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Abstract
We consider self-avoiding walks terminally attached to a surface at which they 
can adsorb. A force is applied, normal to the surface, to desorb the walk and we 
investigate how the behaviour depends on the vertex of the walk at which the 
force is applied. We use rigorous arguments to map out some features of the 
phase diagram, including bounds on the locations of some phase boundaries, 
and we use Monte Carlo methods to make quantitative predictions about the 
locations of these boundaries and the nature of the various phase transitions.

Keywords: pulled self-avoiding walks, adsorbing self-avoiding walks, phase 
diagram, Monte Carlo

(Some figures may appear in colour only in the online journal)

1.  Introduction and review

Polymer adsorption at a surface has been studied for many years [24]. More recently, with 
the introduction of techniques such as atomic force microscopy (AFM), it is possible to pull 
an adsorbed polymer off a surface and measure the required critical force for desorption [7, 
29]. This has led to a renewed interest in how polymers respond to an applied force [1, 2, 8, 
9, 15, 22].

Self-avoiding walk (SAW) models of polymers [12, 20] adsorbed at a surface and desorbed 
by the action of a force have been investigated previously. Most of the available results are 
about the case where the walk is terminally attached to an impenetrable surface and where the 
force is applied at the other unit degree vertex [4, 14, 17, 18, 21]. For a directed version of this 
model, see [11] and for related work see [26, 27].
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For the d-dimensional hypercubic lattice Zd  let the vertices have coordinates (x1, x2, . . . xd), 
xi ∈ Z. If cn is the number of n-edge self-avoiding walks starting at the origin then [5]

log d � lim
n→∞

1
n
log cn = inf

n>0

1
n
log cn = logµd � log(2d − 1)� (1)

where µd is the growth constant of the SAW. If the walk is constrained to lie in the half-lattice 
with xd � 0 while its first vertex is attached to the origin in the hyperplane xd  =  0 (the adsorb-
ing plane), then it is a positive walk and we write c+n  for the number of n-edge positive walks. 
It is known [28] that limn→∞

1
n log c+n = logµd.

Let c+n (v, h) be the number of n-edge positive walks with v + 1 vertices in the hyperplane 
xd  =  0 and with the xd-coordinate of the last vertex equal to h. We say that the walk has v visits 
and the last vertex has height equal to h. Define the partition function

C+
n (a, y) =

∑
v,h

c+n (v, h)avyh,� (2)

where a = exp(−ε/kBT) and y = exp(F/kBT) are the Boltzmann weights associated with 
the monomer-surface interaction energy ε and the pulling force F, respectively. If F  >  0 then 
y   >  1 and the force is directed away from the surface.

Suppose y   =  1 so that the positive walk interacts with the surface but is not subject to a 
force. This is the pure adsorption problem. The free energy is

κ(a) = lim
n→∞

1
n
logC+

n (a, 1)� (3)

and κ(a) is a convex function of log a [6]. There exists a critical value of a, ac  >  1, such 
that κ(a) = logµd when a � ac and κ(a) > logµd when a  >  ac, so that κ(a) is singular at 
a  =  ac  >  1 [6, 10, 19].

If a  =  1 the walk does not interact with the adsorbing plane and the free energy is

λ(y) = lim
n→∞

1
n
logC+

n (1, y).� (4)

λ(y) is singular at y   =  1 [1, 8, 9] and the walk is in a ballistic phase when y   >  1. It is also a 
convex function of log y [13].

In the general situation where a �= 1 and y �= 1 there is a thermodynamic limit in the model 
and the free energy is given by [14]

ψ(a, y) = lim
n→∞

1
n
logC+

n (a, y) = max[κ(a),λ(y)].� (5)

In particular, ψ(a, y) = logµd when a � ac and y � 1. For a  >  ac and y   >  1 there is a phase 
boundary in the (a, y)-plane along the curve given by κ(a) = λ(y). This phase transition is first 
order [4]. The fact that the phase boundary is determined by the condition that κ(a) = λ(y) 
has been used to locate the phase boundary accurately using exact enumeration and series 
analysis [4].

