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Abstract
Various interacting lattice path models of polymer collapse in two dimensions
demonstrate different critical behaviours. This difference has been without a
clear explanation. The collapse transition has been variously seen to be in the
Duplantier–Saleur θ-point university class (specific heat cusp), the interacting
trail class (specific heat divergence) or even first-order. Here we study via
Monte Carlo simulation a generalisation of the Duplantier–Saleur model on
the honeycomb lattice and also a generalisation of the so-called vertex-inter-
acting self-avoiding walk model (configurations are actually restricted trails
known as grooves) on the triangular lattice. Crucially for both models we have
three- and two-body interactions explicitly and differentially weighted. We
show that both models have similar phase diagrams when considered in these
larger two-parameter spaces. They demonstrate regions for which the collapse
transition is first-order for high three-body interactions and regions where the
collapse is second order. We conjecture a higher order multiple critical point
separating these two types of collapse. It remains to be tested whether the
second order lines in both models are in the Duplantier–Saleur θ-point uni-
versity class for all values of the parameters.
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1. Introduction

The nature of the collapse phase transition of a single polymer in solution when modelled in
two dimensions has provided continual surprises and subtleties for the past 30 years. Con-
nections to the rich vein of exactly solved vertex and loop models have been important in this
richness. In 1987 Duplantier and Saleur [1] provided a model of self-avoiding walks on the
honeycomb lattice (DS model) that allowed for the conjecture of exact critical exponents for
the collapse transition, also known as the θ-point. After some controversy these exponents
have become confirmed as those of the θ-point universality class (DS class) and so pertain to
the standard model of the collapse of fully flexible lattice polymers.

However, other models such as a Blöte–Nienhuis model [2], the so-called vertex inter-
action self-avoiding walk (VISAW) model [3–6] as well as interacting lattice trails [7–9]
seem to demonstrate different collapse behaviour. Our usual understanding from the principle
of universality is that minor changes in microscopic details should not affect the university
class. For the collapse transition this would seem to be called into question. More generally,
for collapse models, the addition of stiffness, or higher order interactions, can result in
different low temperature phases, and even first-order collapse. For example, Doukas et al
[10] studied a model of interacting trails on the triangular lattice, where doubly and triply
visited sites can be weighted differently, and found a richer phase diagram with the DS
collapse transition changing over to a first-order transition depending on the parameters. The
question naturally arises as to whether such a scenario can be seen in models without the
topological complication of crossing paths.

In this paper we study a generalisation of the DS model [1] where we differentially
weight faces of ‘type-2’ and ‘type-3’ which relate to faces of the honeycomb lattice visited by
two and three separate parts of the walk respectively. We also study a generalisation of the
VISAW model on the triangular lattice similar to the model studied by Doukas et al [10]. We
find that in both cases a similar phase diagram eventuates—one we conjecture to be the same
as that described by Doukas et al [10]. This would indicate that trails, and the subset of non-
crossing trails called grooves found in the VISAW, and also canonical self-avoiding walk
models of polymer collapse actually all have similar phase diagrams and university classes
when viewed in the space of two and three body interactions.

2. The models

Let us first define the two models in which we are interested more precisely.
Generalised DS model. Consider the ensemble n of self-avoiding lattice walks of n steps

that can be formed on the hexagonal lattice. Given a SAW j În n, we highlight every face
that jn touches and we divide them in three categories depending on how many distinct
segments of the walk are in contact with the face. We then count the number of faces
belonging to each category obtaining the numbers fi for Îi 1, 2, 3{ }. Examples of each face
category are illustrated in figure 1. We shall refer to them as type-i faces respectively.

