρSF(c))

(90)

where

f (x) =
1 − 5x +

√
(1 − x)(1 − 9x)
4x

. (91)

The three regions in (90) correspond to the free, unzipped and zipped phases respectively. In the free phase, both order
parameters C and D are 0. In the unzipped phase, C is 0 while

D(c, y) =
2(y2 − 1)

(2 + y)(1 + 2y)
(92)

hich approaches 1 as y → ∞. In the zipped phase, we do not have an explicit expression for C(c, y). It does, however,
follow from (65) and (67) that C(c, y) → 0 as c → 1+ and C(c, y) → 1 as c → ∞.

3.2. Symmetric and osculating pairs of paths

3.2.1. The generating function
It is straightforward to repeat the above procedure for osculating paths. Let WSO(u, v) be the analogue of WSF(u, v).

hen the equivalent of (39) is

WSO(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WSO(u, v) + −3tW (0,0)
SO + 6t(c − 1)W (1,0)

SO , (93)

the difference being that the walks cannot step in the same directions when dx = dy = 0. We then have

W (0,0)
SO = 1 + 6tcW (1,0)

SO . (94)

Substituting,

K (u, v)WSO(u, v) =
1
c

+

(
1 −

1
c

− 3t
)
W (0,0)

SO , (95)

ith K (u, v) as defined in the previous section. Also using the same X as before, we find

WSO(u, v) =
1 + 6tX

K (u, v) (c + (1 − c + 3tc)X)
. (96)

o incorporate the unzipping force, we can again make use of the symmetries of the model, and only consider the cases
ith dx, dy ≥ 0. So we focus on

W ∗

SO(t; c, y) =
X∗(y)(1 + 6tX)

c + (1 − c + 3tc)X
. (97)

.2.2. The dominant singularity
This time the denominator of (97) has a root t = ρSO(c) when c > 3

2 . As c →
3
2

+
we observe similar behaviour to (65):

ρSO(c) =

c→ 3
2

+

1
9

− exp

(
α

c −
3
2

+ β + O(c −
3
2 )

)
. (98)

gain using (63) and solving c + (1 − c + 3tc)X = 0, we find

α = −
√
3π and β = −

2π
√ − log

(
9
)
. (99)
3 8
11
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As c → ∞, we can again use Lagrange inversion to determine the behaviour of ρSO(c). This time, letting c̃ =
1

4
√
6c
, we

ave

ρSO(c) =
c→∞

4c̃ − 40c̃2 + 40c̃3 + 256c̃4 + 1336c̃5 + O(c̃6). (100)

The y-dependence of W ∗

SO and W ∗

SF is the same, i.e. the factor X∗(y). So let σSO(y) = σSF(y).
Then

tSO(c, y) = min{
1
9 , ρSO(c), σSO(y)} (101)

=

⎧⎨⎩
1
9 if c ≤

3
2 and y ≤ 1

σSO(y) if y ≥ max{1, f (ρSO(c))}
ρSO(c) if c ≥

3
2 and y ≤ f (ρSO(c))

(102)

here f is as defined in (91).
Since σSO(y) = σSF(y), the behaviour in the unzipped phase is the same as symmetric and friendly pairs. In the zipped

hase we have C(c, y) → 0 as c →
3
2

+
and C(c, y) →

1
2 as c → ∞.

.3. Asymmetric and friendly pairs of paths

.3.1. The generating function
Things are a little more complicated here, as Sxy is no longer a valid symmetry of the model. The main functional

quation is

WAF(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WAF(u, v) + 3t(c − 1)W (0,0)
AF

−t(u + uv + v)W (0,0)
AF + 3t(c − 1)W (1,0)

AF + 3t(c − 1)W (0,1)
AF . (103)

Then using

W (0,0)
AF = 1 + 3tcW (0,0)

AF + 3tcW (1,0)
AF + 3tcW (0,1)

AF , (104)

we arrive at

K (u, v)WAF(u, v) =
1
c

+

(
1 −

1
c

− t(u + uv + v)
)
W (0,0)

AF (105)

or alternatively

WAF(u, v) =
1

cK (u, v)
+

c − 1 − tc(u + uv + v)
cK (u, v)

W (0,0)
AF . (106)

