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Abstract
We find and analyse the exact solution of two friendly walks, modelling 
polymers, confined between two parallel walls in a two-dimensional strip 
(or slit) where the polymers interact with each other via an attractive contact 
interaction. In the bulk, where the polymers are always far from any walls, 
there is an unzipping transition between phases where the two walks drift 
away for low attractive fugacity (high temperatures) and bind together for 
high attractive fugacities (low temperatures). Previously this has been used to 
model the denaturation of DNA. In a strip the transition is not sharp. However, 
we demonstrate that there is an abrupt change in the repulsive force exerted 
on the walls of the strip that can be calculated exactly. We suggest that this 
change in the force could be exploited to provide an experimental signature of 
the unzipping transition.

Keywords: polymer unzipping, directed walks, friendly walks, strip, slit

(Some figures may appear in colour only in the online journal)

1. Introduction

There has been a continued interest in models of the adsorption of polymers on a sticky wall, 
or walls, and related work on models of the pulling, or stretching, of a polymer away from 
a wall [1–11]: this has been in part due to the development of the ability in experiments to 
micro-manipulate single polymers [12–14]. The modelling of DNA denaturation [15–21] has 
also played a part in this interest.
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Consider a polymer in dilute solution that is attached to a wall at one or at both ends. 
Moreover, consider a situation where the wall has an attractive contact interaction with the 
non-attached monomers of the polymer. In such a case there is a second-order phase trans-
ition between a high temperature state, where the polymer drifts away from the surface due to 
entropic repulsion, and a low temperature state, where the polymer stays close to the surface. 
When the polymer stays close to the surface it is described as adsorbed. This is the so-called 
adsorption transition which has been well studied [1–4, 22, 23] both through exact solutions 
of directed walk models in two and three dimensions, and through numerical techniques, 
such as Monte Carlo and analysis of exact enumeration data, as well as rigorous results on 
self-avoiding walk models [1]. If one considers more than one polymer chain and a single 
sticky wall there has been some exact solution of models of two polymers with different types 
of contact interaction [24] on the square lattice but also where one includes an interaction 
between the two polymers [25]. This inter-polymer interaction is a simple attempt at model-
ling the interaction that may lead to a unzipping transition as in DNA denaturation [26–29]. 
Hence, Tabarra et al [25] studied a model where there was a competition between polymer 
adsorption and polymer unzipping. There has also been a recent study of a model of three 
polymers interacting with multiple inter-polymer interactions without a surface [30]. This was 
an attempt at providing a simple model of polymer gelation with fixed topology.

The situation becomes more complex when a polymer is confined between two sticky 
walls. This situation has been studied by various directed and non-directed lattice walk models 
[8, 10, 11, 31–34], in both two and three dimensions. It should be noted that, both for one wall 
adsorption and two wall models, two and three dimensional system behave in similar ways. 
Here the phase diagram of two wall models can depend on the relative mesoscopic size of 
the polymer relative to the width of the slab/strip and the strengths of the interactions on both 
walls. A motivation for studying this type of system is related to modelling the stabilization of 
colloidal dispersions by adsorbed polymers (steric stabilization) and the destabilization when 
the polymer can adsorb on surfaces of different colloidal particles (sensitized flocculation) 
[35]. A polymer confined between two parallel plates exerts a repulsive force on the confining 
plates because of the loss of configurational entropy unless the polymer is attracted to both 
walls when it can exert an effective attractive force at large distances. Once again far less is 
known when one considers multiple polymers confined in this way. A recent exact solution 
has considered two polymers in two-dimensions where the polymers interact with the two 
walls via a contact interaction as in the adsorption model [36]. This was motivated by work 
[33] on ring polymers modelled by self-avoiding polygons, which demonstrate intriguing pro-
files of the force as a function of Boltzmann weights and strip width.

In this work we will consider two two-dimensional polymers in a strip where the poly-
mers interact via an inter-polymer attraction and calculate exactly the free energy and forces 
between the walls of the strip for large strip widths. We show that there is a distinct signature 
to the force profile arising from the bulk unzipping phase transition. This perhaps could be 
used experimentally to detect the unzipping transition as it occurs near the force minimum.

In section 2 we define our model in the strip and in the bulk. We then derive the bulk free 
energy, using the functional equation methodology, in section 3. We then set up the functional 
equations in section 4 and apply the kernel method to obtain a single equation in section 5 that 
we analyse for singularities in section 6. This allows us to analyse the large width asymptotics 
of the free energy in section 7 and the force between the walls induced by the polymers in sec-
tion 8. Our central finding from our exact results is that there is a signature of the bulk unzip-
ping transition in the force as a function of temperature, which we note is not monotonic for 
large widths. We provide a discussion and summary in section 9 and point to future directions.
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2. Model

We consider pairs of directed paths, taking steps (1,±1), of equal total length n in the width w 
strip of the square lattice—namely Z× {0, 1, . . . , w}. These paths may touch (i.e. share edges 
and vertices) but not cross. We consider those pairs of paths whose initial vertices lie at (0, 0) 
and (0, w). See figure 1.

Let ϕ ∈ Ωn,w be such a pair of paths in the set of fixed length walks Ωn,w and define n = |ϕ| 
to be the length of the paths. If the width of the strip, w, is odd then the paths never share 
vertices and the combinatorics that follows is more complicated. Because of this we only 
consider even widths. Note that this implies that the distance between the endpoints of the 
paths is always even.

