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Abstract
We consider a simple lattice model of a topological phase transition in open
polymers. To be precise, we study a model of self-avoiding walks on the
simple cubic lattice tethered to a surface and weighted by an appropriately
defined writhe. We also consider the effect of pulling the untethered end of the
polymer from the surface. Regardless of the force we find a first-order phase
transition which we argue is a consequence of increased knotting in the lattice
polymer, rather than due to other effects such as the formation of plectonemes.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Over the past years, there has been continuing interest in topological phase transitions of
polymers. One focus has been on modelling DNA. For example, in experiments [1–3] single
molecules of twist-storing polymers such as double stranded DNA can be held torsionally
constrained and under constant stretching force. These experiments show abrupt phase
transitions known as buckling, and the formation of conformational structures known as
plectonemes.

We are interested here in what topological and/or geometrical phase transitions might
occur in a single-stranded polymer: can one, for example, find buckling and the formation of
plectonemes.
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To this end, we consider a model of self-avoiding walks (SAWs) on the simple cubic
lattice in a half-space with an appropriately defined writhe. We will refer to the variable
conjugate to writhe as (pseudo-) torque, and work in an ensemble in which this torque is held
constant. We perform simulations with the flatPERM algorithm [4, 5], in which walks are
grown from an end that is tethered to the surface. It is important to realise that in these
simulations only one end is held fixed.

We find that upon varying torque there is a first-order phase transition between states of
small and high average writhe. However, in contrast to the experimental situation described
above, we do not see a buckling transition. Instead, the low and high writhe states are
dominated by different distributions of effective knot types. This scenario seems unchanged
by the presence of a pulling force applied to the endpoint. Because this transition is driven by
the change of knot-type, we argue that it is also insensitive to the choice of lattice.

While it is not clear how to create an experimental realisation of our model, we are
interested in the principle of the existence of a topological phase transition. Another moti-
vation comes from recent work [6], where it was shown that the linking number of a lattice
ribbon, which is a lattice version of a double-stranded polymer [7], is equal to the writhe of
the center line of the ribbon. The center line is a restricted three-dimensional self-avoiding
walk on the half-integer simple cubic lattice, so a model weighting the writhe of such a self-
avoiding walk can be considered as weighting the linking number of a lattice ribbon. There
are two key differences between the experiments mentioned above and such a model based on
a lattice ribbon. The experiments are conducted in a fixed linking number ensemble. This
means that the number of times the molecule is turned is equivalent to the linking number of
the DNA. This relation between linking number and turns is guaranteed by the experimental
setup, which prevents the DNA from passing over its endpoints. Otherwise the DNA could
just change its linking number by passing over its endpoints so that adding turns to the
molecule becomes irrelevant in the sense of statistical mechanics. Another consequence of the
fact that the DNA cannot pass over its endpoints is that it cannot form knots. In contrast, the
lattice ribbon model related to the model we study here allows for knotting. Such an ensemble
is not easily realized in experiments, since you would presumably still require the above
relation between the number of turns and the linking number to hold.

1.1. The model

Consider self-avoiding walks (SAW) on the simple cubic lattice. An n-step SAW Rn is
formed by n edges, or equivalently = +N n: 1 vertices ω ∈ =i N, 1 ,..,i

3 such that

(i) ω ω≠i j ∀ ≠i j, and
(ii) ω ω∥ − ∥ =+ 1i i1 ∀ <i N.

We refer to n as the length of this SAW.

