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Abstract
We find the exact solution of three interacting friendly directed walks on the
square lattice in the bulk, modelling a system of homopolymers that can
undergo a multiple polymer fusion or zipping transition by introducing two
distinct interaction parameters that differentiate between the zipping of only
two or all three walks. We establish functional equations for the model’s
corresponding generating function that are subsequently solved exactly by
means of the obstinate kernel method. We then proceed to analyse our model,
first considering the case where triple-walk interaction effects are ignored,
finding that our model exhibits two phases which we classify as free and
gelated (or zipped) regions, with the system exhibiting a second-order phase
transition. We then analyse the full model where both interaction parameters
are incorporated, presenting the full phase diagram and highlighting the
additional existence of a first-order gelation (zipping) boundary.

Keywords: exact solution, directed walks, friendly walks, gelation, zipping

(Some figures may appear in colour only in the online journal)

1. Introduction

To model the phase behaviour of polymer gelation requires the consideration of systems of
multiple polymers [1] (with changing polymerisation). On the other hand, the study of two
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polymers with interpolymer interactions and interacting with a surface has received much
recent attention because of connections to modelling the unzipping of DNA. Typically these
have been modelled via either self-avoiding or directed walk systems on lattices in two- and
three-dimensions with various types of contact interactions [2–10]. The exact solution of
directed friendly walkers on the square lattice with such interactions [9, 10] has led to the
extension of a key combinatorial technique for lattice paths, the obstinate kernel method [11].

To extend these integrable models in the direction of multiple polymer gelation we solve
a system of three polymer strands with contact interactions. This is more properly a gen-
eralisation of the DNA unzipping model introduced previously with two directed friendly
walkers on the square lattice and interpolymer contact interactions [10]. Here we utilise an
ensemble of three directed friendly walkers with shared-vertex interactions on the square
lattice. We introduce two different types of contact interactions that differentiate between
situations in which two walks share the same site or all three walks share the same site.

We begin in section 2 by constructing our model, first defining the combinatorial class of
allowed configurations and subsequently introducing interaction parameters to assign our
configurations with corresponding Boltzmann weights. In particular, we incorporate two
distinct interaction parameters to differentiate between the zipping of only two or all three
walks.

In section 3, we introduce two further variables that mark the final vertical distances
between our three walks for any given configuration. These auxiliary variables, known as
catalytic variables, are integral to solving our model. We then establish a mapping between
our class of allowed triple-walks onto itself which leads to a functional equation for the
model’s corresponding generating function that incorporates our added parameters.

We then proceed in section 4 to determine an exact solution to the model’s generating
function by means of the obstinate kernel method [11]. While the beginnings of section 4
outline the precise steps undertaken, we briefly mention that this technique consists of gen-
erating a finite system of distinct functional equations by applying a set of different trans-
formations to our original relation determined in section 3. We then subsequently collapse our
system to construct a new refined functional equation which provides us (after some further
work) with a solution to our generating function.

Equipped with our exact solution of the generating function, we proceed to analyse our
model in section 5. Specifically, section 5.1 first considers the dominant singularity behaviour
of the generating function for the simplified model where we ignore triple contact effects. We
find that such a model exhibits a single critical point, arising in two distinct phases of our
system—namely, a free and gelated phase. In section 5.2 we determine that the free to gelated
phase transition is a second-order, with a finite jump discontinuity in the second-derivative of
free energy.

In section 5.3 we extend our analysis to the full symmetric model that incorporates both
double and triple interaction effects, specifying the regions of the phases and plotting the
phase diagram. While the full phase space is similarly partitioned into two distinct phases, we
find the existence of an additional first-order phase boundary for relatively low double and
high triple interaction Boltzmann weights.

Finally, in section 5.4, by a simple re-parameterisation, we consider the model that purely
isolates double and triple walker interaction effects. We plot the new phase diagram and use
low and high-temperature arguments to explain the limiting behaviour of our phase bound-
aries. As one might expect, the order of all phase transitions across the entire phase space
remain unchanged.

J. Phys. A: Math. Theor. 49 (2016) 154004 R Tabbara et al

2



2. The model

Consider three directed walks along the square integer lattice consisting of an equal number
of steps. All walks begin at the origin and end at the same site. Moreover, walks only can take
steps in either the North–East 1, 1( ) or South–East 1, 1( )- direction. Finally, all three walks
may share common steps, however none of the walks are able to cross one another. Such
walks are typically referred to as (infinitely) friendly walks. Let W denote the class of allowed
triple walks of any length. An example of an allowable configuration is given in figure 1.

For any configuration j Î W, we assign a weight c to the mc ( )j shared contact sites
between the top-to-middle or middle-to-bottom walks respectively. Note, that when all three
walks share the same site we consider the walk as consisting of two shared contacts sites with
corresponding weight c2 and further the trivial triplet of walks of zero length has weight 1.
Finally, we assign a weight d to the md ( )j triple shared contact sites where all three walks
coincide, hence contributing a total factor of c d2 to the overall configuration weight. The
partition function for our model consisting of n paired steps is

Z c d c d, , 1n
n

m m

,

c d( ) ( )
∣ ∣

( ) ( )å=
j j

j j

ÎW =

where ∣ ∣j denotes the length of the configuration j. The reduced free energy c d,( )y

c d
n

Z c d, lim
1

log , . 2
n

n( ) ( ) ( )y = -
¥

and generating function G c d z, ;( )

G c d z Z c d z, ; , 3
n

n
n

0

( ) ( ) ( )å=
=

¥

are defined in the usual manner, where z is conjugate to the length of the configuration.
Let PW be the subclass of allowed configurations where all three walks share a common

site only at the very beginning and end of the configuration. An example of such a config-
uration is seen in figure 2. We can then define the corresponding primitive generating function
P c z;( ) as

P c z z c; , 4m

P

c( ) ( )∣ ∣ ( )å=
j

j j

ÎW

Figure 1. An example of an allowed configuration of length 8. Here, we have mc = 11
double shared contact steps and md = 3 triple shared contact sites. Thus, the overall
Boltzmann weight for this configuration is c d11 3.
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where z is conjugate to the length ∣ ∣j of a configuration Pj Î W . Note that we can append any
two configurations, , P1 2j j Î W together to construct a new configuration 1 2·j j j= that

now lies in our original class W. More generally anyj Î W can be uniquely decomposed into
a sequence of primitive walks appended to each other as highlighted in figures 2 and 3. Using
the symbolic enumeration formalism described by Flajolet and Sedgewick [12] we have

SEQ • , 5P P P P P P P( ) { } { } { } ( )W = W = + W + W ´ W + W ´ W ´ W +       

where •{ } denotes the trivial configuration consisting of no steps and

... . 6
i

N

P N i P
1

1 2{ · · ∣ } ( )
⎧⎨⎩

⎫⎬⎭ j j j jW = Î W
=

 

At the level of generating functions, this construction translates to the following equation

G c d z dP c z d P c z

dP c z

, ; 1 ; ;
1

1 ;
. 7

2 2( ) ( ) ( )

( )
( )

= + + +

=
-



Letting d = 1 we can express our primitive generating function in terms of G c z, 1;( )

P c z
G c z

G c z
;

, 1; 1

, 1;
, 8( ) ( )

( )
( )=

-

Figure 2. An example of a primitive configuration where all three walks only coincide
on the first and last visited sites.

