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Abstract. We provide numerical support for a long-standing prediction of universal scaling
of winding angle distributions. Simulations of interacting self-avoiding walks show that the
winding angle distribution for N -step walks is compatible with the theoretical prediction of
a Gaussian with a variance growing asymptotically as C logN , with C = 2 in the swollen
phase (previously verified), and C = 24/7 at the θ-point. At low temperatures weaker evidence
demonstrates compatibility with the same scaling and a value of C = 4 in the collapsed phase,
also as theoretically predicted.

1. Introduction
Polymers in a dilute solution can be either swollen or collapsed, or at an intermediate critical
point, the so-called θ-point, depending on the quality of the solvent [1]. The canonical lattice
model for polymer collapse is the interacting self-avoiding walk on a regular lattice such as the
square or simple cubic lattice, in two or three spatial dimensions, respectively.

Some time ago, the winding angle distribution for polymers received theoretical attention. In
two dimensions, the winding angle distribution of Brownian paths of length N satisfies Spitzer’s
law [2]

P (x = 2θ/ logN) ∼ 1
1 + x2

. (1)

This distribution has divergent moments due to the infinitesimal winding centre. Changing
to macroscopic winding centres, or, alternatively, to random walks on a lattice, changes
the structure of the winding centre and leads to an exponential decay in the winding angle

VIII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 686 (2016) 012007 doi:10.1088/1742-6596/686/1/012007

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



distribution. More precisely, the distribution gets altered to

P (x = 2θ/ logN) ∼ 1
cosh2(1 + πx/2)

(2)

for adsorbing winding centres and to

P (x = 2θ/ logN) ∼ 1
cosh(1 + πx/2)

(3)

for reflecting winding centres [3, 4, 5].
The introduction of an excluded volume leads to a swelling of the polymer. Heuristically,

swelling implies that the winding of segments N/2, N/4, N/8, . . . become approximately
independent. Hence an N -step chain has O(logN) segments and a law-of-large-numbers
argument implies that the winding angle distribution becomes Gaussian with variance
proportional to logN . More precisely, one finds that

P (x = θ/
√

logN) ∼ exp(−x2/(2C)). (4)

Note that the introduction of the excluded volume has changed the scaling variable from
x = θ/ logN to x = θ/

√
logN .

Using a mapping to a Coulomb gas [6], it has been argued that the constant C is universal
in two dimensions, in that it assumes distinct values depending only on the phase the polymer
is in. In particular, it has been predicted that

C =


2 swollen phase,
24/7 critical state,
4 dense phase.

(5)

This calculation has been extended to watermelon configurations in [7], where it was shown
that the number L of legs in the watermelon configuration modifies the constant C by a factor
1/L2. As a consequence, it was argued that for θ-point polymers on the Manhattan lattice one
finds C = 6/7, as the modification of the lattice leads to a choice of L = 2 instead of L = 1.
The reason for this is that at the θ-point the polymer configuration forms part of a percolation
cluster hull, and thus the presence of a virtual second polymer completing the hull is felt. This
argument has been confirmed by simulations [8].

While the predicted values of C in the swollen phase and at the Manhattan lattice θ-point
have been confirmed by simulations, there has been no confirmation of the predicted value
C = 24/7 at the θ-point. There has also been some argument in the past whether the collapsed
phase can indeed be identified with a dense phase. Moreover, the heuristic argument leading
to a law-of-large-numbers could break down for the collapsed phase, as the chain is no longer
swollen, so that a numerical verification of the predicted value C = 4 is especially important.

We note that there have also been simulations of interacting self-avoiding walks up to length
N = 300 [9], suggesting that the results at the θ-point and in the collapsed phase are more
consistent with a stretched exponential of the type exp(−|θ|α/C logN) with α ≈ 1.5. As a
consequence, the scaling variable would change to x = θ/(logN)1/α.

Here we show, using simulations of interacting self-avoiding walks up to N = 400
with flatPERM, which allows simultaneous uniform sampling with respect to the number
of interactions and the winding angle, that the winding angle distributions are indeed
asymptotically Gaussian with a scaling variable x = θ/

√
logN , and that the variance grows

linearly in logN with the value of C being in agreement with the theoretical predictions for
swollen, critical, and dense polymers.
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2. Simulation Details
A large ensemble of linear chain configurations was obtained on a square lattice by means of the
flatPERM algorithm proposed by Prellberg and Krawczyk in [10], which is an extension of the
Pruned and Enriched Rosenbluth Method (PERM) proposed in [11]. The algorithm is able to
obtain statistical weights for a specific size and energy level (N, e). FlatPERM was successfully
applied to several models in a lattice such as, for example, asymmetric interacting self-avoiding
trails (ISAT) [12].