We anchor the SAWs at the origin ω = (0, 0, 0)1 and restrict them to lie in the positive
half-plane ω ⩾( ) 0i z . The pulling force is aligned along the z direction so that the extension of
the SAW is given by ω=h ( )N z. LetCn w h, , be the number of SAWs of length n with extension
h and a parameter w which corresponds to writhe and which is defined below. Then, the
canonical partition function reads

∑∑= +Z F T C F h T w( , ) exp [ · · ]. (1)n

h w

n w h, ,

The parameter T shall be referred to as (reduced) torque, whereas F shall be referred to as
(reduced) force.
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Technically, writhe is defined only for a closed curve. To make sense of the writhe of an
open curve, it is usually necessary to close the open curve in a well defined way. We approach
this problem in a different way. The writhe of a self-avoiding closed curve or polygon P [8]
on the simple cubic lattice can be expressed as

∑ σ= +
=

( )P P PWr( )
1

4
Lk , , (2)

j

j

1

4

where σ+P j is a copy of P translated by a vector σ j and Lk is the linking number of the two
polygons P and σ+P j. The vectors σ j can be chosen to be σ = (0.5, 0.5, 0.5)1 ,
σ = −( 0.5, 0.5, 0.5)2 , σ = − −( 0.5, 0.5, 0.5)3 , σ = −(0.5, 0.5, 0.5)4 . On the other hand,
linking number can be computed as the number of signed crossings in a projection plane.
Suppose the curves P and σ+P j are projected into the xy-plane at = −∞z , then the operator

Ŝxy can be defined to sum up all the signed crossing ϵ c( )

∑σ ϵ+ =( )S P P cˆ ,
1

2
( ), (3)xy j

c is crossing

so that σ= +S P PLk ˆ ( , )xy and in particular = =S S Sˆ ˆ ˆ
xy yz zx. When the curves are not closed,

linking number is not defined but the operators Ŝ remain defined. While the operator result in
general depends on the projection plane, by averaging over all planes the result becomes
trivially independent of the plane. For an open self-avoiding curve Rsc, we define the integer

∑ σ σ σ= + + + + +
=

⎡⎣ ⎤⎦( ) ( ) ( )( )w R S R R S R R S R Rˆ , ˆ , ˆ , . (4)
j

xy j yz j zx jsc

1

4

sc sc sc sc sc sc

When the curve is closed then =w P P( ) 12 Wr( ), so that w R( )sc is closely related to the
writhe. It can be considered an approximation of the writhe of a closed curve P R[ ]sc that is
obtained when one tries to close a given open self-avoiding curve Rsc ‘simply’. w R( ) is
invariant under rotations and translations that respect the lattice symmetry. Thus, w is a true
microcanonical parameter of a SAW on the simple cubic lattice. Under reflections at a
coordinate plane, w picks up a sign. The quantity w shall be referred to as the writhe of
the walk.

1.2. Knots

An embedding of the circle →S 3 is called a knot [9]. Any knot defines an equivalence class
called the knot type K. Two knots are equivalent if one knot can be transformed into the other
via homotopy transformation. There are two kind of knot types. Prime knots like the unknot
01 and composite knots like the concatenation of two trefoils (3 )#(3 ).1 1

For any SAW ω= =R { }n i i N1 ,.., as defined above, define the corresponding knot by the
following procedure. In the first step, add N vertices ω ′k ∈k N( 1 ,.., ) in z direction to the end
of the SAW. The coordinates of these vertices read ω ω′ =( ) ( )k x N x, ω ω′ =( ) ( )k y N y,
ω ω′ = + k( ) ( )k z N z . Then, add N2 vertices in x direction. Then, add vertices in −z direction
until the z-component becomes −1. Add vertices in ±y direction until the y component
becomes zero. Finally, add vertices in −x direction until the x component becomes zero. The
last added vertex and the first vertex ω = (0, 0, 0)1 of the SAW are adjacent. Connecting
them forms a reference lattice polygon P R( )n

ref . When the lattice polygon is self-avoiding, it
is a knot with knot type K. Define the knot type of the walk Rn to be
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= ⎡⎣ ⎤⎦[ ] ( )K R K P R . (5)R n n
ref

When the reference polygon is not self-avoiding, the knot type of the walk shall be called
undefined. While the choice of the reference polygon is not unique, we expect the gross
features of our conclusion not to be affected, as they relate to changes in whether dominant
configurations in the ensemble are typically knotted and the way we construct our reference
polygon is consistently applied.