Now let

Y (t) ≡ Y = [u−1v0]
1

K (u, v)
= [u1v−1

]
1

K (u, v)
= [u0v1]

1
K (u, v)

. (107)

xtracting the coefficient of u0v0 in (106),

W (0,0)
AF =

X
c

+
(c − 1)X

c
W (0,0)

AF − 3tYW (0,0)
AF . (108)

ut now we also have

Y = [u1v0]
1

K (u, v)
= [u−1v1]

1
K (u, v)

= [u0v1]
1

K (u, v)
, (109)

o X = 1 + 3tX + 6tY . Substituting into (108) and solving,

W (0,0)
AF =

2X
c + (2 − c − 3tc)X

. (110)

hen

WAF(u, v) =
1

K (u, v)(c + (2 − c − 3tc)X)
[1 + (1 − 3t)X − 2t(u + uv + v)X] (111)

Now WAF still satisfies the same six-fold symmetry as WSF and WSO as per (53) (because Sxy was not required there), so
we can still incorporate the unzipping force by restricting to those configurations with dx, dy ≥ 0 and setting u = v = y.
Define

X→(u, v) = tu[u≥−1v≥0
]

1
(112)
K (u, v)
12
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T

F

T

W

M

c
c
c
X

U

X↖(u, v) = tuv[u≥1v≥−1
]

1
K (u, v)

(113)

X↓(u, v) = tv[u≥0v≥1
]

1
K (u, v)

. (114)

hen

W++

AF (u, v) =
1 + (1 − 3t)X

c + (2 − c − 3tc)X
X++(u, v)

−
2X

c + (2 − c − 3tc)X

[
X→(u, v) + X↖(u, v) + X↓(u, v)

]
. (115)

inally, let

X†(y) = X→(u, v) + X↖(u, v) + X↓(u, v)
⏐⏐
u=v=y . (116)

hen

W ∗

AF(t; c, y) =
(1 + (1 − 3t)X)X∗(y) − 2XX†(y)

c + (2 − c − 3tc)X
. (117)

3.3.2. The dominant singularity
The critical value of c is again 3

2 , with the denominator having a root ρAF(c) if c > 3
2 . For small c we have

ρAF(c) =

c→ 3
2

+

1
9

− exp

(
α

c −
3
2

+ β + O(c −
3
2 )

)
. (118)

e determine α and β by substituting (63) into the denominator of (117) and taking the limit c →
3
2 . In this case,

α = −

√
3π
2

and β = −
π
√
3

− log
(
9
8

)
. (119)

eanwhile, as c → ∞, we have

ρAF(c) =
c→∞

c − c2 − 3c3 − 10c4 − 34c5 + O(c6) (120)

where c =
1
3c as before.

As for the y-dependence, we now have the function X†(y) in addition to X∗(y). However, note that X++(u, v) counts
onfigurations of symmetric and friendly paths (with no c weight) with dx, dy ≥ 0, while X→(u, v) + X↖(u, v) + X↓(u, v)
ounts a subset of those paths — namely those ending with a (+x,+z), (+y,+x) or (+z,+y) pair of steps. Hence,
onsidered as formal power series with non-negative coefficients, X†(y) ≤ X∗(y), and so the dominant singularity of
†(y) is bounded below by that of X∗(y). So nothing new happens here, and we can set σAF(y) = σSF(y).
Then

tAF(c, y) = min{
1
9 , ρAF(c), σAF(y)} (121)

=

⎧⎨⎩
1
9 if c ≤

3
2 and y ≤ 1

σAF(y) if y ≥ max{1, f (ρAF(c))}
ρAF(c) if c ≥

3
2 and y ≤ f (ρAF(c))

(122)

where f is as defined in (91).
The unzipped phase has the same behaviour as the previous cases, while in the zipped phase we have C(c, y) → 0 as

c →
3
2

+
and C(c, y) → 1 as c → ∞.