To be specific let ϕ be a configuration and add the energy −εc for each shared vertex  
(contact) of the two walks. The number of contacts will be denoted v(ϕ). Note that the left-
most vertices being on the walls do not share a vertex as w � 2. The main model we discuss in 
the paper is based on pairs of walks, ϕ, that finish with endpoints together at the same height. 
Define the corresponding fixed-length partition function to be

Zn(c; w) =
∑

ϕ∈Ωn,w

eεcv(ϕ)/kBT =
∑

ϕ∈Ωn,w

cv(ϕ),
 (2.1)

where T is the temperature, kB the Boltzmann constant and c = eεc/kBT  is the Boltzmann 
weight associated with contacts. The thermodynamic reduced free energy at finite width is 
given in the usual fashion as

κ(c; w) = lim
n→∞

1
n
log [Zn(c; w)] . (2.2)

Because the model at finite w is essentially one-dimensional, the free energy is an analytic 
function of c and no thermodynamic phase transitions occur [37]. As noted above, the infi-
nite strip limit for the single walk model does display singular behaviour and so we consider 
the same limit for this model. The infinite strip free energy for the two walk model is found 
analogously by

κ(c) = lim
w→∞

κ(c; w) = lim
w→∞

lim
n→∞

1
n
log [Zn(c; w)] . (2.3)

Figure 1. Two walks confined between two walls spaced w lattice units apart. The 
walks may share vertices and each shared vertex (contact) contributes a Boltzmann 
weight c to the partition function. The configuration above will contribute a weight c4 
for length n = 11 and width w = 4.
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We see that the above quantity may be different when the order of limits is swapped. In fact, if 
the walks are tethered to different walls then when one takes the width off to infinity first, for 
any finite walks, the two walks do not see each other: the system is independent of the value 
of c since no contacts every occur. This double-half plane limit is then uninteresting. On the 
other hand, if one fixes the initial vertices of the two walks at (0, w/2) for both walks then for 
w > 2n the two walks do not ever see the wall. Hence considering the infinite width limit for 
such configurations results in the bulk problem without walls.

Let us define the free energy of the bulk problem (bulk limit) as

κb(c) = lim
n→∞

1
n
log Zb

n(c), (2.4)

where Zb
n(c) is the partition function of the bulk system. The bulk generating function is 

defined as

Gb(c; z) =
∞∑

n=0

Zb
n(c)z

n. (2.5)

We will calculate the bulk free energy in the next section using the fact that the radius of conv-
ergence zb

c(c) of the generating function Gb(c; z) is related to the free energy as

κb(c) = − log
(
zb

c(c)
)

. (2.6)

Subsequently, once we analyse the finite strip, we shall find that the infinite strip limit is given 
by this bulk problem so that

κb(c) = κ(c) = lim
w→∞

κ(c; w) . (2.7)

It should be noted that these two limit need not be the same in other systems [8].
Motivated by the single walk model, we consider the effective force applied to the walls 

by the polymers

Fn =
1
2n

[log(Zn(w))− log(Zn(w − 2))] (2.8)

with a thermodynamic limit of

F(c; w) =
1
2
[κ(c; w)− κ(c; w − 2)] . (2.9)

Note that since we only consider systems of even width we use the argument w − 2 rather than 
w − 1 in this definition.

Given that the double half-plane limit is known from the discussion above, we shall con-
centrate on the infinite strip limit. In this limit, the free energy does not depend on where the 
walks end. It turns out that the combinatorics of the model in which the walks end together are 
easier. Accordingly, we study the generating function

Gw(c; z) =
∞∑

n=0

Zn(c; w)zn, (2.10)

where the partition function now counts only those walks which end together. The radius of 
convergence of the generating function zc(c; w) is directly related to the free energy via

κ(c; w) = − log (zc(c; w)) . (2.11)
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3. Solution of system in bulk

Before moving to the full model, we first analyse the model in the bulk without any constrain-
ing walls. This is the homopolymer version of the copolymer model studied in [29] via the 
Morita approximation. Consider the pair of walks depicted in figure 2. This pair of directed 
walks must start at the same vertex, may share edges of the underlying lattice but they may 
not cross. We have drawn the two walks as though they have been separated by a small vertical 
translation; this was done so as to depict the vertices and edges of each walk clearly. While 
we are primarily interested in walks whose final vertices coincide, we will actually count the 
superset of walks whose final vertices may lie at any vertical separation. To this end form the 
generating function

H(r; z, c) =
∑
ϕ

z|ϕ|cv(ϕ)r�(ϕ), (3.1)

where the sum is over all valid conformations ϕ, |ϕ| denotes the number of edges in one walk 
(or equivalently the horizontal span of the conformation), v(ϕ) denotes the number of times 
the walks coincide at a vertex (excluding the starting vertex) and �(ϕ) denotes half the vertical 
separation of the end vertices (since this vertices are always separated by an even distance). 
The generating function G is a power series in z with coefficients that are polynomials in r 
and c. The generating function for the bulk problem we want to calculate Gb(c; z) is given as

Gb(c; z) = H(0; z, c). (3.2)

We now establish a functional equation satisfied by H(r; z, c) via a standard step-by-step 
construction. A similar construction will be used to derive a functional equation satisfied by 
the generating function of the full model in a confining strip. Any legal conformation either 
contains no edges (having horizontal span 0) or can be constructed by appending ↗,↘ edges 
to the last vertices of each walk (see figure 3-left).

Translating this to operations on the generating function we obtain

H(r) = 1 + z(r + 2 + r̄)H(r), (3.3)

where r̄ = 1/r. However, this counts invalid conformations. In particular (see figure 3-right), 
we have constructed paths that cross when appending steps to two walks that end at the same 
vertex: specifically when adding a ↘ edge to the top walk and a ↗ edge to the bottom walk. 
These invalid conformations are counted by zr̄[r0]H  and so we subtract this contribution:

Figure 2. A pair of friendly directed walks in the bulk—these have been drawn after a 
small vertical translation so as to depict the vertices and edges of each walk clearly. This 
walk contributes z9c4r0 to the generating function H(r; z, c).