For any SAW ∈R Kn R with defined knot type, we can define its writhe by the writhe of
its reference polygon

= ( )( ) ( )R P RWr : Wr . (6)n n
ref

In particular, one may compare w R( )n to R12 Wr( )n .
We can also define the expectation value of a knot type K for polygons P on the simple

cubic lattice as

δ
=

∑ ∈
∑

K
P K x P

x P

( ) ( )

( )
, (7)P

P

where x P( ) is a Boltzmann weight with respect to some microcanonical parameters.
We use an algorithm similar to the one used in [10–12] to detect whether the reference

polygon of a SAW is the unknot.

2. Algorithm and data

We use the flatPERM algorithm [4, 5] to produce estimates for the numbers Cn w h, , . The
flatPERM algorithm grows a SAW one vertex at a time by selecting randomly one out of an
possibilities that keep the walk self-avoiding. The larger an, the more valuable is the selection,
so that a SAW grown into unoccupied regions have a higher statistical weight

∏=
=

−

W a . (8)n

k

n

k

0

1

Let S be the number of started growth chains, then estimates of Cn w h, , are given by

∑ δ δ= − −( ) ( )( ) ( )C
S

W w R w h R h
1

. (9)n w h
i

n
i

n n, ,
(est) ( )

The flatPERM algorithm uses local pruning and enrichment to enable uniform sampling. Let
Rn be a SAW of length n with writhe w and extension h. When the ratio

=
( )

r
W R

C
(10)

n n

n w h, ,
(est)

is larger than 1 the walk is enriched. Otherwise the walk becomes pruned. Enriching is done
by making =c r amin ([ ], )n copies of the walk and setting their weights to W

c n
1 . Each copy

is grown into a different direction, so that the the weights of the walks of length +n 1 will be
given by = … = − ++ +W W a W W a c, , ( 1)n n n n

c
n n1

1
1 . On the other hand, pruning consists in

continuing to grow the walk with probability r and setting its weight to Cn w h, ,
(est) . Therefore,

growing of the walk is discontinued with probability − r(1 ). The estimates Cn w h, ,
(est) are

believed [4, 5] to converge towards their true values with the number of started growth chains
S. A better measure of the effective sample size in a simulation, that has proven to be useful in
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practice, is provided by keeping track of the quantity

∑=S
n

n
1

, (11)n w h
i

i
, ,

(eff)
ind
( )

where n i
ind
( ) is the number of vertices grown independently. These are the number of steps

since the walk with parameters n w h( , , ) was last enriched. By changing the ratio in
equation (10) to

=
( )

r
W R

C

S

S
, (12)

n n

n w h n w h, ,
(est)

, ,
(eff)

the local effective sample size Sn w h, ,
(eff) is taken into account for pruning and enrichment.

We compute estimators 〈 〉Q n
est for observables Q using

=
∑ +

∑ +
Q T F

C Q F h T w

C F h T w
( , )

exp [ · · ]

exp [ · · ]
. (13)n

h w n w h

h w n w h

est , , ,
(est)

, , ,
(est)

If instead of estimating Cn w h, , one is interested in estimating partition functions for the
constant-force ensemble, one can run one-parameter simulations at fixed force F by applying
the same algorithm to = ∑Z F C F h( ) exp [ · ]n w n w h, , , instead.

We use logarithmic coding [13] to cope with large numbers. We gather data for ∣ ∣w rather
than w and assume by symmetry that =−C Cn w h n w h, , , , .

Suppose K independent simulations were performed and let Sk with k = 1,…,K denote
the number of growth chains completed in the kth simulation. We obtain a statistical average

∑=Q
K

Q
1

, (14)n

k
n

kest( )

and estimate the standard error

=
∑

∑

∑ −

∑
( )

( )
S

S

S Q Q

S
SE . (15)k

k

k k n
k

n

k

2

2

est( ) 2

Assuming that a sample of K simulations yields Qn that are normal distributed around the true
value 〈 〉Qn , the probability that the interval ±Q 1.96 SEn covers 〈 〉Qn is 95%.

