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Abstract
We investigate the phase diagram of a self-avoiding walk model of a 3-star 
polymer in two dimensions, adsorbing at a surface and being desorbed by the 
action of a force. We show rigorously that there are four phases: a free phase, 
a ballistic phase, an adsorbed phase and a mixed phase where part of the 3-star 
is adsorbed and part is ballistic. We use both rigorous arguments and Monte 
Carlo methods to map out the phase diagram, and investigate the location and 
nature of the phase transition boundaries. In two dimensions, only two of the 
arms can be fully adsorbed in the surface and this alters the phase diagram 
when compared to 3-stars in three dimensions.

Keywords: 3-star polymer desorption, polymer adsorption, polymer phase 
diagram, Monte Carlo, polymer statistical mechanics

(Some figures may appear in colour only in the online journal)

1. Introduction

There has been considerable recent interest in how self-avoiding walks [12, 22] respond to a 
force. For a review see [24]. A particularly interesting situation is when the walk is adsorbed 
at a surface and is then desorbed by a force applied at the last vertex of the walk [6, 14, 19, 20, 
23]. For related work see for instance [26] and [27].

It is natural to ask how the architecture of a polymer affects its adsorption properties and 
how it responds to a force. This was investigated for lattice polygons (a model of ring poly-
mers) [5] and we have a fairly complete understanding of the behaviour in three dimensions. In 
two dimensions the situation is more difficult but Beaton [3] has given an essentially complete 
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solution for staircase polygons in two dimensions. Various models of branched polymers have 
also been investigated [4, 16, 17].

In this paper we shall be concerned with pulled adsorbing star polymers (see figure 1). A 
star with f  arms, or an f-arm star, is a connected graph with no cycles, one vertex of degree f  
and f  vertices of degree 1. The star is uniform if all the arms have the same number of edges. 
In this paper we shall only be concerned with the uniform case and we shall drop the adjec-
tive unless it is likely to cause confusion. We shall count embeddings in the d-dimensional 
hypercubic lattice, Zd , of stars with one vertex of degree 1 fixed at the origin. Write s( f )

n  for 
the number of such embeddings with a total of n edges. Note that f  must divide n. For the 
d-dimensional hypercubic lattice Zd  with f = 3, . . . , 2d , we know that [29, 30]

lim
n→∞

1
n
log s( f )

n = logµd (1)

where µd is the growth constant of the d-dimensional hypercubic lattice (and the limit n → ∞ 
is taken through n  =  fm (multiples of f  in N)).

To investigate how an adsorbed star responds to a force we can attach the star to an impen-
etrable surface at a vertex of degree 1 and pull at another vertex of degree 1. By keeping track 
of how many vertices are in the surface and the height of the vertex where the force is applied 
we can map out the phase diagram of the system. This has been carried out for 3-stars in three 
dimensions both rigorously [16] and using Monte Carlo methods [4]. In three dimensions we 
have a considerable amount of information available about the phase diagram [4, 16]. In two 
dimensions the situation seems more complicated since it is not possible for the star to lie 
entirely in the surface at which adsorption occurs. Instead, in the adsorbed phase two arms 
may be adsorbed and screen the third arm from interacting with the adsorbing surface. This 
changes the character of the adsorbed phase and makes rigorous treatment of the model diffi-
cult. We augment our results by Monte Carlo simulations to map out the phase diagram of the 
model. We rigorously identify four phases, namely a free phase, and ballistic, adsorbed, and 
mixed phases. We rigorously determine three of the phase boundaries between these phases, 
and give numerical evidence for the location of the fourth (adsorbed-mixed) phase boundary.

2. A brief review

This section gives some rigorous results about self-avoiding walks adsorbed at a surface and 
subject to a force that can desorb the walk. We shall need some of these result in section 3.