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001
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H(r) = 1 + z(r + 2 + r̄)H(r)− zr̄[r0]H. (3.4)

where we have used [rk]H to denote the coefficient of rk in H(r; z, c).
While this construction produces all legal conformations, it does not produce them with 

the correct weight—we must ensure that walks that end together after appending steps are 
counted with an additional factor of c. Consider any conformation in which the walks end 
together (see figure 4). This was either obtained by appending a pair of parallel ↗ or ↘ edges 
to the end of a conformation in which the walks end together (figure 4-left) or by appending 
↘
↗ to the ends of walks that are separated by 2 lattice spacings (figure 4-right). To correct the 
weight of such conformations we subtract their contributions from the functional equation and 
then put them back with an additional factor of c. Consequently, they contribute the following 
terms to the functional equation

2z(c − 1) · [r0]H + z(c − 1) · [r1]H. (3.5)

Putting everything together we arrive at the full functional equation

H(r) = 1 + z(r + 2 + r̄)H(r) + zr̄ · [r0]H + 2z(c − 1) · [r0]H + z(c − 1) · [r1]H. 
(3.6)

We can eliminate one of the unknowns from this equation by establishing a relationship 
between [r0]H  and [r1]H . Extracting the coefficient of r0 in the equation (3.6):

[r0]H = 1 + 2z[r0]H + z[r1]H + 2z(c − 1) · [r0]H + z(c − 1) · [r1]H

= 1 + 2zc[r0]H + zc[r1]H.
 (3.7)

This can also be established by an equivalent combinatorial construction; again examine fig-
ure 4. Every pair of walks that ends together is either a single pair of vertices or is constructed 
by appending parallel ↗ or ↘ edges to the end of a pair of walks that end together, or by 

appending ↘↗ edges to a pair of walks that end 2 lattice spacings apart.
Using equation (3.7) we can write [r1]H  in terms of [r0]H  and then substitute that into equa-

tion (3.6). Rearranging the result we have

Figure 3. (Left) Any conformation either contains no edges or can be constructed by 
appending ↗,↘ edges to the last vertices of each walk. (Right) When we append edges 
to the end of the walks we must take care to not construct a conformation in which the 
two paths cross. This occurs precisely when the two walks end together and we append 
a ↘ to the top walk and a ↗ to the bottom walk.

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001
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K(r) · H(r) =
1
c
+

(
1 − 1

c
− z

r

)
· [r0]H, (3.8)

where the kernel, K(r; z) ≡ K(r), is given by

K(r) = 1 − z(r + 2 + r̄).

We can also arrive at equation (3.8) in an alternative fashion. First rearrange the equation as 
follows:

H(r) +
1
c
[r0]H =

1
c
+ z(r + 2 + r̄)H(r)− zr̄[r0]H + [r0]H. (3.9)

The left-hand side of the equation counts all conformations but double-counts those in which 
walks end together. Those conformations are counted once with their correct weights (by the 
H(r) term) and then again but with weights reduced by a factor of c (the 1

c [r
0]H  term). Now 

split the right-hand side into two parts—the first three terms and then the last term. The first 
three terms count all conformations with their correct weights excepting that those in which 
walks end together are underweighted by a factor of c. The last term then counts conforma-
tions in which the walks together with their correct weights. Hence both sides of the equa-
tion count the same set of weighted objects.

We solve this equation by setting the kernel to zero by a choice of r. Solving K(r) = 0 
gives

r+(z) =
1 − 2z +

√
1 − 4z

2z
= z−1 − 2 − z − 2z2 + O(z3) (3.10a)

r−(z) =
1 − 2z −

√
1 − 4z

2z
= z + 2z2 + O(z3). (3.10b)

Standard arguments show that H(r+(z)) is not convergent in the space of formal power series, 
while H(r−(z)) is convergent. Consequently, substituting r = r−(z) into equation (3.8) gives

0 =
1
c
+

(
1 − 1

c
− z

r−(z)

)
· [r0]H, (3.11)

which rearranges to give us the required generating function:

Figure 4. The two figures  show how new bound vertex pairs are created in the 
construction and correspond to the terms in equation  (3.5). In both cases, these 
conformations have already been counted by the construction described in figure 3 but 
underweighted by a factor of c. Consequently, we can correct this underweighting by 
subtracting off the contributions of those conformations and then adding them back 
with an additional factor of c.

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001
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Gb(c; z) = [r0]H =
2 − c − 2zc − c

√
1 − 4z

2(c2z2 + 2(c − 1)cz − c + 1)
. (3.12)

The full H(r; z, c) generating function can also be found (if needed) by substituting this back 
into equation (3.8).

From this solution we can find the dominant singularity:

zb
c(c) =

{ 1
4 c � 4/3
1−c+

√
c2−c

c c � 4/3
 (3.13)

and so the bulk free energy, κb(c) = − log zb
c(c). This is plotted in figure 5.

Notice that the form of the dominant singularity changes at c = 4/3 and that this change 
indicates a phase transition from an unzipped regime with few contacts to a zipped regime 
with a positive density of contacts. We can compute the density of contacts by taking the log-
derivative of the dominant singularity, or we can obtain more detailed asymptotics using (now 
standard) analytic combinatorics methods (see [38]). These give

mean number of contacts =





3c+4
4−3c + O(n−1) c < 4/3
3
√
π

2 ·
√

n + O(1) c = 4/3
c−2+

√
c(c−1)

2(c−1) · n + O(1) c > 4/3.

 (3.14)

We note here that the transformation

c �→ (d + 1)2

2d + 1
 (3.15)

rationalises the radius of convergence:

zb
c(d) =

{
1
4 d � 1

d
(1+d)2 d � 1. (3.16)

We will make use of this transformation when we study the large-c asymptotic behaviour of 
the full model.

4. The functional equation of the model in a strip

In this section we derive the functional equation satisfied by the generating function of the 
full model. This is very similar to that of the previous section excepting that we now have to 
take into account the possibility that in appending steps to the end of the walks that we might 
produce a confirmation that escapes from the bounding walls. Form the generating function

Fw(r, s; z, c) =
∑
ϕ

z|ϕ|cv(ϕ)r⊥(ϕ)s�(ϕ), (4.1)

where, as before, z and c are conjugate to the horizontal span and the number of shared ver-
tices respectively, while ⊥ (ϕ) denotes the distance between the bottom wall and the last 
vertex of the bottom walk. Similarly, �(ϕ) denotes the distance between the top wall and 
the final vertex of the top walk. Note that, where the context is clear, we will also write 
Fw(r, s; z, c) ≡ Fw(r, s) ≡ F(r, s). Once again the generating function of interest occurs when 
our extra variables are set to zero:

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001
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Gw(c; z) = Fw(0, 0; z, c). (4.2)

By grouping coefficients of r and s together we can write F(r, s) as

F(r, s) =
∑

0�i,j�w

fi,j(z; c)ris j.
 (4.3)

This in turn allows us to express a number of auxillary functions that we require to state the 
functional equation satisfied by F(r, s):

[ris j]F = fi,j(z; c) (4.4a)

[ri]F =
∑

j

fi,j(z; c)s j
 (4.4b)

[s j]F =
∑

i

fi,j(z; c)ri
 (4.4c)

Fd(x) =
w∑

i=0

fi,w−i(z; c)xi
 (4.4d)

Fn(x) =
w∑

i=0

fi,w−i−2(z; c)xi. (4.4e)

The generating function [ris j]F(r, s) counts walks whose final vertices lie at a vertical distance 
i, j (respectively) from the walls, while Fd counts walks that end on the same vertex and Fn 
counts walks that end 2 units apart. Notice that Fd(x) and Fn(x) play much the same role as 
[r0]H  and [r1]H  did in the bulk system.