If AFM is used to pull the adsorbed polymer off the surface it is possible to apply the force 
at the last monomer (by functionalizing that monomer and attaching it to the AFM tip by a 
covalent bond). More typically the tip is brought into contact with the polymer and the force 
might be applied at any monomer [29]. This raises the question of how the critical force for 
desorption depends on where the force is applied [16].
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In this paper we consider the case where the force is applied at a vertex which is a chemical 
distance �tn� from the origin. This is a model of an attached adsorbing linear polymer being 
pulled at a vertex which is a distance tn along the polymer by a vertical force F (see figure 1).

Number the vertices along the SAW j = 0, 1, . . . n where the zero’th vertex is at the origin. 
If the force is applied at the vertex numbered �tn� and t � 1

2, then it is known [16] that the 
phase diagram is similar to the case where t  =  1 and the force is applied at the unit degree 
end-vertex of the walk. Less is known if 0 < t < 1

2 , but it is established that there is an addi-
tional mixed phase where the free energy depends on both a and y  and that the free energy is 
a function of t, namely the point where the force is applied [16].

In section 2 we examine the phase diagram of the model when 0  <  t  <  1/2. We prove that 
there are four phases in the model, namely a free phase, an adsorbed phase, a ballistic phase, 
and a mixed phase, and we obtain rigorous bounds on the locations of the boundaries between 
the ballistic and mixed phases and between the mixed and adsorbed phases. In section 3 we 
employ Monte Carlo simulation using the flatPERM algorithm to investigate these results for 
finite-size walks. We simulate SAWs of length n  =  256 for several values of t � 1/2 on the 
two-dimensional (2D) square lattice and three-dimensional simple cubic lattice which are 
expected to produce qualitatively similar results. For the 2D case we also use exact enumera-
tion data from [4] to visualise results for the phase boundaries in comparison to the Monte 
Carlo results.

2.  Rigorous results

Consider an n-edge SAW attached at its zero’th vertex to an impenetrable plane xd  =  0, with 
v + 1 vertices in this plane and having the xd-coordinate of its vertex numbered �tn� equal to h. 
We say that the vertex has height h and that the walk has v visits. We shall be concerned with 
the case where the force is applied at vertex numbered �tn� and 0 < t � 1/2 (see figure 1).

Write w(t)
n (v, h) for the number of such walks and write the partition function as

W(t)
n (a, y) =

∑
v,h

w(t)
n (v, h)avyh.� (6)

When we can prove that the limit exists we shall write ωt(a, y) = limn→∞
1
n logW(t)

n (a, y) for 
the free energy.

First we prove a result about the free energy when 0  <  t  <  1, y   >  1 and a � ac. This 
extends a result in [16] when y   >  1 and a � 1.

Figure 1.  An adsorbing SAW of length n attached to the adsorbing plane and being 
pulled by a force F at a vertex which is a chemical distance �tn� from the origin. This 
walk has 4 visits and the height of the pulled vertex is 3.

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 405001
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Lemma 1.  When 0  <  t  <  1, y   >  1 and a � ac the free energy is given by

ωt(a, y) = tλ(y) + (1 − t) logµd.