Figure 3.Decomposing the configuration seen in figure 1 into its primitive components.
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which further gives us the relation

G c d z
G c z

d G c z G c z
, ;

, 1;

1 , 1; , 1;
. 9( ) ( )

[ ( )] ( )
( )=

- +

Hence to solve for our full model it suffices to solve for the model that ignores triple shared
contact effects with corresponding generating function G c z, 1;( ) which we will indeed
proceed to do in sections 3 and 4.

3. Constructing the functional equations

We can establish a functional equation forG c z, 1;( ) by considering the effect of appending a
triplet of steps to the end of any given configurationj Î W. To begin, we define i j,( )W to be
the class of triple walks that consists of configurations with final top to middle walk distance i
and middle to bottom distance j, that still obey friendly constraints. We define our larger
combinatorial class 0 , 0( )W + + as

i j0 , 0 , . 10
i j0, 0

( ) ⋃ ( ) ( )
 

W º W+ +

Note that our original class of walks in our model 0, 0( )W º W . Equipped with our larger
combinatorial class we can introduce its corresponding generating function F c z;( ) that
encodes information about the number of steps and shared contacts for each configuration

0 , 0( )j Î W + + . However, determining whether appending a triple-step onto a given
configuration j results in a new and allowable configuration (i.e. j remains in 0 , 0( )W + + )
further requires knowledge of the final step distances between the three walks. Hence, solely
for the purpose of establishing our functional equation for F c z;( ), we additionally introduce
two catalytic variables r and s to construct the expanded generating function F r s c z, , ;( )
where

F r s c z F r s z r s c, , ; , 11h f m

0 ,0

2 2 c( ) ( ) ( )
( )

∣ ∣ ( ) ( ) ( )åº =
j

j j j j

ÎW + +

and again z is conjugate to the length ∣ ∣j of a configuration 0 , 0( )j Î W + + , r and s are
conjugate to half the distance h ( )j and f ( )j between the final vertices of the top to middle
and middle to bottom walks respectively. For each 0 , 0( )j Î W + + , powers of r and s in
F r s,( ) track the final step distances between the three walks. Due to the allowed step
directions, both h ( )j and f ( )j must always be even, ensuring that F r s,( ) contains only
integer powers of r and s. Thus, we consider F r s,( ) as an element of r s c z, ,[ ][[ ]] : the ring
of formal power series in z with coefficients in r s c, ,[ ] .

We aim to solve F c z G c z0, 0, ; , 1;( ) ( )º by establishing a functional equation for
F r s,( ). Specifically, we construct a suitable mapping from 0 , 0( )W + + onto itself by con-
sidering the effect of appending an allowable triple-step onto a configuration, translating this
map into its action on the generating function. At the end of any given walk we can append a
step 1, 1( ) . Hence, for a triplet of walks, there are a total of eight possible combinations of
triple steps that can be appended onto a configuration. Let  be the set of allowable steps,
with

1, 1, 1 , 1, 1, 1 , 1, 1, 1 , 1, 1, 1 ,
1, 1, 1 , 1, 1, 1 , 1, 1, 1 , 1, 1, 1 12
{( ) ( ) ( ) ( )

( ) ( ) ( ) ( )} ( )
 = - - -

- - - - - - - - -
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that alter the corresponding configuration weight by factors of z, z

r
, zr

s
, zs, z

s
, zs

r
, zr and z

respectively. Note, in (12) we have used the shorthand x y z, ,( ) to denote the triple-
step x y z1, , 1, , 1,{( ) ( ) ( )}.

Given the non-crossing constraint between the three walks, not all eight combinations of
appended steps will necessarily result in allowable configurations and furthermore shared
contact interaction effects also need to be considered when attaching new steps. Thus, we
identify 22 distinct cases that capture all possible changes in weight that can arise from
appending a triplet of steps as seen in figures 4–6; allowing us to construct a functional
equation for F r s,( ), highlighting the underlying decomposition for 0 , 0( )W + + . We denote
•{ } as the trivial zero-length configuration and introduce the following shorthand notation

n j i j i m i j n m i j, , , , , , , , , 13
i n j m i n j m,

( ) ⋃ ( ) ( ) ⋃ ( ) ( ) ⋃ ( ) ( )
   

W º W W º W W = W+ + + +

while

i j, , 14{ } · ( ) ( )s W

represents the class of configurations formed by appending the triple-step s Î to the end of
each triplet of walks i j,( )j Î W . We can build up our functional equation F r s c z, , ;( ) by
firstly establishing a relation for the non-interacting case F r s z, , 1;( ) and subsequently
incorporating the effects of shared contacts. To do this we consider the effect of appending a
triple-step onto a given configuration, making sure to eliminate newly formed walks that are
no longer part of our allowable class 0 , 0( )W + + . For F r s z, , 1;( ) we find

F r s z

zF r s
z

r
F r s r F r s

zr

s
F r s s F r s

zsF r s
z

s
F r s s F r s

zs

r
F r s r F r s

zrF r s

zF r s

, , 1, 1; 0 , 0
1 •

, 1, 1, 1 0 , 0 , Figure 4 a

, , 1, 1, 1 1 , 0 , Figure 4 b

, , 1, 1, 1 0 , 1 , Figure 4 c

, 1, 1, 1 0 , 0 , Figure 4 d

, , 1, 1, 1 0 , 1 , Figure 4 e

, , 1, 1, 1 1 , 0 , Figure 4 f

, 1, 1, 1 0 , 0 , Figure 4 g

, 1, 1, 1 0 , 0 , Figure 4 h , 15

0

0

0

0

( ) ( )
{ }

( ) ⋃ {( )} · ( ) ( )

( ( ) [ ] ( )) ⋃ {( )} · ( ) ( )

( ( ) [ ] ( )) ⋃ {( )} · ( ) ( )

( ) ⋃ {( )} · ( ) ( )

( ( ) [ ] ( )) ⋃ {( )} · ( ) ( )

( ( ) [ ] ( )) ⋃ {( )} · ( ) ( )

( ) ⋃ {( )} · ( ) ( )
( ) ⋃ {( )} · ( ) ( ) ( )

= W =

+ W

+ - - W

+ - - W

+ - W

+ - - - W

+ - - - W

+ - - W
+ - - - W

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

where r F r s,j[ ] ( ), s F r s,k[ ] ( ) and in general r s F r s,j k[ ] ( ) denote the coefficients of r j, s k and
r sj k in the generating function F r s,( ) respectively. Note, that since the coefficients of F r s,( )
are polynomials in r s, we have

r F r s F s

s F r s F r

r s F r s F

, 0,

, , 0 ,

, 0, 0 . 16

0

0

0 0

[ ] ( ) ( )
[ ] ( ) ( )

[ ] ( ) ( ) ( )