In this system any conformation either has horizontal span 0, or can be constructed by 
appending ↗,↘ steps to the end of each walk (see figure 6). This leads to

F(r, s) = 1 + z(r + r̄)(s + s̄)F(r, s). (4.5)

Figure 5. The free energy of the system in the bulk as a function of the zipping 
interaction c. We have indicated the location of the phase transition at c = 4/3 with the 
blue vertical dashed line. The red horizontal dashed line indicates the free energy of the 
system at small c, namely κ = log 4.

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001
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Notice that this bulk term is different from that of the previous section because the auxillary 
variables are conjugate to the distance from each wall rather than the distance between the 
endpoints. In appending edges to the ends of the walk in this way we will produce invalid 
conformations—some will will escape from the confining walls while others will produce 
walks that cross. Walks can escape in three different ways: the lower walk escapes over the 
bottom wall, the upper walk escapes over the top wall, or the walks escape over opposite walls 
at the same time. Notice that the case of both walks escaping together over the same wall will 
be counted by one of the first two cases.

See figure 7-left. Conformations in which the bottom walk ends on the bottom wall are 
counted by [r0]F , and so invalid conformations in which the bottom walk escapes over the 
bottom wall are counted by

zr̄(s + s̄)[r0]F. (4.6a)

Similarly, invalid conformations in which the top walk escapes over the top wall are counted 
by

zs̄(r + r̄)[s0]F. (4.6b)

Finally invalid conformations in which the walks escape over opposite walls at the same time 
(see figure 7-right) are counted by

zr̄s̄[r0s0]F. (4.6c)

Care must be taken not to double-count these invalid conformations. The conformations 
counted by (4.6c) are counted by both (4.6a) and (4.6b). Hence we must subtract off (4.6a) 
and (4.6b) from equation (4.5) and then add back (4.6c).

We must also remove conformations in which the walks cross. These are generated by 
appending steps to walks that end together (see figure 8). These invalid conformations are 
counted by

zrsw+1Fd(r/s). (4.6d)

To see this note that swFd(r/s) counts all conformations in which both walks end together, and 
appending a ↗ step to the lower walk increases the weight by a factor of r, while appending 
a ↘ step to the top walk increases the weight by a factor of s. Putting these contributions we 
arrive at the (still incomplete) functional equation

Figure 6. Any conformation either contains no edges or can be constructed by 
appending ↗,↘ edges to the last vertices of each walk.

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001
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F(r, s) = 1 + z(r + r̄)(s + s̄)F(r, s)

− zs̄(r + r̄)F(r, 0)− zr̄(s + s̄)F(0, s) + zr̄s̄F(0, 0)− zrsw+1Fd(r/s).
 

(4.7)

To complete the equation we must correctly weight new shared vertices. See figure 9. Such 
vertices occur in two ways (just as was the case in the analysis of walks in the bulk in the pre-
vious section)—either a parallel pair of edges is added to a conformation in which the walks 

end together or by appending ↘↗ edges to the ends of walks that are separated by two lattice 
spacings. As was the case in the previous section, these conformations have already been 
counted but with the wrong weight. Hence we must subtract off their contributions and add 
them back with an additional factor of c:

z(c − 1)(rs̄ + sr̄)swFd(r/s) + z(c − 1)swFn(r/s). (4.8a)

Unfortunately, the first of these two cases may generate conformations in which the walks 
escape over one of the walls (see figure 10) and so we must subtract off those contributions. 
Such walks are counted by

z(c − 1)r̄sw+1[r0sw]F + z(c − 1)rw+1s̄[rws0]F. (4.8b)

Figure 7. (Left) An invalid conformation is generated when a ↘ step is appended to 
a conformation in which the bottom walk ends on the bottom wall. A similarly invalid 
conformation will be generated when a ↗ step is appended to a conformation in which 
the top walk ends on the top wall. (Right) An invalid conformation is generated when 
a ↘ and ↗ are (respectively) appended to a conformation in which each walk ends on 
opposite walls. This conformation is actually a special case of that illustrated on the left.

Figure 8. An invalid conformation in which the walks cross is generated by appending 
a ↗ step to the bottom walk and a ↘ step to the top walk in a conformation in which 
the walks end together.

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001



12

The first of these terms counts walks stepping over the bottom wall, while the latter counts 
those escaping over the top wall.

Putting all of these contributions together we arrive at the full functional equation

F(r, s) = 1 + z(r + r̄)(s + s̄)F(r, s)

− zs̄(r + r̄)F(r, 0)− zr̄(s + s̄)F(0, s) + zr̄s̄F(0, 0)− zrsw+1Fd(r/s)

+ z(c − 1)(rs̄ + sr̄)sWFd(r/s) + z(c − 1)swFn(r/s)

− z(c − 1)rw+1s̄ · [rws0]F(r, s)− z(c − 1)sw+1r̄ · [r0sw]F(r, s).
 

(4.9)

We can eliminate two unknowns from the system by establishing the following relationships

[rws0]F = [r0sw]F (4.10a)

swFd(r/s) = z(rs̄ + sr̄)cswFd(r/s) + zcswFn(r/s)

− zc(sw+1r̄ · [r0sw]F + rw+1s̄ · [rws0]F).
 (4.10b)

The first of these follows from the vertical symmetry of the model. The second can be obtained 
by considering the ‘diagonal’ coefficients of equation (4.9)—i.e. computing 

∑w
i=0[r

isw−i] of 
both sides:

Figure 9. A new shared vertex is created by either appending a pair of parallel edges to 

a pair of walks that ends together (left) or by appending appending ↘↗ edges to the ends 

of walks that are separated by two lattice spacings.