Figure 1. A pulled adsorbing 3-star polymer.
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Consider the d-dimensional hypercubic lattice Zd . The vertices in this lattice have coor-
dinates (x1, x2, . . . xd), xi ∈ Z. Suppose that cn is the number of n-edge self-avoiding walks 
starting at the origin. Then [7]

log d � lim
n→∞

1
n
log cn = logµd � log(2d − 1) (2)

where µd is the growth constant of the self-avoiding walk. Note that the numbers of self-avoid-
ing walks and uniform stars grow at the same exponential rate [29]. If the walk is constrained 
to lie in or on one side of the hyperplane xd  =  0 we call the walk a positive walk and write c+n  
for the number of n-edge positive walks. It is known [28] that

lim
n→∞

1
n
log c+n = logµd. (3)

Suppose that c+n (v, h) is the number of n-edge positive walks with v + 1 vertices in the 
hyperplane xd  =  0 and with the xd-coordinate of the last vertex equal to h. We say that the walk 
has v visits and the last vertex has height equal to h. Define the partition function

C+
n (a, y) =

∑
v,h

c+n (v, h)avyh, (4)

where a = exp(ε/kBT) and y = exp(F/kBT) are the Boltzmann weights associated with the 
monomer-surface interaction energy −ε and the pulling force F, respectively.

Suppose that the positive walk interacts with the surface but is not subject to a force (so that 
y   =  1). Then the (reduced) free energy is

κ(a) = lim
n→∞

1
n
logC+

n (a, 1) (5)

and we know that there exists a critical value of a, ac  >  1, such that κ(a) = logµd when 
a � ac and κ(a) > logµd when a  >  ac. The free energy κ(a) is singular at a  =  ac  >  1 [8, 11, 
21] and it is a convex function of log a [8].

If the walk is subject to a force but does not interact with the (impenetrable) surface then 
a  =  1 and the free energy is

λ(y) = lim
n→∞

1
n
logC+

n (1, y). (6)

λ(y) is singular at y   =  1 [2, 9, 10] and the walk is in a ballistic phase when y   >  1. Also λ(y) 
is a convex function of log y [13].

If we return to the general situation where a �= 1 and y �= 1 then the limit defining the free 
energy exists [14] and the free energy is given by

ψ(a, y) = lim
n→∞

1
n
logC+

n (a, y). (7)

Moreover, it is known [14] that

ψ(a, y) = max[κ(a),λ(y)] (8)

and, in particular, ψ(a, y) = logµd when a � ac and y � 1. For a  >  ac and y   >  1 there is a 
phase boundary in the (a, y)-plane along the curve given by κ(a) = λ(y). This phase transition 
is first order [6].

Several homeomorphism types (corresponding to different polymer architectures) have 
been investigated including polygons (as a model of ring polymers) [5] and various types of 

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 315002



4

branched polymers [4, 16, 17]. In particular, consider 3-star polymers modelled as 3-stars on 
the simple cubic lattice [16]. The 3-star is terminally attached to an impenetrable surface at 
which it can adsorb, and pulled normal to the surface at another unit degree vertex. The free 
energy has been shown [16] to be given by the expression

σ(3)(a, y) = max

[
1
3
(2λ(y) + logµ3),

1
3
(λ(y) + 2κ(a)),κ(a)

]
. (9)

Each of the terms in this expression corresponds to a phase, so that we have ballistic, mixed 
and adsorbed phases, in addition to a free phase with free energy equal to logµ3. This model 
has also been studied using a Monte Carlo approach [4] and all these phases, and the corre-
sponding phase boundaries, are clearly seen in that study.

3. Some rigorous results

In [16] we considered the case of a 3-star on the simple cubic lattice Z3, terminally attached to 
a surface, and pulled at another unit degree vertex. Many of the arguments in that paper work 
on the two-dimensional square lattice Z2, but with an important exception. When we consider 
the adsorbed phase of the 3-star, it is not possible for all the vertices of the star to be adsorbed 
in the surface because two arms of the star partially shade the surface from the third arm. This 
results in a problem with fully characterizing the free energy of the adsorbed phase. We can 
construct a lower bound on the free energy corresponding to two arms being in the surface and 
the third arm being out of the surface, but we cannot construct a corresponding upper bound. 
As we shall see, however, it is still possible to make some useful predictions about the form of 
the phase diagram in two dimensions.