Data

We ran eight independent flatPERM simulations up to length n = 120 to collect data forC .n w h, ,

The total number of growth chains for these simulations is ≈ ×S 4.6 10total
5. The shortest

simulation has ≈ ×S 0.7 10short
4, the longest ≈ ×S 7.7 10long

4 growth chains. The combined

number of produced samples at length 120 is ≈ ×N 1.0 10samples
11 of which ≈ ×N 1.1 10eff

9

can be regarded as effectively independent in the sense of equation (11).
To check the consistency of our approach with regards to using our definition of the

writhe of the walk w, we have compared it to the writhe Wr of a reference polygon for those
configurations for which a reference polygon exists. Figure 1 shows the results taken from the
simulation at F = 0. Within error bars, there is excellent agreement between both quantities.

In addition we ran eight one-parameter flatPERM simulations with maximum length 200
to collect data for =Z F( 0)n w, . The attributes of these simulations read ≈ ×S 6, 1 10total

6,

≈ ×S 5.0 10short
5, ≈ ×S 1.0 10long

6, ≈ ×N 5.4 10samples
10 and ≈ ×N 4.5 10eff

8.
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Figure 1. Shown is the average writhe 〈 〉12 Wr of a reference polygon for walks with
n = 120 steps and fixed writhe w. The width of the curve indicates the standard error.
The diagonal (black line) is shown for comparison.

Figure 2. Maximal eigenvalue λ of the matrix of second derivatives at length n = 120.
The z-axis shows λlog ( )10 . Torque T is in x direction, force F in y direction. The marked

points are =A (0.298, 0), =B (0.312, log (1.4)), = −C (0.294, log (1.4)).
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Another four one-parameter flatPERM simulations with up to N = 256 vertices were run
to collect data for =Z F( log (1.4))n w, . Each with ×5.0 105 growth chains, so that

= ×S 2 10total
6, = ×N 2.4 10samples

10 and ≈ ×S 1.5 10eff
8.

3. Results

We start by considering the data produced by the full two-parameter simulations. Figure 2
shows the maximal eigenvalue λ of the matrix of second derivatives of Z T Flog ( , )n for
walks of length n = 120. The line of peaks indicates the possibility of fluctuations that diverge
as the system size increases, and hence the possibility of a phase transition. Hence this line
separates regions of low and high torque.

To investigate the possibility of a phase transition, we have studied three particular
values of the stretching force = ±F 0, log (1.4). The locations of the maximum value of
fluctuations at these particular values are indicated by the three points marked in figure 2. The

Figure 3. Distributions for length n = 120 at the points A, B, C. The left-hand side
shows the writhe distribution, the right-hand side shows the distribution of the
extension. At integer values of w (h) a vertical slice of the gray shaded area (at integer
values) corresponds to the confidence interval.
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probability distributions of w and h are shown in figure 3. While the distribution of the
extension appears to stay unimodal, the writhe distributions are bi-modal, which is indicative
of a first-order phase transition.

Figure 4 shows the behaviour of λ, 〈 〉w and 〈 〉h on lines of constant stretching force
= ±F 0, log (1.4). Figure 4(a) shows that the fluctuations become highly peaked at the three

points A, B, and C. The average writhe takes on a profile expected for a first-order transition,
with a sharp jump at the same points, as seen in figure 4(b). On the other hand, the average
extension, which is shown in figure 4(c), changes in a smoother fashion, and only when the
force is non-negative. It is effectively constant when the force is negative. We conclude that
any transition is related to a sharp change in the writhe and a possible divergence in the
fluctuations of the writhe.