3.4. Asymmetric and osculating pairs of paths

3.4.1. The generating function
The last model we consider has both the asymmetric and osculating restrictions. The main functional equation is

WAO(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WAO(u, v)
−t(3 + u + uv + v)W (0,0)

AO + 3t(c − 1)W (1,0)
AO + 3t(c − 1)W (0,1)

AO . (123)

sing

W (0,0)
= 1 + 3tcW (1,0)

+ 3tcW (0,1) (124)
AO AO AO

13
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e get

K (u, v)WAO(u, v) =
1
c

+

(
1 −

1
c

− t(3 + u + uv + v)
)
W (0,0)

AO . (125)

Then

W (0,0)
AO =

X
c

+
(c − 1 − 3tc)X

c
W (0,0)

AO − 3tYW (0,0)
AO , (126)

and using X = 1 + 3tX + 6tY , we have

W (0,0)
AO =

2X
c + (2 − c + 3tc)X

. (127)

hen

WAO(u, v) =
1

K (u, v)(c + (2 − c + 3tc)X)
[1 + (1 − 3t)X − 2t(u + uv + v)X] . (128)

Using the same technique as for WAF,

W++

AO (u, v) =
1 + (1 − 3t)X

c + (2 − c + 3tc)X
X++(u, v)

−
2X

c + (2 − c − 3tc)X

[
X→(u, v) + X↖(u, v) + X↓(u, v)

]
, (129)

nd so finally

W ∗

AO(t; c, y) =
(1 + (1 − 3t)X)X∗(y) − 2XX†(y)

c + (2 − c + 3tc)X
. (130)

3.4.2. The dominant singularity
This time the critical value of c is 3, with the denominator having a root ρAO(c) if c > 3. As c → 3+, we have

ρAO(c) =
c→3+

1
9

− exp
(

α

c − 3
+ β + O(c − 3)

)
(131)

ith

α = −2
√
3π and β = −

2π
√
3

− log
(
9
8

)
. (132)

s c → ∞,

ρAO(c) =
c→∞

4ĉ − 40ĉ2 + 40ĉ3 + 256ĉ4 + 1336ĉ5 + O(ĉ6) (133)

here ĉ =
1

4
√
3c
.

As with the three earlier cases, the y-dependence comes from X∗(y), so set σAO(y) = σSF(y).
Then

tAO(c, y) = min{
1
9 , ρAO(c), σAO(y)} (134)

=

⎧⎨⎩
1
9 if c ≤ 3 and y ≤ 1
σAO(y) if y ≥ max{1, f (ρAO(c))}
ρAO(c) if c ≥ 3 and y ≤ f (ρAO(c))

(135)

The unzipped phase still has the same behaviour as the previous cases, while in the zipped phase we have C(c, y) → 0
s c → 3+ and C(c, y) →

1
2 as c → ∞.

3.5. Phase diagrams

We plot the four phase diagrams together in Fig. 5.
For fixed y ≤ 1, the zipping transitions occur with increasing c in the order

SF < AF ≡ SO < AO.

This can be understood in the same way as the two-dimensional case: SF loses no entropy at a contact, AF and SO each
lose three of the nine step choices, and AO loses six choices.

For fixed y > 1, the unzipped–zipped transitions occur with increasing c in the order

SF < AF < SO < AO.
14
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Fig. 5. The phase boundaries for the four three-dimensional models. The vertical lines are the boundaries between the free and zipped phases;
the horizontal lines are the boundaries between free and unzipped; and the sloping curves are the unzipped–zipped boundaries. The free-zipped
boundaries for the AF and SO models coincide.

The fact that the AF model ‘‘zips’’ together before the SO model can be understood by observing that the zipped phase for
the AF model has twice the density of contacts of the SO model, and so ρAF(c) decreases more quickly (with increasing c)
than ρSO(c).

In all cases the free-zipped and free-unzipped phase transitions are second-order, while the unzipped–zipped transi-
tions are first-order.

4. Conclusion

We have defined and analysed four different models of interacting pairs of directed polymers, in two and three
dimensions. The different models are classified according to whether the polymers are able to share edges or only sites,
and according to the allowed symmetries between the pair. In each case we incorporate two Boltzmann weights — one
to control the strength of the attraction/repulsion between the polymers, and another to model a force pulling apart the
ends. The models exhibit qualitatively similar but quantitatively different phase diagrams, which have been computed
exactly for two dimensions and (partly) numerically for three dimensions.

These models can be enhanced in a number of ways. One would be to include a Boltzmann weight to control the
flexibility or stiffness of the polymers; another would be to introduce an impenetrable surface with which the polymers
can interact. A further possibility would be to analyse how the polymers twist around one another.
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