=
=
=

Next, we add shared contact site effects to (15) to get a functional equation for F r s c z, , ;( ),
with
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Figure 4. The eight possible ways of appending a triplet of steps to an allowed
configuration that results in no new shared contacts.
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F r s c z

z c F

z c F

z c s F s

z c r F r

z c F s

z c F s F

z c F s F
z

s
c F s F

s s F s

, , , 1; rhs of 15

1 0, 0 1, 1, 1 0, 0 , Figure 5 a

1 0, 0 1, 1, 1 0, 0 , Figure 5 b

1 0, 1, 1, 1 0, 2 , Figure 5 c

1 , 0 1, 1, 1 2, 0 , Figure 5 d

1 0, 1, 1, 1 0, 0 , Figure 6 a

1 0, 0, 0 1, 1, 1 0, 2 , Figure 6 b

1 0, 0, 0 1, 1, 1 0, 2 , Figure 6 c

1 0, 0, 0

0,
1, 1, 1 0, 4 , Figure 6 d

2

2

2 1

2 1

1

( ) ( )
( ) ( ) ⋃ {( )} · ( ) ( )
( ) ( ) ⋃ {( )} · ( ) ( )
( )[ ] ( ) ⋃ {( )} · ( ) ( )
( )[ ] ( ) ⋃ {( )} · ( ) ( )
( ) ( ) ⋃ {( )} · ( ) ( )
( )( ( ) ( )) ⋃ {( )} · ( ) ( )
( ) ( ( ) ( )) ⋃ { } · ( ) ( )

( ) ( ( ) ( )

[ ] ( ))
⋃ { } · ( ) ( )

=
+ - W

+ - - - - W

+ - - - W

+ - - W
+ - - W
+ - - W
+ - - - - - W

+ - -

-
- - W

+

+

+

+

Figure 5. The four possible ways of appending a triplet of steps to an allowed
configuration that results in all walks visiting the same site.
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z c s F r s

s F s
z

r
c F r F

r r F r

1 ,

0,
1, 1, 1 2 , 2 , Figure 6 e

1 , 0 0, 0

, 0
1, 1, 1 4 , 0 , Figure 6 f

1

1

1

( )([ ] ( )
[ ] ( ))

⋃ {( )} · ( ) ( )

( )( ( ) ( )

[ ] ( ))
⋃ {( )} · ( ) ( )

+ -
-

- - W

+ - -

-
- W

+

+

Figure 6. The twelve possible ways of appending a triplet of steps to an allowed
configuration where only two of the three walks visit the same site.
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zr c F r F

zr c F r

z c F r F

zs c r F r s

z c r F r s

r F r

zr c s F r s

1 , 0 0, 0 1, 1, 1 2 , 0 , Figure 6 g

1 , 0 1, 1, 1 0 , 0 , Figure 6 h

1 , 0 0, 0 1, 1, 1 2 , 0 , Figure 6 i

1 , 1, 1, 1 2, 0 , Figure 6 j

1 ,

, 0
1, 1, 1 2, 2 , Figure 6 k

1 , 1, 1, 1 0 , 2 , Figure 6 l . 17

1

1

1

1

( )( ( ) ( )) ⋃ {( )} · ( ) ( )
( ) ( ) ⋃ {( )} · ( ) ( )

( )( ( ) ( )) ⋃ {( )} · ( ) ( )
( )[ ] ( ) ⋃ {( )} · ( ) ( )

( )([ ] ( )
[ ] ( ))

⋃ {( )} · ( ) ( )

( )[ ] ( ) ⋃ {( )} · ( ) ( ) ( )

+ - - W
+ - - - W
+ - - - - - W

+ - - - W

+ -
-

- W

+ - - W

+

+

+

+

+

+

We now further refine (17) by eliminating the terms s F s r F r0, , , 01 1[ ] ( ) [ ] ( ), s F r s,1[ ] ( )
and r F r s,1[ ] ( ). The first step in this process is to construct 3 new functional equations for
F F s0, 0 , 0,( ) ( ) and F r, 0( ):

F

zc F

zc F

zc s F s

zc r F r

0, 0 0, 0
1 •

0, 0 1, 1, 1 0, 0 Figure 5 a

0, 0 1, 1, 1 0, 0 Figure 5 b

0, 1, 1, 1 0, 1 Figure 5 c

, 0 1, 1, 1 1, 0 Figure 5 d 18

2

2

2 1

2 1

( ) ( )
{ }

( ) ⋃ {( )} · ( ) ( )
( ) ⋃ {( )} · ( ) ( )

[ ] ( ) ⋃ {( )} · ( ) ( )
[ ] ( ) ⋃ {( )} · ( ) ( ) ( )

= W =

+ W

+ - - - W

+ - - W

+ - W

and

19

F s

zc F

zc F

zc s F s

zc r F r

zscF s

zc F s F

zc F s F
z

s
c F s F

s s F s

zsc r F r s

zc r F r s r F r

0, 0, 0
1 •

0, 0 1, 1, 1 0, 0 , Figure 5 a

0, 0 1, 1, 1 0, 0 , Figure 5 b

0, 1, 1, 1 0, 1 Figure 5 c

, 0 1, 1, 1 1, 0 Figure 5 d

0, 1, 1, 1 0, 0 , Figure 6 a

0, 0, 0 1, 1, 1 0, 2 , Figure 6 b

0, 0, 0 1, 1, 1 0, 2 , Figure 6 c

1 0, 0, 0

0,
1, 1, 1 0, 4 , Figure 6 d

, 1, 1, 1 2, 0 , Figure 6 j

, , 0 1, 1, 1 2, 2 , Figure 6 k

2

2

2 1

2 1

1

1

1 1 ( )

( ) ( )
{ }

( ) ⋃ {( )} · ( ) ( )
( ) ⋃ {( )} · ( ) ( )

[ ] ( ) ⋃ {( )} · ( ) ( )
[ ] ( ) ⋃ {( )} · ( ) ( )

( ) ⋃ {( )} · ( ) ( )
( ( ) ( )) ⋃ {( )} · ( ) ( )
( ( ) ( )) ⋃ { } · ( ) ( )

( ) ( ( ) ( )

[ ] ( ))
⋃ { } · ( ) ( )

([ ] ( )) ⋃ {( )} · ( ) ( )
([ ] ( ) [ ] ( )) ⋃ {( )} · ( ) ( )

= W =

+ W

+ - - - W

+ - - W

+ - W
+ - W
+ - W
+ - - - - W

+ - -

-
- - W

+ - - W

+ - - W

+

+

+

+

+

+

+

and

F r

zc F

zc F

zc s F s

zc r F r

, 0 0 , 0
1 •

0, 0 1, 1, 1 0, 0 , Figure 5 a

0, 0 1, 1, 1 0, 0 , Figure 5 b

0, 1, 1, 1 0, 1 Figure 5 c

, 0 1, 1, 1 1, 0 Figure 5 d

2

2

2 1

2 1

( ) ( )
{ }

( ) ⋃ {( )} · ( ) ( )
( ) ⋃ {( )} · ( ) ( )

[ ] ( ) ⋃ {( )} · ( ) ( )
[ ] ( ) ⋃ {( )} · ( ) ( )