Introducing weights w2 and w3 dual to f2 and f3 we define the partition function for this
model


åw w w w=

j Î
Z , . 2.1n

f f
2 3 2 3

n n

2 3( ) ( )

The model described by Duplantier and Saleur [1] has w = 22 and w w= = 43 2
2 .
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As usual, the finite-length reduced free energy is then given by

k w w w w=
n

Z,
1

log , , 2.2n n2 3 2 3( ) ( ) ( )

and the thermodynamic limit is obtained by taking the limit of large n, i.e.

k w w k w w=
¥

, lim , . 2.3
n

n2 3 2 3( ) ( ) ( )

Thermodynamic quantities like the internal energy and the specific heat are obtained by
taking derivatives of the free energy

k
w

k
w

=
¶
¶

=
¶
¶

u c, . 2.4n
i n

i
n

i n

i

2

2
( )( ) ( )

For some values of w2 and w3 we expect the thermodynamic limit to be singular, that is,
function such as w wc ,i

2 3( )( ) will be non-analytic on some manifold and behave as

= ~ a
¥

-c c B tlim , 2.5i

n
n

i ∣ ∣ ( )( ) ( )

where t is an appropriate distance from the critical manifold. For example, we know that the
DS point w w =, 2, 42 3( ) ( ) is critical.

Interacting grooves (IG). For the second model we consider the set n of grooves on the
triangular lattice. This is the set of bond-avoiding walks (trails) with the added restriction that
no crossings are allowed. This is an important type of configuration since these configurations
appear in the high temperature expansion of the O(n) model on the square lattice (see for
example the recent work in [11]). For each configuration we count the number of sites that the

Figure 2. In the interacting groove (IG) model sites of the triangular lattice are
classified by how many distinct segments of the groove are incident on a site. In this
picture we illustrate an example of each category.

Figure 1. In the DS model faces of the underlying hexagonal lattice are classified by
how many distinct segments of the the walk are in contact with the face. In this picture
we illustrate an example of each category.
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walk visits two and three times—see figure 2. Let these numbers be m2 and m3 and refer to the
sites as i-visited, or rather doubly visited and triply visited. We then introduce weights t1 and
t2 and we define, in complete analogy with above, the following quantities:


å t t=

j Î
Z , 2.6n

m m
2 3

n n

2 3 ( )

k t t=
n

Z
1

log , , 2.7n n 2 3( ) ( )

k
t

=
¶
¶

u , 2.8n
i n

i
( )( )

k
t

=
¶
¶

c . 2.9n
i n

i

2

2
( )( )

We shall refer to this model as the IG model.

3. Simulations

We studied the two models using the FlatPERM algorithm [12] which is based on the Pruned
and Enriched Rosenbluth method (PERM) developed in [13].

For the PERM algorithm, at each iteration a polymer configuration is generated kineti-
cally (which is to say that each growth step is selected at random from all possible growth
steps) along with a weight factor to correct the sample bias. At each growth step, config-
urations with very high weight relative to other configurations of the same size are enriched
(duplicated) while configurations with low weight or that cannot be grown any further are
pruned (discarded). Despite introducing a correlation between each iteration, this simple
mechanism greatly improves the algorithm efficiency. A single iteration is then concluded
when all configurations have been pruned and the total number of samples generated during
each iteration depends on the problem at hand and on the details of the enriching/pruning
strategy.

FlatPERM extends this method by cleverly choosing the enrichment and pruning steps to
generate for each polymer size n a quasi-flat histogram in some chosen micro-canonical
quantities = ¼k k kk , , , ℓ1 2( ) and producing an estimate Wn k, of the total weight of the walks
of length n at fixed values of k. From the total weight one can access physical quantities over
a broad range of temperatures through a simple weighted average, e.g.


å 

å 
r

r

r
=

W

W
. 3.1n

n j j
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n

j j
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n

k k k
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The quantities kj may be any subset of the physical parameters of the model. To study the full
two parameter phase space of the generalised DS model one would set =k k f f, ,1 2 2 3( ) ( ) and
r r w w=, ,1 2 2 3( ) ( ). Thermodynamic quantities are then calculated by

å
å
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3.1. Three-body DS model

We have run the flatPERM algorithm limiting the configurations to a length of n=256 and
running ´7.32 106 iterations. In this way we produced ´5.72 1010 samples at the maximum
length. As is usual with the flatPERM algorithm, one can also count the configurations by the
fraction of its steps made independently, this gives a measure of the number of ‘effectively
independent samples’. Our numerical study collected ´2.79 109 effective samples.