Proof.  We know from [16] that ωt(a, y) = tλ(y) + (1 − t) logµd = ωt(1, y) when a � 1 
and y   >  1. For a � ac and y   >  1 monotonicity implies that the free energy is bounded be-
low by ωt(1, y). To obtain an upper bound recall that the walk is subject to a force at vertex 
�tn�. Either the walk returns to the adsorbing plane after vertex �tn� or it does not return after 
vertex �tn�. In the latter case subdivide the walk into two subwalks at vertex �tn�. The first 
subwalk has extensive free energy �tn�λ(y) + o(n) and the second subwalk has extensive free 
energy equal to (n − �tn�) logµd + o(n). Treating the two walks as independent, adding the 
two terms together, dividing by n and letting n → ∞, shows that tλ(y) + (1 − t) logµd is an 
upper bound on the (intensive) free energy. If the walk does return to the adsorbing surface 
after vertex �tn�, suppose that the first return is at vertex �sn�. Subdivide the walk into three 
subwalks at vertex �sn� − 1 and at vertex �sn�. For the first walk, with �sn� − 1 edges, we have 
a condition that the last vertex is at a distance 1 above the surface. The free energy is bounded 
above by that of the set of walks where this last vertex is at any positive distance above the 
surface. The free energy of the first subwalk is therefore bounded above by

tmax[κ(a),λ(y)] + (s − t) logµd = tλ(y) + (s − t) logµd

since a � ac and y   >  1 so λ(y) > κ(a) = logµd . The middle subwalk has exactly one edge 
and one vertex in the surface and so makes no contribution to the free energy (after dividing 
by n and letting n → ∞). The final subwalk has free energy (1 − s)κ(a) = (1 − s) logµd  
since a � ac. Treating the three walks as independent and adding their contributions gives the 
upper bound

tλ(y) + (s − t) logµd + (1 − s) logµd = tλ(y) + (1 − t) logµd

which completes the proof.� □ 

Lemma 1 shows that the walk is in a ballistic phase when a � ac and y   >  1. The free 
energy is then ωt(a, y) = tλ(y) + (1 − t) logµd .

Next we shall state some results that were proved in [16].

	 (i)	�When a � ac and y � 1, ωt(a, y) = logµd. We say that the walk is in a free phase.
	(ii)	�When y � 1, ωt(a, y) = κ(a). If y � 1 and a  >  ac the walk is in an adsorbed phase.

In addition it was proved in [16] that, when 0  <  t  <  1/2,

lim inf
n→∞

1
n
logW(t)

n (a, y) � max[tλ(y) + (1 − t) logµd,χ(a, y),κ(a)],� (7)

where χ(a, y) = 2tλ(
√

y) + (1 − 2t)κ(a). The first term corresponds to the free energy in the 
ballistic phase, the third to the free energy in the adsorbed phase and the second term is a lower 
bound on the free energy in the mixed phase. This expression was used in [16] to prove that a 
mixed phase exists for all 0  <  t  <  1/2.

Now we examine where pairs of these bounds become equal. The condition

tλ(y) + (1 − t) logµd = 2tλ(
√

y) + (1 − 2t)κ(a)� (8)

defines a curve y = yI(a) in the (a, y)-plane, and the condition

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 405001
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2tλ(
√

y) + (1 − 2t)κ(a) = κ(a)� (9)

or, equivalently,

λ(
√

y) = κ(a)� (10)

defines a curve y = yII(a) in the (a, y)-plane. Note that yI(ac) = yII(ac) = 1 so both curves 
pass through the point (ac,1).

In the next lemma we address the monotonicity of yI(a) and yII(a).

Lemma 2.  When a  >  ac the functions yI(a) and yII(a) are monotone increasing functions 
of a.

Proof.  Rewrite (8) as

t[λ(y)− 2λ(
√

y)] = (1 − 2t)κ(a)− (1 − t) logµd.� (11)

The log-convexity of λ(y) implies that λ(y)− 2λ(
√

y) has positive derivative a.e. for all y   >  1 
so both the left hand side and right hand side of (11) are monotone increasing functions. This 
shows that y = yI(a) is monotone increasing. A similar argument shows that yII(a) is mono-
tone increasing. This follows directly from the monotonicity of κ(a) and λ(

√
y).� □ 

We can look at the behaviour at large y  by using our knowledge of the asymptotics of λ(y). 
We know that λ(y) → log y for large enough values of y  [14]. In this asymptotic regime we 
can substitute λ(y) = log y in (8) and solve giving