= W =

+ W

+ - - - W

+ - - W

+ - W

+
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zrcF r

zc F r F

zc F r F
z

r
c F r F

r r F r

zrc s F r s

zc s F r s s F r

, 0 1, 1, 1 0 , 0 , Figure 6 e

, 0 0, 0 1, 1, 1 2 , 0 , Figure 6 i

, 0 0, 0 1, 1, 1 2 , 0 , Figure 6 g

1 , 0 0, 0

, 0
1, 1, 1 4 , 0 , Figure 6 a

, 1, 1, 1 0 , 2 , Figure 6 l

, , 0 1, 1, 1 2 , 2 , Figure 6 h . 20

1

1

1 1

( ) ⋃ {( )} · ( ) ( )
( ( ) ( )) ⋃ {( )} · ( ) ( )
( ( ) ( )) ⋃ { } · ( ) ( )

( ) ( ( ) ( )

[ ] ( ))
⋃ { } · ( ) ( )

([ ] ( )) ⋃ {( )} · ( ) ( )
([ ] ( ) [ ] ( )) ⋃ {( )} · ( ) ( ) ( )

+ - - W
+ - - - - W
+ - W

+ - -

-
- W

+ - W

+ - - - W

+

+

+

+

+

+

Next we solve this system for three of the terms we wish to eliminate (say
s F s r F r0, , , 01 1[ ] ( ) [ ] ( ) and s F r s,1[ ] ( )), and then subsitute these back into (17). In so doing,
we find that the fourth term, r F r s,1[ ] ( ) , is also eliminated. This results in an equation
satisfied by F r s,( ) that is considerably simpler:

K r s F r s
c

r cr cz csz

cr
F s

s cs cz crz

cs
F r

c

c
F

, ,
1

0,

, 0

1
0, 0 21

2

2

2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

= -
- + +

-
- + +

-
-

where the kernel, K r s,( ), is

K r s K r s z
z r s r s

rs
, , ; 1

1 1
. 22( ) ( ) ( )( )( ) ( )º = -

+ + +

3.1. Symmetries and roots of the kernel

We observe that the kernel K r s,( ) in (21) and (22) is symmetric under the two transfor-
mations

r s s r r s r
r

s
: , , , : , , , 23( ) ( ) ( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠F Y 

where both Φ and Ψ are involutions. These transformations generate a family of 12
symmetries —namely

r s s r r
r

s
s

s

r

r

s
r

s

r
s

r

s s

s

r r

s

r

s r

s

r r s s r

, , , , , , , , , , , , ,
1

, ,
1

,

1
, ,

1
, ,

1
,

1
,

1
,

1
. 24

( ) ( )

( )

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭

 =
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Now, considering K r s,( ) as a polynomial in r, we find two roots ŝ

s r z
r z r r r zr r z r

z r

s r z r z
r z

r
O z

s r z
r

r z
r O z

;
2 1 2 1 1

2 1
,

; 1
1

,

;
1

1 . 25

2 2 2 2 2 2

3 2
3

ˆ ( )
( ) ( ) ( )

( )

ˆ ( ) ( ) ( ) ( )

ˆ ( )
( )

( ) ( ) ( )

=
- + +  - + + -

+

= + +
+

+

=
+

- + +



-

+

Moreover, as the kernel is symmetric in r and s, we additionally have the roots r̂

r s z
s z s s s zs s z s

z s
;

2 1 2 1 1

2 1
, 26

2 2 2 2 2 2

ˆ ( )
( ) ( ) ( )

( )
( )=

- + +  - + + -
+



Providing F r s,( ˆ ) remains in the ring of formal power series r a c z, ,[ ][[ ]] , substituting
s ŝ into (21) sets the kernel to zero and eliminates the left-hand side of the functional
equation. Similarly, providing F r s,( ˆ ) lies in s a c z, ,[ ][[ ]] , substituting r r̂ will set the
left-hand side of the functional equation to zero.

By considering partial sums of F r s,( ) up to O zn( ), one can show that F r s,( ˆ )- and
F r s,( ˆ )- converge within the desired rings, while the other substitutions do not (essentially
because r s O z, 1ˆ ˆ ( )=+ +

- ). Hence for the remainder of this paper, we define s r z s r z; ;ˆ ( ) ˆ ( )º -
and r s z r s z; ;ˆ ( ) ˆ ( )º - , and only consider substitution of these roots.

Finally, when the kernel (22) K r s, 0( ) = we have

rs z r s r s1 1 27( )( )( ) ( )= + + +

and thus Lagrange inversion [12] yields

r s z
k

n
z s

n

j

n

j k
s

s r z
k

n
z r

n

j

n

j k
r

; 1 ,

; 1 . 28

k

n k

n n

j k

n
j n

k

n k

n n

j k

n
j n

ˆ ( ) ( )

ˆ ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟





å å

å å

= +
-

= +
-

=

-

=

-

Note that the above are closely related to the generating function of the Narayana numbers

N n j
n

j

n

j
,

1n

1( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

-
. This observation is sufficient to ensure that the above series

contain only non-negative integer coefficients.
These explicit series representations for positive integer powers of the roots r̂ and ŝ , will

be used below to help find an explicit expression for the generating function.

3.2. Using the symmetries of the kernel

Equipped with the roots ŝ and r̂ as well as the family of symmetries  that leave the kernel
invariant, we can now apply the obstinate kernel method. Specifically, we substitute
r s r s, ,( ) ( ˆ) and r s r s, ,( ) ( ˆ ) into the simplified functional equation (21), subsequently
applying a subset of transformations from  to generate a system of new functional
equations. Mapping r s r s, ,( ) ( ˆ ) we have the system
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c

r cr cz csz

cr
F s

s cs cz crz

cs
F r

c

c
F r s r s

0
1

0, , 0

1
0, 0 , , , , 29

2

2

2

( ˆ ˆ )
ˆ

( ) ( ˆ ˆ ) ( ˆ )

( ) ( ) ( ) ( ˆ ) ( )

= -
- + +

-
- + +

-
- 

c

r cr cz

cr
F

r

s

s cz crz

cr
F r

c

c
F r s r

r

s

0
1

0, , 0

1
0, 0 , , , , 30

crz

s

r

s

cr

s

2

2

2

( ) ( )ˆ ˆ ˆ ˆ

ˆ
( ˆ )

( ) ( ) ( ) ˆ ˆ ( )

ˆ ˆ ˆ

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= -
- + +

-
- + +

-
- 

c

s cz

c
F

r

s

s cz
cz

s
cr

F
s

c

c
F r s

s

r

s

0
1

0,
1

, 0

1
0, 0 , ,

1
, , 31

s

c

s

crz

s

r

s

cr

s

2

1

2

( ) ˆ
ˆ

( ) ( ) ( ) ˆ ( )

ˆ ˆ ˆ

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

= -
- + +

-
- + +

-
- 

where the chosen subset of transformations guarantee that each functional equations (29)–(31)
only contain non-negative powers of r̂ and thus the generating functions are formally convergent
in c s s z, ,[ ¯][[ ]] . Considering the system of equations (29)–(31), we can eliminate F r, 0( ˆ ) by