The flatPERM (multi-parametric flatPERM), described here, is able to obtain the
aforementioned weights as a function of chain size, energy and any additional observable
considered(N, e,O). An advantage of multi-parametric flatPERM is the estimation of micro-
canonical partition function of any walker model as a function of N, e and the observable
considered. In addition, a suitable observable considered can enhance the calculation pulling
out “strange” configurations, or rather less statistical probable configurations.

A key variable in flatPERM is the ratio (r) between the the actual weight of a chain
configuration of size n and energy m, Wn,m, and an estimation of it, Cestn,m. If r is bigger
than one we enrich, otherwise we prune. This ratio is changed accordingly in our version as

r =
Wn,m,k

Cestn,m,k

, (6)

where the k index corresponds to the value of the observable O in a configuration, and

Cestn,m,k =< W >n,m,k=
1
S

∑
i

W
(i)
n,m,k , (7)

i.e, the average of all the generated samples i with size n, energy m and value of the observable
k.

The observable implemented in this work is the winding angle (w) [3], i.e., the angle about
a rod or reference point that is swept out by growing polymer or random walker. Winding
angle is well defined in two dimensions and has been studied extensively in the literature for
several kinds of walkers [5, 6, 8, 13, 14]. Winding angle is an interesting observable, since it
gives geometric information about the degree of rolling up about the origin. Therefore, it is a
excellent candidate to test our new implementation of flatPERM.

The flatPERM [10] algorithm has a technical problem due to the inaccuracy of the initial
weights. This problem is even harder in our version, since the additional parameter can create
degeneracy for each energy level m (weight). Degeneracy (d) produces a lot of initial enrichment,
r � 1, because the estimated weight is a partial average of the initial configuration with same
weight (energy). Then the initial run of the presented flatPERM version is characterized by a lot
of enrichment, in order to obtain a proper estimation of the weight. This problem is particularly
difficult if the observable is not very related with energy (weight), and it is a continuous function
that, as in our case, should be discretized.

Histogram binning is a critical ingredient in this algorithm that will determine the degree of
degeneracy, d. The smaller the binning the more enrichment that will be necessary. A priori
an optimal binning will be one that reduces degeneracy, improves the generation of “less usual”
walks, and ensures the corresponding histogram fits in the computer memory available. The
calculations here presented have used a general histogram binning of 10 degrees. It is small
enough to identify all the possible configurations for the smallest chains and the corresponding
histogram fits in the computer memory available to us. However, this binning might be not
optimal for big chains, given the big amount of winding angles possible.
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Initial enrichment issues were solved integrating a certain percentage (g) of the degeneracy
level around the location of the winding angle:

Ĉn,m,k =
1
S

k+a∑
i=k−a

∑
j

C
(j)
n,m,i , (8)

where a = d · g/100.
The advantages of this procedure are several: (i) it allows to get better initial estimations

of the weights preventing too much enrichment; (ii) it can be equally applied to be energy to
improve the issue above mentioned with initial wrong weights; (iii) it is size dependent and can
be used with any kind of observable; (iv) the integration percentage, g, can be reduced along the
run in order to increase the degeneracy (enrichment) and, therefore, the searching of “unusual”
configurations.

On the other hand, this implementation suffers from two major disadvantages: (i) parameter
dependency due to the binning; and (ii) is computationally expensive in terms of time and
storage, given the large dimensional histogram that must be obtained. However, the second
disadvantage can be easily solved with parallel computing.

Calculations here presented started with g = 100 % for 5× 105 tours, that was subsequently
reduced to 5 %. The total number of tours, S in eq 7 and 8, it is about 2 × 106. It
is worth mentioning that our implementation allows restarting runs, saving the ful state of
enrichment/prunning along the chain. Thus, it is possible combine several runs with different
random seeds to decrease the correlations between samples mentioned in flatPERM [10].