Figure 10. When adding parallel edges and a shared vertex, we must be careful not to 
construct a new conformation that steps over either wall.
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swFd(r/s) = 0 + z(rs̄ + sr̄)swFd(r/s) + zswFn(r/s)

− zrw+1s̄[rws0]F − zr̄sw+1[r0sw]F + 0 − 0

+ z(c − 1)(rs̄ + sr̄)sWFd(r/s) + z(c − 1)swFn(r/s)

− z(c − 1)rw+1s̄ · [rws0]F(r, s)− z(c − 1)sw+1r̄ · [r0sw]F(r, s).
 

(4.11)

Collecting like terms in the above gives (4.10b). One can also establish the same equation com-
binatorially by considering all the ways in which one can produce a conformation in which 
the walks end at the same vertex. See figure 9. Any pair of walks that end at the same vertex 
can be obtained by either appending parallel edges to the end of a walk counted by Fd or by 

appending ↘↗ edges to the ends of a walk counted by Fn. However, in so doing, one constructs 
walks that escape over the top or bottom wall (see figure 10).

We can now eliminate [rws0]F  and Fn(r/s) by solving equations  (4.10) and (4.10b) for 
those terms and substituting them back into (4.9). Cleaning up the result gives us

K(r, s) · F(r, s) = 1 − zs̄(r + r̄)F(r, 0)− zr̄(s + s̄)F(0, s) + zr̄s̄F(0, 0)

+

(
1 − 1

c
− zrs

)
swFd(r/s),

 
(4.12)

where K is the kernel of the equation and is given by

K = 1 − z(r + r̄)(s + s̄). (4.13)

In the next section we will use symmetries of the kernel to remove more unknowns from this 
functional equation.

Notice that by rearranging the equation as follows

F(r, s) +
1
c
· sWFd(r/s) = 1 + z(r + r̄)(s + s̄)F(r, s)

− zs̄(r + r̄)F(r, 0)− zr̄(s + s̄)F(0, s) + zr̄s̄F(0, 0)

− zrsw+1Fd(r/s)

+ swFd(r/s),
 

(4.14)

we can interpret it combinatorially in an analogous way as we did for the bulk case. The left-
hand side counts all walks but also double-counts walks which end together—one copy has 
the correct weight, while another copy is underweighted by a factor of c. The right-hand side 
counts the same set of walks—the terms on the first three lines construct all valid conforma-
tions, but any walks that finish together are underweighted by a factor of c. The last line then 
adds back in walks which finish together but with the correct weight. Hence both sides count 
the same set of conformations with the correct weights.

5. The kernel method

Consider again the full functional equation (4.12) and its kernel (4.13):

K(r, s) · F(r, s) = 1 − zs̄(r + r̄)F(r, 0)− zr̄(s + s̄)F(0, s) + zr̄s̄F(0, 0)

+

(
1 − 1

c
− zrs

)
swFd(r/s)

K(r, s) = 1 − z(r + r̄)(s + s̄).

 

(5.1)

A L Owczarek and A Rechnitzer J. Phys. A: Math. Theor. 50 (2017) 484001



14

This is a single equation in five unknown (but related) functions. We will remove some of 
these unknowns by taking advantage of symmetries of the kernel—this approach is frequently 
referred to as the kernel method [39] and shares many similarities with the classical method of 
images. The approach we describe below is very similar to that used in [40, 36].

Notice that the kernel is invariant under the involutions

r �→ r̄ and s �→ s̄. (5.2)

Using this we construct three new equations by setting (r, s) �→ (r̄, s), (r, s̄), (r̄, s̄):

K(r, s) · F(r̄, s) = 1 − zs̄(r + r̄)F(r̄, 0)− zr(s + s̄)F(0, s) + zrs̄F(0, 0)

+

(
1 − 1

c
− zr̄s

)
swFd(1/rs),

 
(5.3a)

K(r, s) · F(r, s̄) = 1 − zs(r + r̄)F(r, 0)− zr̄(s + s̄)F(0, s̄) + zr̄sF(0, 0)

+

(
1 − 1

c
− zrs̄

)
s−wFd(rs),

 
(5.3b)

K(r, s) · F(r̄, s̄) = 1 − zs(r + r̄)F(r̄, 0)− zr(s + s̄)F(0, s̄) + zrsF(0, 0)

+

(
1 − 1

c
− zr̄s̄

)
s−wFd(s/r).

 
(5.3c)

In so doing we have introduced more unknowns, but we can eliminate several of these by tak-
ing appropriate linear combinations of the original functional equation and these three new 
equations:

c · K(r, s) [rsF(r, s)− r̄sF(r̄, s)− rs̄F(r, s̄) + r̄s̄F(r̄, s̄)] = c(s − s̄)(r − r̄)

− (crsz − c + 1)rsw+1Fd(r/s)− (cz − crs + rs)r−2s−2−wFd(s/r)

+ (crz − cs + s)rs−2−wFd(rs) + (csz − cr + r)r−2s1+wFd(1/rs).
 

(5.4)

This combination eliminates the unknowns F(r, 0), F(r̄, 0), F(0, s), F(0, s̄), F(0, 0).
We can eliminate two more unknowns by again taking advantage of the vertical symmetry 

of the system and noting that

Fd(s/r) = (s/r)wFd(r/s) and Fd(1/rs) = (rs)−wFd(rs). (5.5)

This gives us

c · K(r, s) [rsF(r, s)− r̄sF(r̄, s)− rs̄F(r, s̄) + r̄s̄F(r̄, s̄)] = c(s − s̄)(r − r̄)

−
[
(crsz − c + 1)rsw+1 + (cz − crs + rs)r−2−ws−2]Fd(r/s)

+
[
(crz − cs + s)rs−2−w + (csz − cr + r)r−2−ws

]
Fd(rs).

 
(5.6)

We can now remove the unknowns from the left-hand side of this equation by choosing values 
of r, s that set the kernel equal to zero, providing that the functions F(r, s), F(r̄, s), F(r, s̄) and 
F(r̄, s̄) all converge at those choices.