F r
F r

s cz crz

cr

s cs cz crz

cs

0 coeff. of , 0 in 30 rhs of 29
coeff. of , 0 in 30 rhs of 30

rhs of 29 rhs of 30 . 32

r

s

cr

s( )
[ ( ˆ ) ( )] [ ( )]

[ ( ˆ ) ( )] [ ( )]

ˆ

ˆ
[ ( )] ( ˆ ) [ ( )] ( )

ˆ ˆ

= ´
- ´

=-
- + +

+
- + +

In a similar vein we can eliminate F 0, r

s( )ˆ from the system by

F
r

s

F
r

s
s cs cz crz rs crs crz csz

crs

s
s

c

s
cz

crz

s
c

0 coeff. of 0, in 32 rhs of 30

coeff. of 0, in 29 rhs of 32

rhs of 29

1

rhs of 32 33

2

ˆ ( ) [ ( )]

ˆ ( ) [ ( )]

( ˆ )( ˆ ˆ ˆ )
ˆ

[ ( )]

ˆ

[ ( )] ( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

= ´

- ´

=
- + + - + - -

-
- + - -

yielding a functional equation solely in terms of the generating functions F s F s0, , 1 , 0( ) ( )
and F 0, 0( ). Specifically, we have

34N s c z F s N s c z F s N s c z c F, ; 1 , 0 , ; 0, , ; 1 0, 0 1 0,1 2 3
2 ( )( ) ( ) ( ) ( ) ( )[( ) ( ) ]+ + - - =

where

N s c z
s cs c r z r cr c s z c rs c r s z

c r s

N s c z
r cr csz crsz c r c s z c r s z

c r

, ;
1 1 1

,

, ;
1 1 1 1

,

1 3 2 2

2 3 2

( ) ( ( ˆ) )( ˆ ˆ ( ) )( ( ) ˆ ( ˆ ) )
ˆ

( ) ( ˆ ˆ ˆ )(( ) ˆ ( ) )( ( ( ˆ ) ))
ˆ

=
- + + - + + - - + + +

=
- + + - + - + + - + +
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N s c z
c

c

r r s rs s z

c rs
cr c r cs c s cs c s crs c rs z

c rs

, ;
1 1 1

. 35

3

2

4

3 2

2 2

2 2 2 2 2 2 2 2

4

( ) ( ) ( ˆ)( ˆ )( ˆ )
ˆ

( ˆ ˆ ˆ ˆ )
ˆ

( )

=
-

-
+ + - + -

-
- + - + - + - +

By an identical process, we can alternatively substitute in the root ŝ along with a subset
of transformations in 

r s r s
s

r
s

s

r r
, , , , , ,

1
36( ) ( ˆ) ˆ ˆ ˆ ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

that contain positive powers of ŝ to yield an alternate refined functional equation containing
F r F r, 0 , 0, 1( ) ( ) and F 0, 0( ). However, under the horizontal reflection

r s c s r c, , , , 37( ) ( ) ( )

the generating F r s,( ) along with any corresponding functional equations will be invariant
and it thus suffices to solely consider (34) for our subsequent analysis.

By using the symmetries of the kernel we have established the refined functional
equation (34) containing unknown generating functions in only the catalytic variable s. The
potential benefit of this new equation is that by extracting the coefficients of s i for some
choice of i we hope to establish a relation solely in terms of F c z G c z0, 0, ; , 1;( ) ( )º . This
is indeed what we will proceed to do in section 4.

4. Solving the generating function

Our aim is to utilise the refined functional equations that was established in section 3.2. We
start by dividing equation (34) by the coefficient of F s0,( ), namely N s c z, ;2 ( ). It was then
observed that N N1 2 was actually a rational function of s c, and z. Multiplying through by the
associated denominator then gives:

s cs cz c s c cz F s

s s c c s c s z F s

s s c c s c s z
N s c z

N s c z
c F

1 1 1 , 0

1 2 1 0,

1 2 1
, ;

, ;
1 1 0, 0 , 38

2

2

2

3

2

2

( ) ( ) ( )
( ( ( ) )) ( )

( ( ( ) ))
( )
( )

[ ( ) ( )] ( )

- + + - + - + +
- + + - + - + - + +
= - + + - + - + - + +

´ - -

where our algebraic functions N s c z, ;i ( ) are defined in (35). Extracting the coefficient of s1 of
(38) gives us

c c cz c F c cz c s F s

s s s c c s c s z
N s c z

N s c z

c F

1 1 1 0, 0 1 1 , 0

1 2 1
, ;

, ;

1 1 0, 0 . 39

1

1 2 3

2

2

( )( ) ( ) ( )( )[ ] ( )

[ ] ( ( ( ) )) ( )
( )

[ ( ) ( )] ( )

⎧⎨⎩
⎫⎬⎭

- - - + - + - + -

= - + + - + - + - + +

´ - -

Finally, to eliminate the boundary term s F s, 01[ ] ( ), we recall relation (18) and observe
that our walks are symmetric under a horizontal reflection. Thus, r F r s F s, 0 0,1 1[ ] ( ) [ ] ( )=
(more generally F r s F s r, ,( ) ( )= ) and so we have the relation
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s F s
c z

c z F

c z
, 0

1

2

1 2 0, 0

2
, 401

2

2

2
[ ] ( ) ( ) ( ) ( )= - -

- +

which when subsequently substituting into (39) yields an expression for F 0, 0( )

G c F

c

c c c cz c z c z c z

c c c c z c c z s H c z c z

, 1 0, 0

1

1
1

2 3 4 2 4

1 1 4 4 2 1 ; 4
,

41
2

2 2 3 2 2

2 2 1 3 2

( ) ( )

( )
( )
( ) ( ) [ ] ( )

( )

⎛
⎝⎜

⎞
⎠⎟

=

=
-

+
- + - + + +

- + - - + - - +

where

H c z s s c c s c s z
N s c z

N s c z
; 1 2 1

, ;

, ;
. 422 3

2
( ) ( ( ( ) )) ( )

( )
( )º - + + - + - + - + +

What remains is to explicitly extract the coefficient of s1 from H r c z, ;( ). We begin by
expanding H c z;( ) as a power series in c giving us

H c z s z s z s z sz z c X c z; 2 2 1 ; , 43
m

m m4 3 2

0

( ) [ ( ) ] ( ) ( )

å= + + - + +

where

X c z
z s

s
r s

z

s

m

k
r s

;
1

1

1 . 44

m
m m

m
m

m

m
k

m
k m k

1

1

1
0

2 1

( ) ( ) [ ˆ ( )]

ˆ ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠å

=
+

+ +

= +

-

+

+
=

- -

Using our expansion for r kˆ in (28) we find

X c z
m

k

k

n
z s

n

j

n

j k
s; 1 . 45m

k

m

n k

m n m n k

j k

n
j m n

0

2 1 1( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

å å å= +
-=

+ + - -

=

- - -

Now, from (43), c s H c z;m 1[ ] ( ) is

c s H c z z s z s z s z s z s X c z; 2 2 1 ; . 46m m1 3 2 1 0 1[ ] ( ) ( [ ] [ ] ( )[ ] [ ] [ ]) ( ) ( )= + + - + +- - -