To establish whether there is a true phase transition, we consider the scaling of the
observables δ〈 〉 ≡ 〈 − 〈 〉 〉− −N w N w w( )1 1 2 , 〈 〉−N w1 and 〈 〉−N h1 with length. We first look at
positive force =F log (1.4) for walks with up to 256 vertices. From figure 5 it is evident that
the jump in the writhe and extension become sharper with increasing length, and that the
height of the peak of the fluctuations in writhe also sharply increases in length. One can note
that the height of the peak at N = 256 is more than double the height of the peak at N = 128.
Such strong increase is again indicative of a first-order phase transition.

Figure 4. Observables λ (a), 〈 〉w (b) and 〈 〉h (c) at different pulling forces for walks of
length n = 120. Confidence intervals are not shown. The position of the transition
moves towards increasing values of T with the pulling force.
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Turning to the case when no pulling force is applied (F = 0), we consider the scaling of
the half-width of the peak of the writhe Δn, the peak height of the writhe δwmax, and the writhe
distribution itself. Figure 6(a) shows that the half-width Δn decreases to zero faster than n1 ,
and figure 6(b) shows that the peak height δwmax increases faster than linear in n. This is again
indicative of a first-order transition, as the build-up of a bi-modality goes along with stronger
super-linear scaling. Figure 6(c) shows the scaling of the writhe distribution at the points Tn

*

of maximum peak height δwmax. We find a bi-modal distribution, as expected for first order
transitions, with the gap between the two peaks becoming more pronounced as the length of
the walk increases.

To obtain a good estimate of the critical torque =T F( 0)crit , we use a standard scaling
ansatz [14] that involves two pairs of lengths n1/n2 and m1/m2. At the critical value of the
torque =T Tcrit

=
( ) ( )w w T

m m

w w T

n n

log ( )

log ( )

log ( )

log ( )
(16)

m m n n

1 2 1 2

1 2 1 2

should hold. Using the choices =n 1901 , =n 1702 , =m 1601 , =m 1442 , we find
= ≈T F( 0) 0.22crit .

Figure 5. The observables 〈 − 〈 〉 〉−N w w( )1 2 , 〈 〉−N w1 , 〈 〉−N h1 , at lengths
=N 256, 128, 196 and =F log (1.4). The shaded areas represent confidence

intervals.
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We conclude that there exists a first-order phase transition between phases of low and
high average writhe with a sharp jump in the writhe per unit length. We now turn our
attention to understanding the difference between these two phases in more detail.

Figure 7 shows λ =F T( 0, ) for SAWs between n = 16 and 24. When n = 16, there is no
peak in λ on varying the torque, while for >n 16 there exists a distinct peak in λ. This can be
understood by noting that n = 17 is the minimal length for a SAW to form a loop and pass
through that loop with exactly one edge. This allows the SAW to gain a significant amount of
writhe. When we look at the reference polygon of a walk that has stepped through a loop we
find that the polygon is knotted. The knot that is produced is the trefoil 31, and so the open
configuration forms a partial trefoil. This indicates that the existence of knots is important in
driving this transition.

Figure 8 shows two typical configurations of 24-step SAWs. On the left-hand side, a
SAW with writhe w = 18 is shown, which will occur for small values of torque. The reference
polygon for this configuration is the unknot. On the right-hand side, a SAW with writhe

Figure 6. (a) Scaling of the half widths and (b) the maximum in writhe fluctuation for
n = 100 to n = 200. The gray shaded area is obtained by connecting the 95% confidence
intervals. (c) Scaling of the writhe distribution. The bridge between the peaks deepens
with the length. The corresponding torque values of maximal writhe fluctuation

δ δ〈 〉 = 〈 〉w w T( ) ( ) ( )nmax
2 2 * are =T 0.2442200

* , =T 0.2545180
* , =T 0.2662160

* , and

=T 0.2799140
* .
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Figure 7. The graphic shows the maximum eigenvalue of the matrix of second
derivatives at F = 0 for different lengths n of the walk. Note the peak is absent at length
n = 16. The peak appears abruptly at length 17. The minimal length for the reference
knot to be other than the unknot is 15. However, 17 is the minimal length for the SAW
to pass through the formed loop and gain maximum writhe. The peak rapidly moves
with n towards smaller values of the torque and becomes more pronounced.