We consider Z2 with the obvious coordinate system (x1, x2) so that all vertices have integer 
coordinates. We consider uniform 3-stars with a vertex of degree 1 at the origin, all vertices 
having non-negative x2-coordinate, pulled (in the x2-direction) at another vertex of degree 1. 
Suppose that the (uniform) star has n edges, with n being a multiple of 3 so that each arm has 

n/3 edges. We write s(3)
n (v, h) for the number of these stars with n edges, v + 1 vertices in the 

surface x2  =  0 and with the x2-coordinate of the unit degree vertex where the force is applied 
equal to h. We call v the number of visits and h the height. The partition function is given by

S(3)
n (a, y) =

∑
v,h

s(3)
n (v, h)avyh. (10)

Our aim is to find useful bounds on the free energy. We obtain lower bounds by strategy 
arguments and these arguments are essentially those used in [16]. To obtain upper bounds we 
consider the arms of the star as independent and consider cases where one, two or three arms 
have vertices in x2  =  0. From these bounds we sketch in figure 2 the phase diagram.

We state the lower bounds as a lemma:

Lemma 1. For all values of a and y 

lim inf
n→∞

1
n
log S(3)

n (a, y) � max

[
1
3
(2λ(y) + logµ2),

1
3
(λ(y) + 2κ(a))

]
.

The proof of lemma 1 is essentially the same as the corresponding proof given in [16] and 
we do not repeat it here. The first term corresponds to the ballistic phase where two arms are 
pulled and the third is free, while the second term corresponds to a mixed phase with two arms 
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adsorbed and the third being pulled. We show that each of these bounds is sharp in certain 
regions of the phase diagram. Note however that in three dimensions there is an additional 
lower bound of κ(a), corresponding to all three arms being adsorbed (see lemma 6 in [16]). 
In three dimensions one can confine all three arms to disjoint wedges each of which allows 
adsorption. In two dimensions the partial screening of the surface by two arms makes this not 
possible.

The best upper bound that we have is as follows:

Lemma 2. For all values of a and y 

lim sup
n→∞

1
n
log S(3)

n (a, y) � max

[
1
3
(2λ(y) + logµ2),

1
3
(λ(y) + 2κ(a)),κ(a)

]
.

Proof. If only one arm has vertices in x2  =  0 the free energy is bounded above by

1
3
(max[κ(a),λ(y)] + λ(y) + logµ2).

To obtain this treat the three arms as independent. Then the contributions from the three arms 
are the three terms in the above expression. If two arms have vertices in the surface their 

Figure 2. The phase diagram of pulled adsorbing 3-stars in the square lattice. For y � 1 
and a � ac the free energy is equal to logµ2. This is a free phase with phase boundaries 
at y   =  1 separating it from the ballistic phase, and at a  =  ac separating it from the 
adsorbed phase. If y > max{1, yI(a)}, then the 3-stars are in a ballistic phase with free 
energy given by (2λ(y) + logµ2)/3. If 2κ(a)− logµ2 � λ(y) � κ(a) then the system 
is in a mixed phase. If y � 1 and a  >  ac then the 3-stars are adsorbed. If a  >  ac and 
κ(a) > λ(y) then the free energy is bounded by equations  (13) and (14). Therefore, 
there is a phase boundary between the solution y II(a) of λ(y) = κ(a) and the line a  >  ac 
and y   =  1 indicated by broken lines.

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 315002
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contrib ution to the free energy is max[2λ(
√

y), 2κ(a)] [15] while the third arm contributes 
λ(y). Hence the free energy is bounded above by

1
3
(max[2λ(

√
y), 2κ(a)] + λ(y)) �

1
3
(max[λ(y) + logµ2, 2κ(a)] + λ(y)),

where this inequality follows from the log convexity of λ(y) [13]. If all three arms have verti-
ces in x2  =  0 the free energy is bounded above by

1
3
(max[λ(y),κ(a)] + 2κ(a)).

Recall that κ(a) � logµ2. Putting these upper bounds together completes the proof. □ 

If y � 1 λ(y) = log µ2 and if a � ac κ(a) = logµ2. Therefore if y � 1 and a � ac the 
lower and upper bounds all give logµ2 so σ(3)(a, y) = limn→∞ n−1 log S(3)

n (a, y) = log µ2 
and the system is in the free phase.

If y   >  1 and λ(y) > 2κ(a)− logµ2 the free energy is given by

σ(3)(a, y) =
1
3
(2λ(y) + logµ2) (11)

and the system is in the ballistic phase. Since λ(y) is singular at y   =  1 [2] there is a phase 
boundary between the free phase and the ballistic phase at y   =  1 for a  <  ac.