κ(a) =
(

1 − t
1 − 2t

)
logµd.� (12)

Since κ(a) is continuous and monotone strictly increasing for a  >  ac, this equation has a solu-
tion a0(t) for every t ∈ (0, 1

2 ). Since κ(a) is a strictly increasing function of a for a  >  ac, and 
the right hand side of equation (12) is a strictly increasing function of t for t ∈ (0, 1

2 ),

a0(t) = κ−1
(
(1 − t) logµd

1 − 2t

)
� (13)

is a strictly increasing function of t for 0  <  t  <  1/2. As t → 0 a0(t) → ac because κ(a) is 
strictly monotone increasing for a  >  ac Similarly, as t → 1

2  from below, a0(t) diverges.
In a similar way we can insert the asymptotic forms λ(y) → log y [14] and 

κ(a) → log a + logµd−1 [25] in (10). This implies that, in the asymptotic regime, 
yII(a) ∼ µ2

d−1a2.
We write y = yBM(a) for the ballistic-mixed phase boundary and y = yMA(a) for the 

phase boundary between the mixed and adsorbed phases, and we next address the connection 
between these two phase boundaries and the two curves yI(a) and yII(a). Suppose that a  >  ac 
and y   >  1. If y > yII(a) the free energy is strictly greater than κ(a) and the system is not in the 
adsorbed phase. Similarly, if y < yI(a) the system is not in the ballistic phase. If yI(a) > yII(a) 
there is a region of the (a, y)-plane where the system is not in either the adsorbed or ballis-
tic phases and we have the inequalities yMA(a) � yII(a) < yI(a) � yBM(a). If yI(a) < yII(a) 
these conditions are not met. We make this explicit in the next two lemmas.

Lemma 3.  When a  >  a0(t), yMA(a) � yII(a).

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 405001
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Proof.  Since the curve y = yI(a) is asymptotic to a  =  a0(t) and lies to the left of this line, yII(a) 
and yI(a) cannot intersect beyond a  =  a0(t). Beyond this point we have yMA(a) � yII(a).� □ 

The curve y = yII(a) intersects the line a  =  a0(t) when λ(
√

y) =
[

1−t
1−2t

]
logµd. The solu-

tion of this equation is

y = y0(t) =
(
λ−1

(
(1 − t) logµd

1 − 2t

))2

� (14)

because λ(y) is strictly monotone for y   >  1. This implies the following:

Lemma 4.  When y   >  y 0(t), yBM(a) � yI(a) > yII(a).

These results imply that the phase boundary y = yBM between the ballistic and mixed 
phases lies between the line a  =  ac and the line a  =  a0(t). In addition, at large values of y , 
the phase boundary y = yMA between the mixed and adsorbed phases cannot increase more 
rapidly than quadratically in a.

We can look at this from another point of view. Suppose that aI(y) and aII(y) are the inverse 
functions to yI(a) and yII(a). Then yI(a) > yII(a) implies that aII(y) > aI(y). But

aI(y) = κ−1
(

tλ(y) + (1 − t) logµd − 2tλ(
√

y)
1 − 2t

)
� (15)

and

aII(y) = κ−1(λ(
√

y)).� (16)

Since κ(a) is monotone increasing the condition aII(y) > aI(y) is equivalent to

λ(
√

y) >
tλ(y) + (1 − t) logµd − 2tλ(

√
y)

1 − 2t
� (17)

or, equivalently,

λ(
√

y) > tλ(y) + (1 − t) logµd.� (18)

Since λ(y) → log y this condition is always satisfied for 0  <  t  <  1/2 at sufficiently large y . 
This gives an alternative proof that there is a mixed phase for all 0  <  t  <  1/2.