Figure 8. The graphic shows representative configurations of the two phases for a SAW
of length n = 24 on both sides of the phase transition at T = 0.452 and T = 0.796. At
these two values of the torque the fluctuation in writhe is half of the peak fluctuation.
The low-torque (left) and high-torque (right) configurations have writhe w = 18 and
w = 45, respectively. These values are close to the expectation values at these torques.
The z direction is to the right, so that by forming the reference polygon we find that the
given configurations with w = 18 and w = 45 are equivalent to the unknot and the
trefoil, respectively.
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w = 45 is shown, which will occur for large values of torque. The reference polygon for this
configuration is the trefoil.

For walks of length n = 24 that have a reference polygon, figure 9 shows the probability
that the reference polygon of walks with fixed writhe w is the unknot. There is a sharp
transition between walks of small writhe where that probability is close to one and walks of
large writhe where that probability is close to zero. Walks with <w 30 are typically
unknotted, whereas walks with writhe >w 36 are typically knotted. Figure 9 also shows the
probability that walks of length n = 24 with fixed writhe w have no reference polygon. One
can see that while these walks exist for all values of w, the proportion is around 20%, and in
fact decreases for large writhe. We thus conclude that in neither phase configurations without
reference polygon are significant. We note that there is a peak in this probability near the
transition, which is due to the fact that in configurations that are not tight, a reversal of the
final step of the walk both increases the writhe and decreases the probability of the existence
of an associated reference knot. Configurations with large writhe are tight and typically have
the ends of the walk on their exterior boundary, hence increasing the probability of the
presence an associated reference polygon.

4. Conclusion

In this paper we considered the ensemble of SAWs in the half-space on the simple cubic
lattice, weighted by their writhe and the distance of their endpoint from the surface. We
showed that there is a first-order phase transition between states of small and high average
writhe upon varying the torque.

Figure 9. For walks of length n = 24, the figure shows the probability that walks with a
fixed writhe w have no reference polygon (thick/violet line). It further shows the
conditional probability that the reference polygon of these walks is an unknot, given
that a reference polygon exists (open circles).
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Our investigation of short lengths indicates that the low and high writhe states are
dominated by different knot types. More generally, this transition should be regarded as a
transition between phases dominated by configurations of different knot type distributions.
For small torque, a SAW can contain a knot, with the knot type drawn from a certain
distribution of knot types. This clearly depends on the length of the SAW; short SAWs are
unknotted, whereas SAWs are almost certainly knotted if they are sufficiently long. When
increasing torque, the distribution of knot types seem to change abruptly at a critical value of
the torque. This happens regardless of the strength of the pulling force applied to the end-
point. Because this transition is driven by the change of knot-type, we believe that it is
insensitive to the choice of lattice.

Walks with less than 17 steps cannot knot, and the transition is absent. In contrast, for a
reasonably short walk of length 24, we find that below the transition the ensemble is
dominated by unknotted configurations, whereas above the transition the ensemble is
dominated by trefoil configurations having knot type 31.

In our simulations we have considered SAWs up to 256 vertices, which when con-
sidering knot types for SAW is relatively short [11]. We cannot rule out the appearance of
further phase transitions as the length of the walk is increased, but it is certainly likely that
there exists at least one phase transition in the thermodynamic limit. We further note that there
are many composite knots with small writhe [9], so that increasing the torque will bias
towards the appearance of certain types of knots.

Lastly, we have performed some short simulations weighting the linking number of
lattice ribbons [15]. These simulations indicate the same scenario as described here, with a
transition associated with different knot types, rather than the formation of plectonemes.
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