Now let ̂r, ŝ be a solution of K(r, s) = 0, and in general ̂r, ŝ will be Laurent series in z. Notice 
that the series F(r̂, ŝ) will be well defined because the coefficient of zn in F(r, s) is a polynomial 
of degree at most w in both r and s. Similarly the series F(1/r̂, ŝ), F(r̂, 1/ŝ), F(1/r̂, 1/ŝ) are all 
well defined and converge in the space of formal power series. Substituting (r, s) �→ (r̂, ŝ) into 
equation (5.6) then eliminates all but two unknowns from the functional equation:
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0 = c(ŝ − ¯̂s)(r̂ − ¯̂r)

−
[
(cr̂ŝz − c + 1)r̂ŝw+1 + (cz − cr̂ŝ + r̂ŝ)r̂−2−wŝ−2]Fd(r̂/ŝ)

+
[
(cr̂z − cŝ + ŝ)r̂ŝ−2−w + (cŝz − cr̂ + r̂)r̂−2−wŝ

]
Fd(r̂ŝ).

 

(5.7)

At this point it makes sense to make a change of variables

rs �→ p and r/s �→ q (5.8)

with corresponding kernel solutions

r̂ŝ �→ p̂ and r̂/ŝ �→ q̂. (5.9)

This maps the original kernel to a new kernel

K̂( p, q) = 1 − z
( p + q)(1 + pq)

pq
. (5.10)

Changing variables in this way gives us the equation

0 = cp̂w/2−1q̂w/2−1(p̂q̂ − 1)(p̂ − q̂) +
[
(cq̂z − c + 1)q̂w+1 + (cz − cq̂ + q̂)q̂−2]Fd(p̂)

−
[
(cp̂z − c + 1)p̂w+1 + (cz − cp̂ + p̂)p̂−2]Fd(q̂).

 

(5.11)

Now using the kernel K̂  we can also eliminate z from this expression by noting that

z =
p̂q̂

(p̂ + q̂)(1 + p̂q̂)
. (5.12)

This finally gives us (after clearing denominators) the equation

0 = cp̂w/2q̂w/2(p̂q̂ − 1)(p̂ − q̂)(q̂ + p̂)(p̂q̂ + 1)

+
[
(cp̂q̂2 − p̂2q̂ − p̂q̂2 + cp̂ + cq̂ − p̂ − q̂)p̂w+2q̂ + (cp̂2q̂ + cp̂q̂2 − p̂2q̂ − p̂q̂2 + cp̂ − p̂ − q̂)q̂

]
Fd(q̂)

−
[
(cp̂2q̂ − p̂2q̂ − p̂q̂2 + cp̂ + cq̂ − p̂ − q̂)p̂q̂w+2 + (cp̂2q̂ + cp̂q̂2 − p̂2q̂ − p̂q̂2 + cq̂ − p̂ − q̂)p̂

]
Fd(p̂). 
(5.13)

6. Finding singularities

We adapt the method from [40] to establish the locations of the singularities of the function 
Fd. Let us first do this when c = 1 to demonstrate the idea of the method. In this case the func-
tional equation simplifies considerably to

0 = p̂w/2q̂w/2(p̂q̂ − 1)(p̂ − q̂)(q̂ + p̂)(p̂q̂ + 1) +
[
p̂w+4 + 1

]
q̂2Fd(q̂) +

[
q̂w+4 + 1

]
p̂2Fd(p̂).

 (6.1)
Now choose p̂ so that the coefficient of Fd(q̂) is zero—that is p̂w+4 = −1—call this value 

p∗. This eliminates Fd(q̂) from the equation and we can isolate Fd( p∗) as

Fd( p∗) =
pw/2−2
∗ q̂w/2( p∗q̂ − 1)( p∗ − q̂)(q̂ + p∗)( p∗q̂ + 1)

q̂w+4 + 1
. (6.2)

The function Fd( p∗) is a rational function of z and so has simple poles. The only sources of 
such singularities in the above expression come from the zeros of the denominator, that is 
when q̂w+4 + 1 = 0. Hence singularites z( p, q) satisfy

p̂w+1 + 1 = 0 and q̂w+4 + 1 = 0 with ( pq̂ − 1)( p − q̂)(q̂ + p)( pq̂ + 1) �= 0.
 (6.3)
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More generally when c �= 1 we have an expression of the form

X(p̂, q̂) + Y(p̂, q̂)Fd(p̂) + Z(p̂, q̂)Fd(q̂) = 0. (6.4)

Now if Y(p̂, q̂) = 0 by some choice of p̂ = p̂∗ then since (z, p, q) satisfy two polynomial equa-
tions, we can consider both p̂∗, q̂∗ as functions of z and write

Fd(p̂∗) = −X(p̂∗, q̂∗)
Z(p̂∗, q̂∗)

. (6.5)

The simple poles of Fd now come from the zeros of Z(p̂∗q̂∗). Hence singularities z( p, q) 
satisfy

Y( p, q) = 0 and Z( p, q) = 0 with X( p, q) �= 0. (6.6)

Substituting in Y , Z  we get

p̂w+4 = − (Cp̂2q̂ + Cp̂q̂2 + Cp̂ − q̂)
(Cp̂q̂2 − p̂2q̂ + Cp̂ + Cq̂)

, (6.7a)

q̂w+4 = − (Cp̂2q̂ + Cp̂q̂2 + Cq̂ − p̂)
(Cp̂2q̂ − p̂q̂2 + Cp̂ + Cq̂)

, (6.7b)

0 �= (p̂q̂ − 1)(p̂ − q̂)(q̂ + p̂)(p̂q̂ + 1). (6.7c)

We have been unable to solve these equations in closed form except at c = 1. In the next sec-
tion we derive asymptotic expressions for the solutions when w is large.

7. Asymptotics of free energy

In order to determine the asymptotic solutions of the zero equation (6.7), we first solved them 
numerically for small w at various values of c—see figure 11. Notice that all the zeros lie on 
the unit circle for c � 4/3 and either on the unit circle or the real line for c > 4/3. Because of 
this we consider the three regimes—c < 4/3, c = 4/3 and c > 4/3—in turn: recall from the 
bulk solution in section 3 that these parameter regimes corespond to the unzipped, critical and 
zipped phases respectively.