We have proved the existence of four phases, free, adsorbed, ballistic and mixed. However, 
we cannot establish rigorously the order of the ballistic-mixed or adsorbed-mixed phase 
transitions. This is because we only have a lower bound on the free energy in the mixed 
phase. Although we know that a mixed phase exists for all t  <  1/2 we do not know rigorously 
whether the mixed phase extends down to (ac,1) or whether there is a phase boundary between 
the ballistic and adsorbed phases for a close to ac and y  close to 1.

There are two basic possible forms that the phase diagram might take, and these are sketched 
in figure 2. In the left hand figure the curves yI(a) and yII(a) cross for some a = â < a0(t). For 
values of a > â there is a mixed phase but for a < â we do not know whether or not a mixed 
phase exists. In the right hand figure yI(a) > yII(a) for all a  >  ac and a mixed phase exists for 
all a  >  ac.

3.  Monte Carlo results

The Monte Carlo simulations of this system are carried out using the flatPERM algorithm 
[23]. Self-avoiding walks up to length n  =  256 are grown from a point on the surface defining 

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 405001
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the half-space of the square and simple cubic lattices. At each growth step the algorithm 
records the number of contacts with the surface v and the height above the surface h of the 
point labelled �tn�. FlatPERM produces a flat histogram where every value of (n, v, h) is sam-
pled equally. For this application, a slight modification is required to sample chains based on 
the height of an interior vertex.

The normal flatPERM process grows samples in order to produce a histogram that is flat 
with respect to each microcanonical parameter, however this does not work for the height of 
an interior vertex. In this case the chain is not induced to grow away from the surface in the 
initial stage to achieve a large value of h, and then subsequently grow back towards the surface 
to achieve large v. Thus there is substantial undersampling of configurations that are dominant 
in the mixed phase. This issue is exacerbated as t or n increases. The resolution is to grow the 
chains normally up to length �tn�, using a histogram of samples marked by the height of the 
endpoint vertex hend  to run the algorithm. This ensures that the simulations includes samples 
that have most of the first �tn� vertices extended away from the surface. When the chain has 
grown longer than �tn�, the flattening with respect to the endpoint height is turned off and the 
histogram is only flattened with respect to n and v. Meanwhile, a second histogram is used to 
record the samples and weights of each chain with respect to the desired parameters v and h 
for all chain lengths up to n. This histogram is used to calculate the correct thermodynamic 
quantities of the system of interest but is not used in the sampling process. The benefit of this 
modified version of flatPERM is to efficiently sample SAWs with respect to the height of the 
specified interior vertex.

Figure 2.  If t < 1
2 the basic possible forms of the phase diagram of adsorbed self-

avoiding walks pulled at an interior vertex are given by these two panels. If the bounds 
yI(a) and yII(a) cross at a = â < a0(t) then we do not know that there is a mixed phase 
for a < â, and the phase diagram may have the form on the left, where there is a first 
order phase boundary between the adsorbed and ballistic phases. For a > â there is a 
mixed phase. If there is no intersection between yI(a) and yII(a) for any value of a  >  ac, 
then the phase diagram will be similar to the diagram on the right. In this case there 
is a mixed phase for all a  >  ac. The dashed curves correspond to the bounds yI(a) and 
yII(a), while the phase boundaries are denoted by solid curves. If t � 1

2 then the curves 
yI(a) and yII(a) are reversed and there is no mixed phase between the adsorbed and 
ballistic phases.

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 405001
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The output of the simulation is the weights Wnvh that approximate the counts w(t)
n (v, h) used 

to construct the partition function equation (6). Then we calculate the order parameters 〈v〉/n 
and 〈h〉/n as weighted sums

〈Q〉n(a, y) =

∑
v,h Q(n, v, h)Wnvhavyh

∑
v,h Wnvhavyh ,� (19)

where Q is a generic thermodynamic quantity. Finally, we calculate the Hessian matrix of the 
finite-size free energy

Hn =




∂2ω
(n)
t

∂a2
∂2ω

(n)
t

∂a∂y
∂2ω

(n)
t

∂y∂a
∂2ω

(n)
t

∂y2


 ,� (20)

where derivatives of ω(n)
t = 1

n logW(t)
n (a, y) are calculated using first and second moments of 

v and h according to equation (19). For each value of t we ran five independent simulations 
and averaged the results, obtaining a total of 1.3 × 1011 samples at maximum length n  =  256 
on the square lattice and 1.5 × 1011 samples at maximum length n  =  256 on the simple cubic 
lattice.