If 2κ(a)− logµ2 � λ(y) � κ(a) the free energy is given by

σ(3)(a, y) =
1
3
(λ(y) + 2κ(a)). (12)

The free energy depends on both a and y  and we say that the system is in a mixed phase. 
There is a phase boundary between the ballistic and mixed phases at the solution of 
λ(y) = 2κ(a)− logµ2. Since λ(y) is convex in log y and κ(a) is convex in log a, they are 
differentiable ae. and strictly increasing if y   >  1 and a  >  ac. This shows that λ(y) has an 
inverse function λ−1(x) which is continuous and increasing for x > logµ2 and is also dif-
ferentiable ae. The phase boundary between the ballistic and mixed phases is given by 
yI(a) = λ−1 (2κ(a)− logµ2) which is continuous for all a  >  ac and is an increasing function 
(since λ−1(a) is increasing and continous). The phase boundary y I(a) is also differentiable ae. 
The methods of [6] can be used to establish that the phase boundary y I(a) is first order, except 
perhaps at (ac,1).

When κ(a) > λ(y) we have less information but we know that

lim inf
n→∞

1
n
log S(3)

n (a, y) �
1
3
(2κ(a) + λ(y)) (13)

and

lim sup
n→∞

1
n
log S(3)

n (a, y) � κ(a). (14)

When y � 1 we know that λ(y) = log µ2. Since κ(a) = logµ2 when a � ac and κ(a) > logµ2 
when a  >  ac there is a phase boundary at a  =  ac for y   <  1.

When a  >  ac, there is a phase boundary between the solution to the equation λ(y) = κ(a) 
(given by yII(a) = λ−1(κ(a))) and the line y   =  1.

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 315002
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These results establish the locations of three phase boundaries and give bounds on the loca-
tion of a fourth boundary. These four phase boundaries meet at (ac,1) which is a multicritical 
point in the phase diagram.

Our inability to locate the phase boundary between the adsorbed and mixed phases stems 
from the weak upper bound, κ(a). We expect that the free energy in the adsorbed phase will 
be (2κ(a) + logµ2)/3, corresponding to two arms being adsorbed and the third arm (par-
tially shielded from the surface) contributing the free energy of a free arm. We have been 
unable to prove this because we cannot construct an argument giving a sharp upper bound, 
in contrast with the three dimensional case (see lemma 11 in [16]). If the free energy in the 
adsorbed phase was (2κ(a) + logµ2)/3 then the phase boundary between the adsorbed and 
mixed phases would be at y   =  1 for a  >  ac. We shall provide Monte Carlo evidence for this.

4. Monte Carlo results

We have simulated pulled and adsorbing uniform 3-stars on the square lattice with arm lengths 
up to 128 using the flatPERM algorithm [25]. The 3-stars are modelled as three self-avoiding 
walks grown from the origin with the surface defined as the smallest x2 value of any vertex in 
the 3-star. Further details of the application of flatPERM to f -stars are described in [4] where 
it was used for 3-stars on the simple cubic lattice. While the change from three to two dimen-
sions introduces a difficulty in rigorously proving the free energy and phase boundaries, for 
Monte Carlo simulations it is trivial to change the lattice upon which the f -stars are embedded. 
Numerical results thus complement the rigorous treatment discussed in section 3. In this sec-
tion we present the numerical results in terms of the arm length l  =  n/3.

The output of the simulation are the weights Wnvh that approximate the counts s(3)
n (v, h) 

used to construct the partition function equation (10). Then we calculate the order parameters 
〈v〉/l, 〈h〉/l and 〈z0〉/l as weighted sums

〈Q〉n(a, y) =

∑
v,h Q(n, v, h)Wnvhavyh

∑
v,h Wnvhavyh , (15)

where Q is a generic thermodynamic quantity. Another quantity of interest is the probability 
distribution of the number of contacts at a given temperature and interaction strength (i.e. 
given a and y ):

P(v) =
∑

h Wnvhavyh
∑

v,h Wnvhavyh (16)

and similar for the probability distribution of the height of the pulled vertex, P(h). Finally, we 
calculate the Hessian matrix of the free energy

Hn =




∂2S(3)
n

∂a2
∂2S(3)

n
∂a∂y

∂2S(3)
n

∂y∂a
∂2S(3)

n
∂y2


 . (17)

For this work we ran ten independent simulations with 3 × 104 iterations each and averaged 
the results, obtaining a total of 1.2 × 1011 samples at maximum arm length l  =  128.