3.2. Three-body IGs

We have run the flatPERM algorithm limiting the configurations to a length of n=256 and
running ´7.91 105 iterations. In this way we produced ´1.1 1010 samples at the maximum
length. As common with the flatPERM algorithm, one can also count the configurations by
the fraction of its steps made independently, this gives a measure of the number of ‘effectively
independent samples’. Our numerical study collected ´2.4 108 effective samples.

4. Results

4.1. Three-body DS model

Before considering the larger model note that when w w= = 12 3 we simply have self-
avoiding walks on the honeycomb lattice, which is a well studied model. Non-interacting self-
avoiding walks behave as extended geometric objects relative to random walks and are
dominated by the so-called excluded volume effect. The long standing conjecture is that the
exponent ν describing the growth of the radius of gyration equals 3/4 [14]. Here we would
expect the ‘extended’ behaviour to exist in a region around the point 1, 1( ) in the larger
parameter space.

To obtain a landscape of possible phase transitions, we plot the largest eigenvalue of the
matrix of second derivatives of the free energy with respect to w2 and w3 (measuring the

Figure 3.Density plot of the logarithm of the largest eigenvalue of the matrix of second
derivatives of the free energy with respect to w2 and w3 at length 256. Darker shades
(colours) represent larger values. There is a clear indication of a strong transition for
large w3 in the range 20–30 when w2 is less than 1.5.
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strength of the fluctuations and covariance in f2 and f3) at length n=256 in figure 3. The
original DS model with w w=3 2

2 has the weak signature of the θ-point around the exact point
at w = 22 where we expect a cusp singularity (the third derivative of the free energy is
divergent). Considering the slice w = 13 we plot the specific heat in figure 4, which shows
almost no sign of a transition at all. This is expected with a = -1 3 at a θ-point. Right at this
point n = 4 7 [1]. It is striking though that for w < 1.52 and w3 in the range w< <20 303

the fluctuations are quite large indicating the build up of a strong transition. In figure 5 we first
plot the specific heat for two lengths: the enormous difference between the graphs for the two
lengths points to this build up. We then find the value of the maximum of the specific heat for

Figure 4. Plot of the specific heat as a function of w2 for lengths n=128 and n=256.
In this plot w3 is fixed to 1. The peak of the specific heat has only grown slowly
between these lengths.

Figure 5. Plot of the specific heat as a function of w3 for lengths n=128 and n=256.
In this plot w2 is fixed to 0.5. There has been a very dramatic change between these two
lengths with the maximum value more than doubling.
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a range of lengths and plot these on a log–log plot in figure 6. The build up is so strong that it
is super-linear: asymptotically the build up can only be at worst linear. It is usual to interpret a
super linear build up as a linear asymptotic regime with strong corrections to scaling. Now,
such a linear build up asymptotically indicates a first-order transition thermodynamically. To
test the hypothesis of a first-order transition we consider the distribution of type-3 faces at the
location of the maximum specific heat for length n=256 in figure 7: a clear double peak
distribution emerges which is a signature of a first-order transition build up. To confirm the
type of transition we illustrate typical configurations in figure 8 generated at w = 0.52 for
three values of w3 above, at, and below the finite size transition location, as inferred from the

Figure 6. Plot of the logarithm of the maximum value of the specific heat against
nlog( ). A local exponent fit over the short range of lengths (50–256) considered here

gives a value of af » 1.8. The theoretical maximum asymptotic scaling would give an
exponent of one: clearly large corrections to scaling are still at play here. In this plot w2

is fixed to 0.5.

Figure 7. The distribution of the number of type-3 faces f3 is clearly bimodal at the
point when w2 and w3 cross the line of suspected first-order transitions.
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location of the specific heat maximum. The configuration found at high w = 263 looks like an
ordered and anisotropic crystal-like dense structure while that at the smallest value of
w = 223 looks very extended as one would expect of a self-avoiding walks without inter-
actions. The configuration collected at the peak of the specific heat, located at w = 243 , seems
to be a simple phase separation of the extended high temperature type of configuration and the
compact crystal. This reinforces the conclusion that we have identified a first-order transition.