Thus, equipped with our expansion for X c z; m( ) (45), one can explicitly find c s H c z;m 1[ ] ( )
by extracting and subsequently combining the coefficients s X c z;i m[ ] ( ) for i 3, 2 ,..., 1= - - .
For instance, we find s X c z; m0[ ] ( )

s X c z
m

k

k

n
z

m n k

m n j

n

j

n

j k

z
m

m

;
2 1

1

2 1

1
. 47

m

k

m

n k

m n

j k

n

m

0

1

[ ] ( )

( )

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟


å å å=

+ - -
+ - + -

+
-
+

=

+

=

Therefore, along with s X c z; m0[ ] ( ) found in (47) there remain four other components in (46)
whose series representation can be determined in the same fashion, giving us an expansion for
s H c z;1[ ] ( ) as a series in c. Finally, we change the order of summation to get terms that are a
power series in z and with the aid of Maple4 to combine our sums we find the exact solution
for s H c z;1[ ] ( ) to be

4 Maplesoft: a division of Waterloo Maple Inc. Maple 14 (software package).
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s H c z z
b

b

cz c z c z c z cz

c z cz
J c z

;
1 1 2 2 1 1 4

2 1 4
; , 48

1
2 2 2 2

2
[ ] ( ) ( )

( ) ( )

= +
-

+
- - + - - -

-
+

where J c z;( ) is

J c z z c
m

k

k

i m

i m

j

i m

j k

m i k

i j

m i k

i j

k

i m

i m

j

i m

j k

m i k

i j

z c
m

k

k

i m

i m

i k m

m i k

m

;
1

1 1

2

1

1

1

1
. 49

i

i

m

i
m

k

i m

j k

i m

i

i

m

i
m

k

i m

3 1

1

1

1 1

2 1

1

1

{( )

( )⎜ ⎟⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠





å å å å

å å å

=
- -

´
- - - -

-
+ -
-

+
+ -
- -

-
-

- -
-

+ - -
- -

-
-

-
- -

+ - -
-

=

-

=

- -

=

- -

=

-

=

-

Substituting (48) into (41) yields

G c z
c c

c c c zc cz

G c z
, 1;

1

2 1
1

2 3 1 4

, 1;
, 50

b

2 3
( )

( )
[ ( ) ]

( )
( )

⎛
⎝⎜

⎞
⎠⎟=

- +
+

- + + -

where

G c z c cz c z

cz cz c c c c J c z

, 1; 1 1 2

1 4 1 2 1 ; . 51
b

2

2

( ) ( )( )
[ ( ) ( )] ( )

= - - + +

+ - - + - + -

Finally recalling relation (9) between G c d z, ;( ) and G c z, 1;( ), our solution of the full
model is

G c d z
cd c

cd c c c dz c cz

G c d z
, ;

1

2 1
1

2 1 1 1 4

, ;
,

52
b

2 3
( )

( )
[ ( )( ) ( )]

( )
( )

⎛
⎝⎜

⎞
⎠⎟=

- +
+

- - + - -

where

G c d z cd c d c c cd c d z

cz c c d cz cd c d c d

zc cd c d J c z

, ; 1 2 2 1 2

1 4 2 1 1 2 2

2 1 2 ; . 53

b
2 2

2 3

2 2

( ) ( )( )
[ ( )( ) ( )

( ) ( )] ( )

= - + - + - +

+ - - - + - + -
+ - +

5. Phase structure and transitions

5.1. Singularity structure of G c; 1ð Þ

Recall from section 4 that our exact solution to G c, 1( ) was expressed as

G c z
c c

c c c zc cz

G c z
, 1;

1

2 1
1

2 3 1 4

, 1;
54

b

2 3
( )

( )
[ ( ) ]

( )
( )

⎛
⎝⎜

⎞
⎠⎟=

- +
+

- + + -

with the denominator G c z, 1;b ( ) defined in (51). In particular G c z, 1;b ( ) is an expression in
terms of z c, and the power series J c z;( ) which itself is defined at (49). Hence the dominant
singularity z c, 1s ( ) of our generating function is dependent on the dominant singularity
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z c, 1J ( ) of J c z;( ) along with any poles that arise from the roots of G c z, 1;b ( ). Now, by an
exact approach featured in [13], we employ the technique of differentiating hyperexponential
functions under the integral sign to determine a linear homogenous differential equation with
polynomial coefficients in z and c that is satisfied by the series. Once again, we utilise the
Maple package DETools which implements the so-called ‘fast’ Zeilberger algorithm
applicable to hyperexponential functions [14], to find the linear differential operator  where

c c z c z

c c z

c c

16 384 279 ... 23 808 10 4

23 592 960 279 ... 23 808

302 400 72 000 , 55

z

z

15 6 26 17 3 7

15 6 20

18 2

[ ( ) ( ) ]( )
[ ( )
( )]( ) ( )

 = + + + - + + ¶ ¶
+ + +
+ - + - ¶ ¶

 




satisfying the equation

J c z; 0. 56( ) ( ) =

in the appendix we explicitly write out the leading polynomial coefficient of (55) whose
zeroes correspond to the singularities of J c z;( ) which allows us to determine the dominant
singularity structure z c, 1J ( ) of J c z;( )

z c

z c

z c
c c c

c
c

, 1

1 8, 4 3

1

2
, 4 3.

57J

b

c

2( )
( )

( )
⎧
⎨⎪
⎩⎪


=

º

º
- + -

>

Thus we find a critical point at c 4 3= when both the singularities z z 4 3 1 8b c ( )= =
coincide. Note that the above implies that the square-root singularity of G c z, 1;( ) at
z c1 4= is subdominant. Recall further that with our differential equation one can also
determine the corresponding linear recurrence for the coefficients Jn of J c z;( ) and in
particular with the assistance of the Maple package Gfun [15] we find

c c c J
q c n J q c n J q c n J

c c c c

c c c J

6120 576 000 1 2 10 5
, , ,

1966 080 23 808 73 632 82 960 35 756

2310 4358 279 0, 58
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( ) ( )
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(
) ( )

- - - +
+ + + +

+ - + -
- + + =

+

+ + + 

where q c n c n, ,i ( ) [ ]Î , giving us a homogeneous linear recurrence equation of order 23
with polynomial coefficients in n. The growth of the coefficients Jn of J c z;( ) can be directly
determined from recurrence (58) by appealing to the method of Wimp and Zeilberger [16],
showing the existence and specific form of a basis set of asymptotic solutions for any given
linear recurrence which, in particular, contains rational coefficients (in n). In this instance, we
substitute into (58) the ansatz

J b n b, 0, 59n
n

0
1

0 ( )m= ¹g-

where b, , 0 m g Î . By collecting dominant powers of n and equating their corresponding
coefficients to zero we can solve for μ, γ. In doing so we find

J J c

B n c

B n c

B z c n c

8 , 4 3,

8 , 4 3,

, 4 3

60n n
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c
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0
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1 2

( )
( )

( )