3.1.  Phase diagram

We focus first on the 2D case, SAWs simulated on the square lattice. The phase diagram of this 
system is shown by the order parameters as functions of Boltzmann weights a and y . Figure 3 
shows the average number of adsorbed vertices 〈v〉/n scaled by chain length n and figure 4 
shows the average height of the pulled vertex 〈h〉/tn scaled by tn, for t = 3/16, . . . , 1/2. 
Note that both quantities are on the same colour scale where blue corresponds to 0 and red 
corresponds to 1. Collectively, these quantities show the four phases: free, adsorbed, ballistic 
and mixed.

The free phase is bounded by the adsorption transition point at a = ac and the ballistic 
transition at y   =  1, and is the region where the surface interaction is absent or repulsive and 
the force changes from a pull away from the surface into a local push towards the surface. 
This matches the known result for SAWs pulled at the endpoint [1]. Within this phase both the 
expected number of surface contacts and the average height of the pulled (or pushed in this 
case) vertex is zero.

As a increases while keeping y � 1 the system undergoes a transition to the adsorbed phase 
at a critical temperature ac > 1. Beyond the critical point, the average number of surface con-
tacts quickly approaches its maximum value 〈v〉/n ≈ 1 (red) while the height of the pulled 
vertex is suppressed to 〈h〉/tn ≈ 0 (blue) so almost the entire SAW is adsorbed at the surface.

For a < ac, as y  increases the system enters the ballistic phase at y   =  1, where the thermo-
dynamics depends only on the pulling force. This phase is characterised by 〈v〉/n tending to 
zero (blue) while 〈h〉/tn ≈ 1 (red). The expected configuration is that the first tn vertices are 
stretched out away from the surface and then the remainder of the chain assumes a disordered 
coil configuration relative to the pulled vertex.

For some values of t the mixed phase is visible between the adsorbed and ballistic phases 
and here 〈v〉/n < 1 and 〈h〉/tn < 1 (yellow/green). This indicates a configuration where the 
first tn vertices are extended away from the surface, the next tn vertices extend back down to 
the surface and the remaining (1 − 2t)n vertices are adsorbed to the surface. As t increases the 
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mixed phase shrinks as the system tends towards that of a SAW pulled at the midpoint which 
does not have a mixed phase.

For a closer look at the scale of the phase transitions we show in figures 5(a) 〈v〉/n and 
(b) 〈h〉/tn as functions of a at fixed y   =  5.1, as well as (c) the force-extension curves at fixed 
a  =  2.6. All values of t are shown, for n  =  256. The plots of 〈v〉/n for small t clearly show two 
regions where the number of visits increases rapidly, corresponding to the transitions from 
the ballistic to the mixed phase and from the mixed to the adsorbed phase. These two regions 
become closer together as t increases and become a single region at t  =  1/2 where there is no 
mixed phase. The values of 〈h〉/tn decrease as a increases beyond the ballistic-mixed bound-
ary and then decrease more sharply at the mixed-adsorbed boundary becoming close to zero 
in the adsorbed phase. The force-extension curves show a single plateau corresponding to the 
adsorbed-mixed transition. As t increases towards 1/2 the plateau becomes more pronounced 
but the location of the plateau changes only slightly. There is no plateau corresponding to the 
mixed-ballistic transition since this is not associated with a major change in the extension at 
the vertex at which the force is applied.