Turning to the low temperature phase itself we consider the configuration generated at
w = 263 . Note that apart from near the boundaries the faces alternate between type-3 and
type-1 without any type-2 faces. This would lead to half the faces being type-3 in the
thermodynamic limit. As each step is associated with two faces the limiting density of type-3
and type-1 faces should be 1/4 in this scenario. So to further understand the low temperature
phase we plot in figure 9 the average density of type-3 faces at a range of w3 moving from
moderate to larger values deep into the low temperature regime. We see that for large enough

Figure 8. Typical configurations of walks that have been generated at w = 0.52 with
different values of w3. From left to right: w3=22, w3=24, w3=26. The
configurations illustrate the co-existence of fully dense and swollen parts of the
polymer, demonstrating the first-order nature of the transition.

Figure 9. Plot of f n3⟨ ⟩ as a function of -n 1 2 for various values of w3. In this plot w2 is
fixed to 0.5. The line is the graph of the linear extrapolation for the largest w3 value
considered. For w 403 we estimate the ¥ f nlimn 3⟨ ⟩ to be slightly less than 1/4,
though not unambiguously so.
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w3 the density of type-3 faces scales as

~ -f n F
c

n
4.13 1 2

⟨ ⟩ ( )

Figure 10. Density plot of the ratio l lmin max of the eigenvalues of the matrix of
second derivatives of the free energy with respect to w2 and w3 at length 256. Darker
shades (colours) represent larger values. There is a clear indication of a special point
near w = 1.52 and w = 203 .

Figure 11. Schematic phase diagram for the generalised DS model involving self-avoiding
walks on the honeycomb lattice. There are three phases: extended, globule and crystal. The
line of second-order phase transitions between the extended and globule phases is marked
with double lines. The first-order line between the extended and Crystal phases is marked
as a dashed line. The meeting of these is marked by a bullet (green) at
w w =, 1.5, 202 3( ) ( ). We also mark with a bullet (blue) the DS critical point at
w w =, 2, 42 3( ) ( ). We mark the possible phase transition between two types of low
temperature phase, globule and crystal, with a single solid line, indicating a probable
second-order transition.
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characteristic of a low temperature dense phase. If the low-temperature phase is fully dense
then =F 1 4 throughout the low-temperature phase for any w3 larger than the transition
value. At the lengths considered we estimate F to be slightly less than 1/4, though not
unambiguously so. We rather conjecture though that the low temperature regime is indeed
fully dense for large w3 and small w2. On the other hand for large w2 when w3 is moderate in
value we find that F 1 4, pointing to the presence of the expected globular phase of low
temperature ISAW.

Figure 12. Plot of an effective value of the size exponent ν calculated from the end-to-
end distance at two lengths 200 and 256. They cross close to 0.57 which is near the DS
value of 4/7.

Figure 13. Density plot of the logarithm of the largest eigenvalue of the matrix of
second derivatives of the free energy with respect to t2 and t3 at length 256. Darker
shades (colours) represent larger values. There is a clear indication of a strong transition
for large t3 in the range 120–160 when w2 is less than 4.
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Returning to figure 3 one can make out three possible phase boundaries that may meet at
a point. One of those boundaries we would conjecture is a line of first-order transitions found
when varying w3 for small w2, while another is a line of DS θ-point like transitions with
a = -1 3 seen when varying w2 for w3 up to perhaps 20. There does also seem to be a line
of low temperature transitions separating the two phases we have identified above. That is,
this would be a transition between the liquid-drop-like amorphous globule for large w2 and
the very dense crystal-like phase we find here for large w3.

Figure 14. Density plot of the ratio l lmin max of the eigenvalues of the matrix of
second derivatives of the free energy with respect to t2 and t3 at length 256. Darker
shades (colours) represent larger values. There is an indication of a special point near
w = 4.52 and w = 1253 .