⎧
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º =
<
=
>

-
-

-

+
- -

and moreover that the singular part of the generating function near the radius of convergence
behaves as
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Finally, we want to determine whether G c z, 1;( ) exhibits any additional critical points that
arise from the smallest real and positive root zp(c) of G c z;b ( ). By taking a truncated series
approximation of J c z;( ), we can numerically find the roots of G c z;b ( ) and estimate zp(c)
which we plot in figure 7, suggesting that z c z cp c( ) ( )< for all c 4 3> . We know that as
c  ¥, G c z, 1;( ) is dominated by those configurations where all three walks coincide for
every step so that

G c z
c z

c, 1;
1

1 2
, . 62

2
( ) ( )~

-
 ¥

Hence, we indeed should expect the pole zp(c) to dominate zc(c) for large c 4 3> . Now,
we need to justify that z c z cp c( ) ( )< , for all c 4 3> . If we assume the converse, then there
must exist c 4 3 > such that z c z cp c( ) ( ) = . From (61), the analytic and singular
expansion of J c z;( ) is given as

J c z A B z z c z z c A B; 1 , , , 0, 63c c
1 2( ) ( ( )) ( ) ( )  ~ + -  ¹+ +

-
+ +

and our expansion for G c z, 1;b ( ) becomes

G c z f c
f c B

z z c
f c B z z c z z c, 1;

1
1 , ,

64

b
c

c c0
1

2( ) ( )
( )

( )
( ) ( ) ( )

( )

 



  ~ +

-
+ - +

+

where f ci ( ) are algebraic functions in c. Note that A+ has been absorbed into f0. Now, as
G c z c, 1; 0b p( ( ))  ~ , we require f f 00 1= = , however considering f c1 ( ), where

f c
c c c c c

c c c

2 1 2 3 3 1

1 2 2 1
, 651

2 2

( )
( ) ( ( ) )

( )
( )=

- - + -

- + - -

we find the only roots of f1 are at c = 0, 1 and 4/3. Thus, there can not exist c 4 3 > such
that z c z cc p( ) ( ) = . With that in mind, we can finally conclude that the dominant
singularity, z c, 1s ( ), of G c z, 1;( ) is

z c
z c

z c c
, 1

1 8, 4 3,
, 4 3

. 66s
b

p
( ) ( ) ( )

⎧⎨⎩


=
º

>

5.2. Phase transitions of G c; 1ð Þ

Since the dominant singularity of G c, 1( ) contains a single non-analytic point, we would
expect that our model exhibits two distinct phases. To begin to characterise these phases we
introduce the order parameter c( ) denoting the limiting average number of shared contact
sites:

c
m

L
c

c
z clim log , 1 . 67

L

c
s( ) ⟨ ⟩ ( ) ( ) = =

¶
¶¥

The system is in a free phase when

0, 68( ) =
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while a gelated phase is observed when

0. 69( ) >

Recall from section 5.1 that z c z, 1 1 8s b( ) = º for c 4 3 , implying that 0 = over the
same region. For c z c z c4 3, , 1 , 1s p( ) ( ) = , which is given implicitly as the smallest
positive root of the expression

G c z c z c z c z

cz cz c z c z c z c z J c z

, 1; 1 2 1

1 4 2 2 ; . 70
b

2 3

2 3 2 3

( ) ( )
[ ( ) ( )] ( )

=- - - + +

+ - - + - + - +

Now, consider the expansion ofG c z c, 1; 0b p( ( )) = around c 4 3= . With the aid of the
Maple see footnote 3, we explicitly compute J 4 3; 1 8( ) where

J 4 3; 1 8
24 13 3

8 3
0.107 051, 71( ) ( )=

- +
» -

and thus as our expansion of J c z; p( ) is given as

J c z B z z c;
24 13 3

8 3
1 8 log 1 8 , 4 3, 72p p p0( ) ( ) ( ) ( )~

- +
+ - - 

so that
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c g
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4 3, 0. 73
b p p p
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0 1 2( ) ( ) [ ( )]( ) ( )
( )

~ - + + - - -
 ¹

As G c z, 1; 0b p( ) ~ , we apply the implicit function theorem to solve for the dominant
behaviour of z cp¶ ¶ in (73) to find

c
z c

B z z

B c z

c

, 1
3 45 22 3 72 1 8 log 1 8

64 32 27 1 log 1 8
,

0, 4 3. 74

p
p p

p
( )

( ( ) ( ))
( )( ( ))

( )

¶
¶

~
- + - -

- + + -
~ 

Hence we deduce that our order parameter c( ) is continuous at c 4 3= . In particular, we
find the dominant behaviour second-order derivative of zp is given as

Figure 7. The singularities zp(c) (dashed) and zc(c) (solid) for c 4 3> .
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and we conclude that we observe a second-order phase transition with a finite-jump
discontinuity in the first-derivative of c( ) as seen in figure 8. Note, that as c  ¥, free
energy is minimised for those configurations where all three walks are zipped together and the
total weight of such a configuration of length N will be c2N. Thus c 2( )  as c  ¥ which
is indeed what we observe in figure 8.

5.3. Analysis and phase diagram of the full model

From our analysis in section 5.1, the dominant singularity z c d,s ( ) of the generating function
can be one of either z 1 8b º or the pole z c d,p ( ) which is now a function of both c and d.
Substituting zb and c 4 3= to locate the zero of G d z4 3, ;b b( ), we find that the two
singularities coincide when d 9 8= and further that z d4 3,p ( ) is a strictly decreasing
function of d for all d 9 8> .

What remains is to determine the dominant singularity over the region c d4 3, 0< > .
Overall, estimating the location of z c d,p ( ) over this region we find

z c d

z c d
z c d d
z c d c d

z c d c d d

,

1 8, 4 3, 9 8
, , 9 8

, , 4 3, 9 8

, , , 9 8,

76s
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
 



a

a

=

º <

> <
>

where the boundary d( )a corresponds to when the singularities z c d z,p b( ) = coincide
respectively. With the full dominant singularity structure established, our system exhibits the
same phase regions as per the d=1 model—namely, a free phase is observed when

0, 77( ) =

while our system is in a gelated phase when

0. 78( ) >

Equipped with the phases of our system we plot the phase diagram in figure 9. By a similar
argument employed in section 5.2, for general d 9 8< we observe a second-order transition
when moving from a free to gelated phase. Now, considering the boundary d( )a where
d 9 8> , we note that our our boundary lies in the region c 4 3< , and hence the expansion

Figure 8. The limiting average number of shared contacts  when d = 1. The system
exhibits a second-order transition at c 4 3= respectively.
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of J c z; p( ) is given as

J c z A B z z
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Substituting (79) into G c d z, ; 0b p( ) = , we again apply the implicit function theorem to solve
for the dominant behaviour of z c d c;p ( )¶ ¶ as c d( )a to find
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Relying on our estimates for A- along d( )a , we find that z c d c;p ( )¶ ¶ is non-zero and hence
deduce that our order parameter 0 > as c d( )a . Thus, for d 9 8> , the system exhibits a
first-order transition when moving from a free to gelated phase. Moreover, employing a low-
temperature argument, we can determine asymptotics for the boundary d( )a . Specifically, as
d  ¥, G c d z, ;( ) is dominated by those configurations where all three walks coincide for
every step—that is