7.1. Unzipped regime—c < 4/3

As noted above, when c = 1 the system reduces to the uncoupled equations

p̂w+4 = −1 q̂w+4 = −1. (7.1)

Hence both are (w + 4)th roots of −1:

p̂ = exp

(
πi

j
w + 4

)
q̂ = exp

(
πi

k
w + 4

)
, (7.2)

with j, k odd integers. Hence

z =
1
2
· 1
cos(πj/(w + 4)) + cos(πk/(w + 4))

. (7.3)
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The dominant singularity should come from j, k chosen as small as possible. This suggests 
j = k = 1, however this gives p̂ = q̂ which violates equation (6.7). Hence the smallest pos-
sible choice is j = 1, k = 3 or vice-versa. With this choice we obtain

zc(1) =
1
2
· 1
cos(π/(w + 4)) + cos(3π/(w + 4)) (7.4)

=
1
4
· 1
cos(π/(w + 4)) cos(2π/(w + 4)) (7.5)

∼ 1
4
+

5π
8

w−2 − 5πw−3 + · · · , (7.6)

which recovers the comparable result in [36].
We can then perturb around this solution by looking for (asymptotic) solutions of the form

p̂, q̂ = exp


 iπ

w + 4
·
∑

j

xjw−j


 . (7.7)

This leads to

p̂ = exp

(
π

w + 4
·
(

1 +
8(c − 1)
3c − 4

w−1 − 32(c − 1)(c − 2)
(3c − 4)2 w−2,+ · · ·

))

 

(7.8a)

Figure 11. A plot of the p̂-zeros of equation  (6.7) for w = 8 and c = 1, 6/5, 4/3, 2  
(top-left, top-right, bottom-left, bottom-right respectively).
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q̂ = exp

(
3π

w + 4
·
(

1 +
24(c − 1)

3c − 4
w−1 − 96(c − 1)(c − 2)

(3c − 4)2 , w−2 + · · ·
))

 

(7.8b)

and so

zc(c) =
1
4
+

5π2

8
w−2 − 5π2(c − 2)

(3c − 4)
w−3 + · · · . (7.9)

Notice this recovers the desired asymptotics when c → 1. It is clearly divergent as c approaches 
4/3 and does not apply for c > 4/3. We have also verified this form by computing zc(c) 
numerically for small w and fixed c by transfer matrix.

7.2. Transition point—c = 4/3

Applying the same ansatz when c = 4/3 gives asymptotics for zc(c) which are contradicted 
by numerical transfer matrix data. Consequently, we examined the solutions of (6.7) in detail 
for c = 4/3 and a range of w-values. More precisely we fixed w at some small number and 
then computed the resultant to obtain a polynomial equation in p. We found all solutions and 
verified that they lay on the unit circle. Next we took pairs of solutions (since the system is 
symmetric in p, q) and computed z via the kernel. Of course, most of these z values correspond 
to subdominant singularities, but we were able to identify certain p, q pairs that give the domi-
nant singularity as computed via a transfer matrix.

The ( p, q) pair corresponding to the dominant singularity lay on the unit circle, but the 
argument of that p (without loss of generality) decayed as w−3/2 rather than w−1. This sug-
gests the more general ansatz

p̂, q̂ = exp


2iπ ·

∑
j

xjw−j/2


 .

With this we find that

p̂ = exp

(
i
π√
2

(
w−3/2 − π2 + 45

12
w−5/2 +

11π4 + 690π2 + 17 235
1140

w−7/2 + · · ·
))

q̂ = exp

(
2iπ

(
w−1 − 5

2
w−2 +

13
2

w−3 − π2 + 105
6

w−4 + · · ·
))

,

which gives

zc(4/3) =
1
4
+

π2

4
w−2 − 9π2

8
w−3 +

π2(7π2 + 186)
48

w−4 + · · · .

Notice that if we apply this same ansatz for c < 4/3 then we recover equation (7.8).

7.3. Zipped regime—c > 4/3

Consider the bottom-right plot in figure 11 corresponding to large c. For c > 4/3 we observe 
that some of the roots of equation (6.7) lie on the real axis. Consequently, we repeat a similar 
analysis of the zeros, comparing them against the dominant singularity computed by trans-
fer matrix. This showed that the ( p, q) pair corresponding to the dominant singularity had 
(without loss of generality) its p-value on the real line and the q-value on the unit circle.  
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The position of the p-value was asymptotic to a constant plus a term that decayed as w−1 and 
the argument of the q-value decayed as w−1.

Before we go further, notice that as w → ∞ we expect to recover the free energy of the 
bulk system:

lim
w→∞

zc =
d

(1 + d)2 , (7.10)

where we have used the rationalising transformation

c �→ (d + 1)2

2d + 1
, (7.11)

for c > 4/3 and d > 1. This suggests that p → 1
d  and q → 1 as w → ∞ which is also sug-

gested by the numerical work described above. If one sets p = 1
d  and q = 1 in the kernel then 

one recovers this value of z. This suggests the following ansatz

p̂ =
1
d

∑
j

xjw−j, (7.12)

q̂ = exp


2πi

∑
j

yjw−j


 . (7.13)

More care must be taken when fitting the asymptotic form because the term pw is now 
exponentially smaller than all other terms. Thus to leading polynomial order in w we solve the 
equations

0 =
d2p̂2q̂ + d2p̂q̂2 + d2p̂ − 2dq̂ − q̂

d2p̂q̂2 − 2dp̂2q̂ + d2p̂ + d2q̂ − p̂2q̂
, (7.14a)

q̂w+4 = − d2p̂2q̂ + d2p̂q̂2 + d2q̂ − 2dp̂ − p̂
d2p̂2q̂ − 2dp̂q̂2 + d2p̂ + d2q̂ − p̂q̂2 . (7.14b)

This leads to

p̂ =
1
d

(
1 +

π2d
2(1 + d)

w−2 +
2π2d(d − 2)
(1 − d)(1 + d)

w−3

+

(
π4d(5d2 + d − 1)

24(1 + d)3 +
6π2(d − 2)2

(1 − d)2(1 + d)

)
w−4 + O(w−5)

)
,

 

(7.15a)

q̂ = exp

(
πi

(
w−1 +

2(d − 2)
1 − d

w−2 +
4(d − 2)2

(1 − d)2 w−3

−
(
π2d(2d2 − 5d − 1)
3(1 + d)(1 − d)3 +

8(d − 2)2

(1 − d)3

)
w−4 + O(w−5)

))
.