Figure 15. Plot of the specific heat as a function of t2, in this plot t3 is fixed to 1. The
peak of the specific heat has only grown slowly between these lengths.
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If this scenario described is correct these three phase boundaries should meet at a point.
In previous work it was noticed that an accurate way to find the location of such a multi-
critical point is to look at the ratio of the maximum and minimum eigenvalues of the matrix of
second derivatives of the free energy with respect to the parameters of the model. We make
such a plot here in figure 10. We see that this plot does pick out a particular location

Figure 16. Plot of the specific heat as a function of t3; in this plot t2 is fixed to 0.5.
There has been a very dramatic change between these two lengths with the maximum
value close to doubling.

Figure 17. Plot of the maximum value of the specific heat as a function of t3. A local
exponent fit over the short range of lengths (50–256) considered here gives a value of
af » 1.5. The theoretical maximum asymptotic scaling would give an exponent of
one: clearly large corrections to scaling are still at play here. In this plot t2 is fixed
to 0.5.
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w w =, 1.5, 202 3( ) ( ) that seems to be at the intersection of the three finite size phase
boundaries.

Putting all this information together we conjecture a phase diagram schematically shown
in figure 11. We have three phase boundaries meeting at a point marked with a bullet
separating three phases marked as extended, globule and crystal. The phase boundary
between the extended and globule phase may well be will be uniformly in the universality
class described by Duplantier and Saleur [1]: we see little difference between setting
w w= = 43 2

2 as Duplantier and Saleur [1] did in their model and simply setting w = 13 . In
figure 12 the effective value of the size exponent ν, calculated from the end-to-end distance, is
shown at two lengths 200 and 256 as a function of w2, when w = 13 . Standard finite-size
scaling arguments predict that these should cross at the critical point. Here they cross near 4/7
suggesting the DS universality class. Further work is need to verify the wider claim that the
DS universality class holds for the whole second-order line. On the other hand, the phase
boundary between the extended and crystal phase is very strong, and overwhelming evidence
suggests a first-order transition. Finally, we have not investigated the globule-crystal trans-
ition in this work though that would certainly be of real interest in future work.

Figure 18. The distribution of the number of triply visited sites m3 is clearly bimodal at
the point when t2 and t3 cross the line of suspected first-order transitions.

Figure 19. Typical VISAW configurations with t = 12 with different values of t3, from
left to right: t3=150, t3=180, t3=200. The configurations illustrate the co-
existence of fully dense and swollen parts of the polymer, demonstrating the first-order
nature of the transition.
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4.2. Three-body IG model

Now we turn our attention to the generalisation of the VISAW model on the triangular lattice
that explicitly includes three body interactions we call the IG model. We start in the same way
by considering the density plot of the logarithm of the largest eigenvalue of the matrix of
second derivatives of the free energy with respect to t2 and t3 in figure 13. The overall
features of the diagram seem similar, barring a rescaling of the parameter values where the

Figure 20. Plot of m n3⟨ ⟩ as a function of -n 1 2 for various values of t3. In this plot t2

is fixed to 0.5. The line is the graph of the linear extrapolation for t = 2003 . For
t = 2003 we estimate the ¥ m nlimn 3⟨ ⟩ to be close to 0.34—a value of 1/3, which is
the maximum attainable asymptotic value, indicates a fully dense phase.

Figure 21. Schematic phase diagram for generalised interacting grooves (IG) on the
triangular lattice. There are three phases: extended, globule and dense. The line of
second-order phase transitions between the extended and globule phases is marked with
double lines while the first-order line between the Extended and Dense phases is
marked with a dashed line. The boundary between the two low temperature phases of
Globule and Dense, which we expect to be second-order, is marked with a single solid
line. The meeting of these is marked by a bullet (green) at w w =, 4.5, 1252 3( ) ( ).
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corresponding features appear. There are broadly three parts to the plot where the fluctuations
are relatively small: one near the origin, one for large t3 at small t2, and finally one region for
large t2 at small t3. This indicates three phases with phase boundaries between each meeting
at a point close to t t =, 4.5, 1252 3( ) ( ). We looked for the location of the meeting point by
considering the density plot of the ratio of the smallest to largest eigenvalue of the matrix of
second derivatives of the free energy with respect to t2 and t3 in figure 14. If we set t = 13