4.1. Phase diagram

To map out the phase diagram we first look at the order parameters. Figure 3 shows (a) the 
average number of adsorbed vertices 〈v〉/l, (b) the average height of the pulled vertex 〈h〉/l, 
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and (c) the average height of the central vertex 〈z0〉/l, each scaled by arm length l  =  128. 
Collectively, these quantities show the four phases: free, ballistic, adsorbed and mixed. In 
figure 4 are example configurations for each phase taken from the simulations.

The free phase is bounded by the adsorption transition point at a = ac and the ballistic 
transition at y   =  1, and is the region where the surface interaction is repulsive or insufficiently 
large to cause adsorption (a � ac) and the force is absent or is a local push towards the surface 
(y � 1). This matches the known result for SAWs [2]. Within this phase both the expected 
number of surface contacts and the scaled average height of the pulled (or pushed in this case) 
vertex is zero. The free energy is therefore independent of a and y . The configuration, shown 
in figure 4(a), is that of three disordered coils joined at a common end vertex.

As a increases while keeping y � 1 the system undergoes a transition to the adsorbed phase 
at a critical value ac > 1. Beyond the critical point, the average number of surface contacts 
〈v〉/l quickly approaches its maximum value 2 while 〈h〉/l and 〈z0〉/l are suppressed to zero. 
Further, within the adsorbed phase the free energy is independent of y . This indicates that two 
arms are adsorbed while the third is screened from the surface forming a free coil in the bulk. 
However there are two configurations with the same properties, shown in figure 4(c), namely 
that the values of the order parameters are the same or similar. The distinction depends on 
whether the screened arm is the one with the force applied to it. This will be important when 
investigating the transition to the mixed phase.

Starting again in the free phase, as y  increases the system enters the ballistic phase at y   =  1, 
where the thermodynamics depends only on the pulling force. This phase is characterised by 
〈v〉/l tending to zero while 〈h〉/l and 〈z0〉/l are of order 2 and 1, respectively. The expected 

Figure 4. Samples of pulled 3-stars with branch length l  =  128 taken from the Monte 
Carlo simulations and corresponding to likely configurations in (a) the free phase, (b) 
the ballistic phase, (c) the adsorbed phase and (d) the mixed phase. The force is applied 
at the red vertex and the blue line indicates the surface.

Figure 3. The internal energies (a) 〈v〉/l and (b) 〈h〉/l, and (c) height of the central 
vertex 〈z0〉/l, scaled by arm length l  =  128. Four phases are apparent: the free phase for 
a � ac and y � 1; an adsorbed phase at high a and small y ; a ballistic phase at high y  
and low a; and a mixed phase between the adsorbed and ballistic phases.

C J Bradly et alJ. Phys. A: Math. Theor. 52 (2019) 315002
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configuration is that the pulled and tethered arms are stretched out away from the surface 
while the third arm assumes a disordered coil configuration relative to the central vertex, see 
figure 4(b). We note that even in this phase 〈h〉/l only slowly approaches its maximum of 2 
as y  is increased, whereas 〈z0〉/l finds its maximum of 1 more quickly. Analogously to the 
adsorbed phase, now the free energy is independent of a.

Between the adsorbed and ballistic phases is a mixed phase where 〈v〉/l is of order 2, 〈h〉/l 
is of order 1 and 〈z0〉/l vanishes. The free energy in this phase thus depends on both a and y . 
Similar to the adsorbed phase, two arms are adsorbed but in this phase the pulled arm extends 
away from the surface, see figure 4(d). In figure 3(b) we also see the first evidence that the 
boundary between the adsorbed and mixed phases is at y   =  1 for all a  >  ac.

4.2. Phase transitions

In figure 5 we show a density plot of the logarithm of the largest eigenvalue of Hn using data 
for l  =  128. The ballistic-mixed phase boundary is distinctly visible indicating a sharp and 
strong transition. The ballistic and adsorbed-mixed transitions at y   =  1 are weaker yet still 
narrow and the adsorption transition is weaker and broad.