 

(7.15b)

The pw term in the original zero-equations does contribute to the asymptotics of these zeros, 
however its contribution is exponentially small compared to the above. Consequently,
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zc =
d

(1 + d)2

(
1 +

π2d
2(1 + d)

w−2 +
2π2d(d − 2)
(1 − d)(1 + d)

w−3

+

(
π4d(5d2 + d − 1)

24(1 + d)3 +
6π2(d − 2)2

(1 − d)2(1 + d)

)
w−4 + O(w−5)

)
.

 

(7.16)

In the limit as c → ∞ (and so d → ∞) we recover the asymptotics of a single non-interact-
ing walk in the strip (see [8]). Observe that if we compensate for the added energy for bound 
vertices we have

lim
d→∞

(
zc ·

(1 + d)2

d

)
= 1 +

π2

2
w−2 + 2π2w−3 +

(
5π4

24
+ 6π2

)
w−4 + · · · ,

which compares with the similar quantity (from [8]) for a single walk in the strip:

2zc =
1

cos(π/(w + 2))
= 1 +

π2

2
w−2 + 2π2w−3 +

(
5π4

24
+ 6π2

)
w−4 + · · · .

8. Forces

The asymptotic expressions for the dominant singularity allow us to compute an effective 
force exerted by the zipping polymer on the confining walls. We define the force (as per the 
definition in [8]) to be the difference of free energies:

F(c; w) =
1
2
[log zc(c; w)− log zc(c; w + 2)] . (8.1)

Substituting in our asymptotic expansions of zc gives us

w3F(c; w) =





5π2 − 15π2(12−7c)
4−3c w−1 + O(w−2) c < 4

3

2π − 39π2

2 w−1 + O(w−2) c = 4
3

π2
√

c(c−1)
c −

3π2
(

2c(1−c)+(11c−16)
√

c(c−1)
)

c(3c−4) w−1 + O(w−2) c > 4
3 .

 (8.2)
For a compact expression, we also write the large c result in terms of d:

w3F(c; w) =
π2d

1 + d
− 3π2d(3d − 5)

(d − 1)(d + 1)
w−1 + O(w−2) when d > 1.

 (8.3)
Note that the leading term is a monotonically increasing function of d (and so c), whose value 
close to d = 1 is π2/2 which, we note, is smaller than the value at c � 4/3. Hence, for suf-
ficiently large w, the force is not monotonic over the whole range c � 1 and approaches its 
minimum as c → 4/3+. This is clearly observable in the plots below. This effect is a result 
of the competition between entropic and energetic contributions to the force in the different 
regimes. We discuss this in more detail in the next section.

We have plotted the above function (8.3) against c for w = 128 (up to an including the 
order w−1 terms) along with numerical estimates of w3F(c; w) for w = 32, 64, 128 computed 
via transfer matrices (by comparison of the eigenvalues at widths w and w + 2). See figure 12. 
To see the small c and large c behaviour more clearly, we also plot the functions restricted to 
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Figure 12. Numerical estimates of w3F  for w = 32, 64, 128 computed using transfer 
matrices (left) and compared to our predicted result for w = 128 (right).
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Figure 13. The region c < 4/3 for the numerical estimates of w3F  compared to our 
predicted result for w = 128.
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Figure 14. The region c > 4/3 for the numerical estimates of w3F  compared to our 
predicted result for w = 128.
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the ranges [0, 4/3] and [4/3, 10] in figures 13 and 14. Observe that there is excellent agreement 
between our analytic and numerical results excepting close to the critical value of c—as one 
might expect. We can also compare our numerical and analytic results exactly at c = 4/3 and 
this is shown in figure 15

9. Discussion and summary

A model of two polymers that can bind together, such as DNA, confined to be in a long 
mesoscopic sized strip with parallel walls has been modelled by a directed walk system on 
the square lattice. We first analysed the bulk system in the absence of confining walls to 
demonstrate that there is a phase transition at finite temperature. At high temperatures, in the 
unzipped regime, the two walks drift away from each other and the number of bound vertices 
is bounded by a constant. At low temperatures, in the zipped regime, the two walks stay bound 
together and there is positive density of bound vertices.

We have analysed our model in a strip and computed the asymptotic behaviour of the free 
energy for large widths as a function of the temperature. We point out that there is no phase 
transition for finite widths. As the width approaches infinity the free energy of the system 
tends to that of the unconfined model. We have then calculated the force exerted by the poly-
mers on the confining strip and determined its asymptotic behaviour as a function of the width 
and temperature.

At any given temperature the force is repulsive and decreases as the inverse cube of the 
width. However, the constant of proportionality is a function of temperature and is discontinu-
ous at the bulk phase transition point. At high temperatures, the walks in the bulk are unbound 
and the constant of proportionality is independent of the temperature. At low temperatures 
the walks are zipped together and so act much like a single polymer. At zero temperature, the 
force exerted by the two walk system is exactly that of the single polymer system. The force 
exerted by a pair of free polymers on the confining walls is greater than that exerted by a single 
polymer; we can see this reflected in our results since the force at fixed large width is greater 
in the high temperature regime than in the low temperature regime.

What is perhaps less obvious is that in the low temperature regime the force is monotoni-
cally increasing in magnitude as the temperature is decreased. This must arise from the ener-
getic contributions to the free-energy (and hence the force) rather than the entropic ones. In 
fact, for finite width the minimum of the force occurs close to the bulk phase transition point. 
If one were able to measure the force in an experimentally realisable version of this system 
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Figure 15. At c = 4/3 we compare our predicted asymptotic result with the transfer 
matrix numerics as a function of w (left) and w−1 (right).
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then this would also enable the determination of the location of the zipping transition in the 
bulk.

As mentioned in the introduction there has been work on the competition between polymer 
adsorption and unzipping [25] and so it is a natural extension to consider that model in a con-
fining strip. This is effectively the addition of surface interactions in the model that we have 
discussed here. It would also be a natural extension to consider a three-dimensional model and 
also one that uses undirected self-avoiding walks.
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