3. Results
From the two-parameter histograms in the number of interactions and winding angle obtained,
we can now extract winding angle distributions at several temperatures. We have chosen β = 0
for the swollen phase, β = 0.8 for the collapsed phase, and β = 0.6673 for the θ-point, using
the best published estimate βθ = 0.6673(5)[15]. (We note in passing that previous work [9] used
values 0, βθ = 0.658(4), and 0.8.)

In Figure 1 we show winding angle distributions at infinite temperature (β = 0) for sizes
N = 100 to N = 400, scaled such that the distributions have unit variance. Uniform sampling
with respect to the winding angle enables us to sample the distribution over more than 100
orders of magnitude. We see that the central part of the distribution approaches a Gaussian
distribution very well. Convergence in the tails is much slower, as is evident from the semi-
logarithmic plot. However, this is not surprising, as the full distribution is supported on an
interval that grows as

√
N due to the largest winding angle being obtained by tightly wound

spirals.
In Figure 2 we show winding angle distributions at the θ-point (β = 0.6673) for sizes N = 100

to N = 400, again scaled to unit variance. The central part of the distribution again shows a nice
scaling collapse. Note the significant change of the probability in the tail of the distribution,
due to the fact that configurations with large winding also have large energy and thus have
significantly higher probability at lower temperatures.

In Figure 3 we show scaled winding angle distributions in the low temperature regime
(β = 0.8) for sizes N = 100 to N = 400, again indicating scaling collapse.

Now that we have established that the central regions of the winding angle distributions
collapse to the same distributions, we turn to the investigation of the growth of the winding
angle variance in the different regimes. In Figure 4 we display the variance as a function of
logN . We also plot the three theoretical scaling predictions on these plots which are simply
straight lines with slopes of the values of C being 2, 24/7 and 4 in the different regimes, There is
clearly some curvature in the data coming from finite-size effects. However we can confidentially
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Figure 1. Top: normalised winding angle distributions at N = 100, 200, 300, and 400 for β = 0.
Bottom: the same data in a semi-logarithmic plot, indicating the spread of the distribution as
N increases. The thin line indicates the normal distribution exp(−x2/2)/

√
2π.
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Figure 2. Top: normalised winding angle distributions at N = 100, 200, 300, and 400 for
β = 0.6673. Bottom: the same data in a semi-logarithmic plot, indicating the spread of the
distribution as N increases. The thin line indicates the normal distribution exp(−x2/2)/

√
2π.
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Figure 3. Top: normalised winding angle distributions at N = 100, 200, 300, and 400 for
β = 0.8. Bottom: the same data in a semi-logarithmic plot, indicating the spread of the
distribution as N increases. The thin line indicates the normal distribution exp(−x2/2)/

√
2π.
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Figure 4. Shown is the variance of the winding angle distribution for lengths up to N = 400
(dots) at β = 0 (top), β = 0.6673 (middle), and β = 0.8 (bottom). The straight lines have slopes
of 2 (top), 24/7 (middle), and 4 (bottom) illustrating the compatibility of the data with the
theoretical scaling predictions.There is curvature at short lengths, as one would expect coming
from corrections to scaling. There is also some noisiness and perhaps curvature in the data for
the longest lengths in the low temperature figure (bottom) when compared to the theoretical
straight line.
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Figure 5. Normalised winding angle distributions at N = 100, 200, 300, and 400 for β = 0.6673.
The thin line indicates the normal distribution exp(−x2/2)/

√
2π, whereas the dashed line

indicates a stretched exponential with exponent α = 1.6.

infer compatibility at both high temperatures (β = 0) and at the θ-point (β = 0.6673). At our
low temperature value (β = 0.8) we make a more qualified statement as there are larger errors
in our data and still some curvature at longer lengths, so state that the theoretical prediction
of 4 for C is reasonable compatible with the data. In any case there is clear disagreement with
the θ-point and low-temperature values of 2.75 and 3.14 given in [9].

Note also that the behaviour in the tails of the distribution does not indicate the presence of
a stretched exponential. At the θ-point, Figure 5 shows that while it is entirely plausible that
there is convergence to a normal distribution, convergence to a stretched exponential, which has
much fatter tails, seems quite unlikely. The figure shows a stretched exponential with exponent
α = 1.6, somewhat larger even than the value of α = 1.54 claimed in [9].
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