3.2.  Phase boundaries

To investigate the phase boundaries more closely we consider the variance of the order param
eters, in the form of the Hessian covariance matrix, equation (20). In figure 6 we show density 
plots of the logarithm of the largest eigenvalue of the Hessian matrix of the free energy for 
n  =  256 and 3/16 � t � 1/2. In this figure blue corresponds to very small variance and red 
corresponds to high variance and thus mark the phase boundaries, but are not on a uniform 

Figure 3.  Order parameter 〈v〉/n for n  =  256 for a range of t � 1/2 on the square 
lattice. In each plot the ballistic phase (top left) is distinguished by 〈v〉/n ≈ 0 (blue), 
the adsorbed phase (bottom) is distinguished by 〈v〉/n ≈ 1 (red) and the mixed phase 
(top right), where it occurs, is distinguished by intermediate values of 〈v〉/n ≈ 1 − 2t 
(green/yellow).
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scale. Overlaid on these plots are the bounding curves yI(a) and yII(a) defined in section 2. 
These curves are determined from equations (8) and (10) by using exact enumeration data 
from [4] to calculate κ(a) and λ(y). We have previously used this technique to test phase dia-
grams from Monte Carlo data for a similar problem involving branched polymers [3].

For the smaller values of t the condition yI > yII holds and therefore yI(a) and yII(a) are 
valid bounds on the ballistic-mixed and adsorbed-mixed phase boundaries. In figures 6(a)–
(c), corresponding to t = 3/16, 1/4, 5/16, the ballistic-mixed boundary lies above yI and the 
adsorbed-mixed boundary coincides with yII. At some value of t between 3/8 and 7/16 the 
bounding lines cross over so yI < yII, and thus yI and yII are no longer bounds on the phase 
boundaries. This is reflected in figures 6(e) and (f) where the phase boundaries appear to have 

Figure 4.  Order parameter 〈h〉/tn for n  =  256 for a range of t � 1/2 on the square 
lattice. In each plot the adsorbed phase (bottom) is distinguished by 〈h〉/tn ≈ 0 
(blue) but there is less distinction between the ballistic and mixed phases (top) where 
〈h〉/tn ≈ 1 (red) for both.

Figure 5.  Order parameters (a) 〈v〉/n and (b) 〈h〉/tn as functions of a at fixed y   =  5.1 
and (c) force extension curves at fixed a  =  2.6. Data for all values of t are shown for 
n  =  256 on the square lattice.
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merged and lie below yII. Finally, for t  =  1/2 the pulling is at the midpoint so as expected the 
mixed phase disappears as the phase boundaries merge completely. It remains an open ques-
tion as to whether the mixed phase does exist at t  =  7/16 but is vanishingly small for all values 
of a down to ac. Note that yI is still bounded to the right by the asymptote a0 which for t  =  7/16 
is a0 ≈ 78.7, so at large enough a the bounds will cross back and yI > yII again. However, the 
enumeration data does not extend to this regime and we do not see the mixed phase re-emerge 
in the Monte Carlo data. The value of t where this crossover occurs is not expected to have any 
physical meaning, and simply reflects how tight the bound is in equation (7).

The outlier is t  =  3/8, shown in figure 6(d), where yI > yII but the Monte Carlo data sug-
gests yBM < yI. We believe this is mainly due to finite-size effects in the Monte Carlo simula-
tions such that the location of the ballistic-mixed boundary yBM for finite n deviates from its 
value in the thermodynamic limit. Calculating thermodynamic quantities in the mixed phase 
(or on its boundaries) is most sensitive to sampling of configurations with both large h and 
moderately large v, which are the hardest to obtain, especially as t increases. Thus the devia-
tion is exacerbated only for values of t where the phase boundaries are close yet should not be 
merged, i.e. t  =  3/8. Note that the adsorbed-mixed boundary still coincides with yII here. We 
therefore conclude that the phase diagrams generated from numerical simulation generally 
agree with the rigorous results.