The type of transition is determined by looking at the underlying distributions P(v) and 
P(h) of the number of surface contacts and the height of the pulled vertex, respectively. The 
distributions at several points of interest in the a-y  plane are shown in figure 5 and are indica-
tive of all points along the phase boundaries. We see that for the ballistic-mixed transition 
(point 2) the distributions P(v) and P(h) are bimodal, characteristic of a first-order trans-
ition. In contrast, the distributions near the free-ballistic (point 1) and free-adsorbed (point 3) 
boundaries are not bimodal and these transitions are continuous as expected from the case of 
SAWs.

The nature of the adsorbed-mixed transition (point 4) is less clear since P(h) is bimodal but 
P(v) is not. This matches the result from the order parameters which indicates that across the 
transition there are two adsorbed arms, but the non-adsorbed arm changes from the pulled arm 
to the free arm, as soon as the force is not towards the surface, i.e. y � 1; recall the two similar 
configurations in figure 4(c). At y   =  1, where there is no force, the arm whose endpoint height 
is being measured by h is either adsorbed or it is screened from the surface and thus free in the 
bulk. In the latter case, we expect that the height of its endpoint should scale like the end-to-end 
size of a free SAW in two dimensions, that is, 〈h〉 ∼ l3/4. Although we do not have sufficient 
data to measure this effect, the position of the broad peak in P(h) is thus expected to scale as 
l−1/4. The narrow peak in P(h) at h/l  =  0 corresponds to configurations where the pulled arm is 
fully adsorbed so its endpoint is most likely on the surface. Both configurations are sampled by 
the simulation and so P(h) appears bimodal even though the screening effect means it is not a 
first-order transition. Intuitively, the adsorbed-mixed transition is clear for the top configuration 
in figure 4(c); the force pulls the branch taut and the chain smoothly transforms to the mixed 
phase configuration in figure 4(d). For the bottom configuration, transforming to the mixed 
phase configuration seems like a different process since in two dimensions the branches can-
not move past each other and so the entire star would seem to ‘flip over’ while preserving two 
adsorbed branches before the force pulls one branch taut. This is not a concern in the thermo-
dynamic ensemble where both configurations contribute, but the presence of both explains the 
properties of the adsorbed-mixed transition in comparison to the three-dimensional case where 
there is no distinction between probable configurations in the adsorbed phase.

To confirm the nature of the ballistic-mixed and adsorbed-mixed transitions we plot in fig-
ure 6 the internal energies (a) 〈v〉/l and (b) 〈h〉/l as well as (c) the height of the central vertex 
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〈z0〉/l as a function of y  for fixed a  =  3.1 at several values of l. This is a vertical slice through 
the phase diagram near to points 2 and 4 in figure 5. As l increases, the ballistic-mixed trans ition 
(y ≈ 3.0) appears in all three order parameters as a sharply defined latent heat, further indicating 
a first-order transition. The adsorbed-mixed transition at y   =  1.0 only appears in 〈h〉/l. While 
these data are only for finite-size 3-stars, as l increases the singularity in 〈h〉/l looks more like 
a continuous transition than the discontinuous jump of a first-order transition. The unimodal 
distribution P(v) together with the continuous behaviour of 〈h〉 indicate that the adsorbed-mixed 
trans ition is continuous in two-dimensions. This marks a difference to the three-dimensional case 
where both the ballistic-mixed and adsorbed-mixed transitions are first order, showing bimodal 
distributions for both P(v) and P(h), as well as emerging latent heats for increasing n [4].

The other quantity of interest is the pulling force applied versus the extension of the poly-
mer, as measured by atomic-force microscopy experiments, which are performed at a fixed 
temperature T below the adsorption transition temperature [1]. In our parameterization this 
corresponds to a plot of the force F (in units of ε) versus the scaled average height of the pulled 
vertex 〈h〉/l, where F/ε = log y/ log a. In figure 6(d) we show a force-extension plot at fixed 
temperature corresponding to a  =  3.1. As l increases we see the formation of a plateau in force 
F as the extension is increased through the ballistic-mixed transition. It is less clear that there 
is a plateau forming at smaller 〈h〉/l corresponding to the adsorbed-mixed transition. Such 
a plateau would be close to F  =  0. This further suggests that the adsorbed-mixed transition 
is not first-order, especially in contrast to the three-dimensional case where this transition is 
obvious in the force-extension plane [4].