G c d z
c dz

d, ;
1

1 2
, , 81

2
( ) ( )~

-
 ¥

and equating the singularity of the limiting generating function with zb, we find

d d0, . 82( ) ( )a ~  ¥

Finally, to describe the singular behaviour of G c d,( ) across all phases and boundaries, we
consider the expansion of the generating function around the dominant singularity z c d,s ( ). In
particular, the singular behaviour of G c d,( ) is driven by the expression G c d,b ( ), and hence
J c d,( ). Recall in section 5.1 that the singular behaviour of J c d,( ) was determined in (60).
With that in mind, we find that for the free phase

Figure 9. The phase diagram of our full model. First and second-order transitions are
indicated by solid and dashed lines respectively. All phase boundaries coincide at
c 4 3= and d 9 8= .
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In a similar fashion, in the gelated phase where z c d,p ( ) is dominant, J c d z, ; p( ) is analytic
and hence

G c d z D z z c d z z c d D, ; 1 , , , , 0. 85p psingular
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-
+

Now, considering the singular behaviour of G c d,( ) along the phase boundaries requires a bit
more care. Fixing c 4 3= , we recall from our analysis in section 5.2 that

J 4 3; 1 8
24 13 3

8 3
, 86( ) ( )=

- +

implying that
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Along the free to gelated boundary where c d4 3, 9 8= < , we substitute our expansion for
J z4 3;( ) in (87) into the generating function and find
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At the point c 4 3= , d 9 8= , where the two singularities zb and z 4 3, 9 8p ( ) coin-
cide, we have the distinct expression for G z4 3, 9 8;( ) that arises from a simplification in
the generating function G z4 3, 1;( ) and hence our primitive generating function P z4 3;( ),
where

G z

zJ z z
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and further we find that the singular behaviour of our generating function at the critical point
is

G z D z z D4 3, 9 8; log 1 8 ,
1

8
, 0. 90singular( ) ( ) ( ) ~ -  ¹

Finally, considering the boundary d( )a , we return to our original expression for the full
generating function in (52) where G 0b ~ and along d( )a we find
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Once equipped with the singular behaviour of G c d z, ;( ), we can readily obtain the growth
rate of the coefficients Z Z c d,n n ( )º along the entire phase space, which we summarise in
table 1.

5.4. A change of parameters: t ≡ dc2

Recall from our original model that for a given configuration when all three walks coincide on
a site we incorporate both double and triple shared effects, weighting that site by c d2 . As a
reparametrisation of this model, we can define the parameter t c d2º , thereby isolating the
effects of double and triple shared contacts which now have corresponding weights c and t
respectively. This allows us to consider a system of three interacting polymers where the
energy required to graft all three or just two polymers are independent. From (9) we can

Table 1. The growth rates of the coefficients Z c d,n ( ) modulo the amplitudes of the full
generating function G c d z, ;( ) over the entire phase space.

Phase region Z c d,n ( ) ~

Free n8n 4-

Gelated z c d n,p
n 0( )-

Free to gelated boundary, d 9 8< n n8 logn 1-

Free to gelated boundary, d 9 8> n8n 0

c d4 3, 9 8= = n8n 1-

Figure 10. The phase diagram of our full model when setting d t c2= . First and
second-order transitions are indicated by solid and dashed lines respectively. All phase
boundaries coincide at c 4 3= and t = 2.
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immediately express the generating function G c t z, ;( ) as

G c t z
G c z

G c z G c z
, ;

, 1;

1 , 1; , 1;
, 92t

c2

( ) ( )
[ ( )] ( )

( )=
- +

where the exact solution to G c z, 1;( ) has been previously established in (50). Thus the
singularity structure of our model (76) remains unchanged except for a rescaling of the pole zp
and all singularities coincide at c t4 3, 2= = . More generally the full phase diagram is
presented in figure 10. At c = 0, the series J z0; 1( ) = and we find the denominator
G t t0, ; 1 8 1 4b ( ) = - . Thus we have a critical point at t = 4, which is precisely what we
observe in figure 10.

6. Conclusion

We have solved a model of three interacting friendly directed walks in the bulk. The system
has two distinct interaction parameters c and d, corresponding to double and triple shared-
contact sites to capture some of the effects of gelation. We established a combinatorial
decomposition for the model’s full generating function in terms of the corresponding sim-
plified generating function (when d = 1). We then derived a functional equation for this
simpler generating function, and by means of the obstinate kernel method, proceeded to solve
for both G c z, 1;( ), and subsequently, the full generating function G c d z, ;( ).

Our analysis of the simplified generating function where d = 1 showed the existence of
two phases which we classified as free and gelated, exhibiting a second-order phase trans-
ition. We then analysed the full model, presenting the phase diagram and showing that the
phase space remains partitioned into two distinct phases. In particular, we located second and
first-order phase boundaries, which coincide at c d4 3, 9 8= = .

It may be natural to consider next a more general asymmetric model incorporating
separate parameters for top to middle and middle to bottom shared contacts. We have
attempted to analyse this more general model using the same machinery, but unfortunately we
have not succeeded in establishing the solution. This may be because the symmetry broken by
distinct interactions means that there are insufficient kernel equations to find a full solution.
This provides us with an opportunity to explore the limits of application of the obstinate
kernel method.
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Appendix. J c; zð Þ: leading coefficient of the differential equation

The following is the leading polynomial coefficient of the linear homogeneous differential
equation (55) satisfied by the generating function J c z;( )
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66 087 476 672 95 061 235 200 84 487 121 352 54 752 814 068
65 552 043 352 109 024 512 354 105 526 411 092
49 565 408 243 8416 540 621 319 339 692

16 1 189 984 768 1521 400 320 5054 821 760

8837 982 112 7063 787 880 1606 610 060 5197 447 550
4952 167 254 14 081 942 129 9650 484 773
2082 577 819 79 382 673

16 121 503 744 774 825 984 2029 717 248 1682 295 616

4520 050 192 14 347 256 304 14 597 362 124 1236 304 748
9045 315 224 6669 607 380 1402 412 613 61 625 151

128 12 288 15 366 144 119 389 120 484 213 744 1107 002 264

1349 066 260 672 939 978 180 870 952
322 549 025 86 688 397 4300 398

128 5640 192 39 028 224 152 515 968 372 571 392

525 698 384 368 110 728 48 271 780
78 212 050 29 016 170 1603 611

1024 285 696 2133 888 7700 544 13 825 904 12 138 088

3739 140 1217 146 740 346 44 559

16 384 23 808 73 632 82 960 35 756

2310 4358 279 .

A.1
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3 4 5

6 7 8 9

10 11 12 19

8 2

3 4 5 6

7 8 9

10 11 12 20

9 2

3 4 5 6

7 8 9

10 11 21

10 2 3

4 5 6 7

8 9 10 11 22

11 2 3 4

5 6 7

8 9 10 23

12 2 3

4 5 6

7 8 9 24

13 2 3 4

5 6 7 8 25

15 2 3

4 5 6 26
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