We can also discuss some properties of the system in the limit t → 0, as informed by 
the trends visible in figures 3–6 for the smaller values of t. We are already aware that at the 
point y   =  1 the force is zero and there is only the free and adsorbed phases. Similarly, in the 
case t  =  0, for any y , the pulling force is applied to the fixed end vertex of the chain and has 

Figure 6.  Density plot of the logarithm of the largest eigenvalue of the Hessian matrix 
of the free energy of SAWs on the square lattice for n  =  256 and a range of t � 1/2. 
Circles and crosses mark points along yI(a) and yII(a), respectively, calculated from 
exact enumeration data. Red indicates regions of high variance of the order parameters.
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no effect. Thus as t → 0 we expect the phase diagram to change to reflect the decreasing 
y -dependence of the free energy. All four phases will exist for t  >  0 but as t decreases the 
order parameters in the mixed phase tend toward their values in the adsorbed phase. This is 
visible in figures 5(a) and (b) where the latent heat of the adsorbed-mixed transition shrinks 
near a  =  3.5. The location of the adsorbed-mixed boundary remains as t → 0 but the ballistic-
mixed boundary will become more vertical since it is bounded by yI and therefore by a0. By 
equation (13) as t → 0 we obtain κ(a0(0)) = logµd, which implies a0(0) = ac since κ(a) is 
strictly increasing for a > ac. As t → 0 the mixed phase merges with the adsorbed phase and 
the ballistic phase merges with the free phase and the free energy is independent of y . This is 
in accordance with lemma 1. The orders of the transitions do not change as t → 0.

Finally we present some results for SAWs pulled at an interior vertex on the simple cubic 
lattice. All the results of section 2 apply generally, namely the existence of all phases and 
the bounds on their locations. Each phase in three dimensions is characterised by the same 
values of the order parameters as the 2D system. The difference is that the free energies κ(a) 
and λ(y) are different functions and we do not have exact enumeration data for SAWs in 
three dimensions to calculate yI, yII or a0. Therefore, we show in figure 7 density plots of the 
logarithm of the largest eigenvalue of the Hessian matrix of the free energy for n  =  256 and 
3/16 � t � 1/2. Qualitatively the phase diagrams are the same as the 2D case. Namely, the 
mixed phase is apparent at small t with the ballistic-mixed boundary bounded by a vertical 
asymptote. As t increases the ballistic-mixed boundary moves towards the adsorbed-mixed 
boundary and there is some value of t where the two appear to merge or become very close 
together. The adsorbed-mixed boundary is independent of t until the ballistic-mixed boundary 
merges with it. Without precise knowledge of the free energies in three dimensions we cannot 

Figure 7.  Same as figure 6 but for SAWs on the simple cubic lattice and a larger range 
in y  on the vertical axis.
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judge how well the boundaries are bounded by the curves yI(a) and yII(a) but we note that the 
value of t where the mixed phase disappears is less than in two dimensions.

4.  Discussion

A SAW, terminally attached to an impenetrable surface at which it can adsorb, can be pulled 
off the surface by applying a force normal to the surface. This force can be applied at a par
ticular vertex and, in this paper, we are concerned with the situation where the force is applied 
at a vertex between the point of attachment and the middle vertex along the walk. In this case, 
even if the walk is completely extended at this vertex, the remainder of the walk can return to 
the surface and be partially adsorbed.

We have examined this situation rigorously and we showed that there are four phases, a free 
phase where the adsorption and the force play little role, an adsorbed phase, a ballistic phase, 
and a mixed phase where the free energy depends on both the force and the strength of the 
interaction with the surface. We have derived bounds on the locations of the phase boundaries 
between the ballistic and mixed phases and between the mixed and adsorbed phases. These 
bounds depend on the vertex at which the force is applied.

We have used Monte Carlo methods to map out the details of the phase diagram as a func-
tion of where the force is applied, and we have investigated the nature of the phase transitions. 
Overall the agreement between the Monte Carlo results and the rigorous bounds is excellent.
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