and plot the specific heat (figure 15) we see little evidence of a transition although one can
detect a weak transition on examining the third derivative (not shown here). This is exactly
like the expected behaviour of the DS model. On the other hand by fixing t = 0.52 and
varying t3 a very strong transition is uncovered (see figure 16). If we consider the scaling of
the maximum of the specific heat in a log–log plot (see figure 17), a super-linear divergence is
found. This strong transition is already evident in the density plot of figure 13. To focus on
the nature of this transition more closely we consider in figure 18 the distribution of triply
visited sites at the transition when t = 0.52 . A very clear bimodal distribution is seen once
again allowing us to infer the existence of a first-order phase transition in the thermodynamic
limit.

In figure 19 we give typical configurations either side of, and at, the transition when
t = 0.5. The high temperature (low t2) configuration is extended and would be indis-
tinguishable from a self-avoiding walk at this scale, whereas for the low temperature point the
configuration is made up of almost exclusive of triply visited sites. The configuration at the
transition is made of extended and dense parts rather than being intermediate in a non-trivial
way. While a priori it is not expected that ordered will appear at low temperatures in this
model, on closer inspection of the configurations they display clear anisotropy indicating a
crystal-like structure as we have seen in the honeycomb lattice model above.

If the high t3 phase of the model when t = 0.52 indeed only contains triply visited sites
we would expect the density of triply visited sites to attain the value 1/3 in the thermo-
dynamic limit. In figure 20 we plot the density of triply visited sites for various values of t3

and for the largest value of t = 2003 the extrapolated value of the density is indeed close to
1/3. While the lengths we consider are relatively short for this analysis we are relatively
confident in drawing this conclusion.

Piecing together the information we have at hand for our IG model we provide a
schematic phase diagram in figure 21. Once again we have three phase boundaries meeting at
a point marked with a bullet separating three phases marked as extended, globule and dense.
There is no reason why the high t3 phase will be ordered in any way, though it may be fully
dense, so we have been careful not to label it as a crystal. Our data is not converged
sufficiently for small t3 and large t2 to estimate the ν exponent, so as to verify whether the
second-order transition between the extended and globule phases is in the DS universality
class or not. It seems to be at large t3 but we are unable to extend this prediction.

5. Conclusion

We have studied two models of two-dimensional polymer collapse based upon different
lattice configurations that can touch or not, though not cross, in a larger parameter space
where two and three body interactions are explicitly differentiated. In particular, we generalise
the model studied by Duplantier and Saleur [1] that describes the classical θ-point universality
class. We have shown using Monte Carlo simulation that this generalised model admits a
first-order transition and a probable higher order multi-critical point in addition to the DS
universality class. A similar scenario can be found in a generalisation of the VISAW model
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on the triangular lattice based upon configurations called grooves which are non-crossing
trails. We conclude that the introduction of explicit three body interactions in either walk or
groove based configurational polymer models lead to broadly similar phase diagrams that
admit three phases and transitions as just described. The phase diagrams proposed here are
broadly similar to that conjectured by Doukas et al [10] (see figure 22) for interacting trails
(ISAT) on the triangular lattice. So even though the three sets of underlying configurations of
ISAW, ISAT and IG are all different in that walks, trails and grooves are either geometrically
(walks and grooves) or topologically (grooves and trails) different, they seem to give rise to
broadly similar phase diagrams.

The remaining questions that arise are whether there are truly a low temperature trans-
ition from a globular phase at low three body interaction to a dense phase at larger values, and
so the nature of that transition, whether the dense phase in the DS model which seems to be
anisotropic is really similar to the triangular lattice groove model one, whether the second-
order transition between the extended and globule phases in both models is uniformly in the
DS universality class, and finally the nature of the point separating this second order line from
the first-order transition line in each phase diagram. It will also be interesting to investigate in
the walk model how the adsorption transition is affected by this generalisation since the DS is
special in this regard [15, 16].
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