Figure 5. (Top) Density plot of the logarithm of the largest eigenvalue of the Hessian 
matrix of the free energy for l  =  128. The phase boundaries are clearly visible as lines 
of high variance. (Bottom) The distribution of number of adsorbed vertices (blue) and 
the distribution of height of pulled vertex (red) at points of interest as marked on the 
density plot.
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4.3. Phase boundaries

The preceding results confirm our expectation that the adsorbed-mixed boundary is at y   =  1 
for all a > ac. In section 3 we showed that the ballistic-mixed boundary is at the solution of

λ(y) = 2κ(a)− logµ2. (18)

We know that κ ∼ log a for large a and λ(y) ∼ log y for large y . Thus the ballistic-mixed 
boundary for large a and y  is

y ∼ a2

µ2
. (19)

In figure 7(a) we show the logarithm of the largest eigenvalue of Hn for l  =  128 on a log–log 
plot for a larger range of a and y . Equation (19) is superimposed as a dashed line using the 
known value for µ2 [18]. It is immediately clear that the ballistic-mixed boundary has the 
expected asymptotic form for large a and y .

For smaller values of a and y  Guttmann et  al have calculated the SAW free energies 
κ(a) and λ(y) to high accuracy using exact enumeration and series analysis methods [6]. In 

Figure 6. Internal energies (a) 〈v〉/l and (b) 〈h〉/l and (c) height of central vertex 〈z0〉/l 
as a function of y  for fixed a  =  3.1 and l = 32, 64, 128. The ballistic-mixed transition is 
visible at y ≈ 3.0 in all three quantities while and the weaker adsorbed-mixed transition 
at y   =  1 only affects the height of the pulled vertex 〈h〉. (d) Force-extension graph at 
fixed temperature corresponding to fixed a  =  3.1.
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figure 7(b) we show the logarithm of the largest eigenvalue of Hn for l  =  128 overlaid with 
solutions to equation (18) calculated using data from tables 1 and 2 in [6]. The agreement with 
our Monte Carlo results for the ballistic-mixed boundary is good for a > ac.

5. Discussion

We have investigated the phase diagram of a 3-star polymer in two dimensions when the 3-star 
interacts with the surface where adsorption occurs, and is pulled at a vertex of degree 1. The 
problem has been studied in three dimensions both by rigorous arguments [16] and by Monte 
Carlo methods [4]. For the two-dimensional case we have established rigorously the locations 
of the phase boundaries between (1) the free phase and the ballistic phase, (2) the free phase 
and the adsorbed phase, and (3) the ballistic phase and the mixed phase. For the boundary 
between the adsorbed and mixed phases we have rigorous bounds. We have used Monte Carlo 
methods to map out the details of the phase diagram and locate this fourth phase boundary. 
The Monte Carlo results clearly indicate that the boundary between the adsorbed and mixed 
phases occurs at y   =  1, i.e. at zero force, unlike the three dimensional case. For the ballistic-
mixed transition our numerical results match the rigorous results in the asymptotic regime and 
match results from exact enumeration methods in the non-asymptotic regime.

We have also investigated the nature of the various phase transitions. The free-ballistic and 
free-adsorbed transitions are continuous, consistent with the case of 3-stars in three dimen-
sions and self-avoiding walks, while the ballistic-mixed transition is first order, also like 
3-stars in three dimensions. In two dimensions, the screening of one arm by the adsorption of 
the other two manifests as both a different location of the phase transition and as a continuous 
transition rather than the first-order transition in three dimensions. This reflects the fact that, in 
two dimensions, the adsorbed phase corresponds to two arms being adsorbed while the third 
arm is free. In the mixed phase this third arm becomes ballistic without desorption of the other 
arms as soon as the pulling force is non-zero.

Figure 7. The logarithm of the largest eigenvalue of the covariance matrix: (a) for 
large a and y , shown on a logarithmic scale, overlaid with the asymptotic boundary of 
equation (19) (dashed line); and (b) overlaid with solutions to equation (18) from exact 
enumeration [6].
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