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Abstract
Several recent works have considered the pressure exerted on a wall by a
model polymer. We extend this consideration to vesicles attached to a wall, and
hence include osmotic pressure. We do this by considering a two-dimensional
directed model, namely that of area-weighted Dyck paths. Not surprisingly, the
pressure exerted by the vesicle on the wall depends on the osmotic pressure
inside, especially its sign. Here, we discuss the scaling of this pressure in
the different regimes, paying particular attention to the crossover between
positive and negative osmotic pressure. In our directed model, there exists an
underlying Airy function scaling form, from which we extract the dependence
of the bulk pressure on small osmotic pressures.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A polymer attached to a wall produces a force because of the loss of entropy on the wall.
This has been measured experimentally [1–3] and recently described theoretically in two
dimensions using lattice walk models [4, 5]. There has also been work concerning the entropic
pressure of a polymer in the bulk [6]. Lattice walks and polygons on two dimensional lattices
have in the past been utilized to model simple vesicles [7–11], where there can be an internal
pressure. Here we explore the competition between the bulk internal pressure and the point
pressure caused by entropy loss when a vesicle is fixed to a wall in two dimensions. Our study
involves an exactly solved model of vesicles [10, 12], namely, area-weighted Dyck paths
[13–15].
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Figure 1. Pressure profile for long Dyck paths as a function of the relative distance x
from the point of tether.

Let ZN be the partition function of some lattice model of rooted configurations of size
N, for example directed or undirected self-avoiding walks or self-avoiding polygons, and let
Z(Q)

N be the partition function conditioned on configurations avoiding a chosen point Q in
the lattice. Then the pressure on the point Q is given by the difference of the finite-size free
energies − log ZN and − log Z(Q)

N , that is

P(Q)
N = − log Z(Q)

N + log ZN . (1.1)

Here we take kBT = 1 for convenience. When the configurations are Dyck paths, which are
directed paths above the diagonal of a square lattice starting at the origin and ending on the
diagonal, this model was analysed in [5]. The pressure at the point Q = (m, m) for walks of
length 2N is given exactly as

P(m)
N = − log

(
1 − CmCN−m

CN

)
, (1.2)

where Ck = 1
k+1

(2k
k

)
is the kth Catalan number counting 2k-step Dyck paths. For N and m

large, this leads to

P(m)
N = 1√

πx3(1 − x)3
· 1

N3/2
+ O(N−5/2), (1.3)

where x = m/N measures the relative distance of the point Q from the origin with respect to
the length of the walk. That is, the pressure of the Dyck path decays to zero as N−3/2 in the
centre of the Dyck path, with an x-dependent profile, as shown in figure 1. In contrast, near
the boundary the pressure tends to an N-independent limiting value

P(m)
N → − log

(
1 − Cm

4m

)
. (1.4)
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Figure 2. A vesicle of length 9 given by a Dyck path with 18 steps, enclosing the 11
shaded plaquettes and having weight q11. When considering the modified configurations
that avoid the lighter coloured plaquette, which is at distance m = 6, the vesicle is
considered to enclose ten plaquettes and have weight q10.

2. The model

In an extension of the work described in the introduction, the configurations of the model
studied here are area-weighted Dyck paths, where we have rotated the lattice by 45◦ for
convenience as shown in figure 2. To be more precise, we weight each full square plaquette
between the Dyck path and the surface with a weight q = exp(�), where � is the osmotic
pressure.

We use these paths to model vesicles adsorbed at the surface, that is to say that we
consider them as vesicles with the bottom part of the membrane firmly attached to the surface.
As described above, to calculate the pressure we need to consider a slightly modified set of
configurations that avoid some point. For our vesicle model this means that the bottom of the
vesicle does not include a particular plaquette, see figure 2.

Denoting the set of all 2N-step Dyck paths by DN , the partition function for unrestricted
vesicles of length N is given by

ZN (q) =
∑

ϕ∈DN

qA(ϕ), (2.1)

where A(ϕ) is the number of plaquettes enclosed by the configuration ϕ.
Similarly, denoting the set of all 2N-step Dyck paths enclosing the surface plaquette at

distance 1 � m � N − 1 by D(m)
N ⊂ DN , the partition function for the restricted vesicles is

given by

Z(m)
N (q) =

∑
ϕ∈D(m)

N

qA(ϕ)−1. (2.2)

Note that the distance m is measured as the number of half-plaquettes along the surface to the
point of interest.

The configurations in DN \ D(m)
N are precisely the ones that touch the surface at distance

m, whence

ZN (q) − qZ(m)
N (q) =

∑
ϕ∈DN\D(m)

N

qA(ϕ) = Zm(q)ZN−m(q). (2.3)

For q = 1 this reduces to equation (1.2). Computing the pressure using equation (1.1), we find
that the pressure P(m)

N (q) of a Dyck vesicle of length N on the surface at distance m is given by

P(m)
N (q) = − log

(
1 − Zm(q)ZN−m(q)

ZN (q)

)
+ log q. (2.4)
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3. Results

3.1. Exact results

One can recursively calculate ZN (q) using

Z0(q) = 1, ZN+1(q) =
N∑

k=0

qkZk(q)ZN−k(q), N � 0, (3.1)

which for q = 1 reduces to a well-known recursion for Catalan numbers. One sees that ZN (q),
and therefore also P(m)

N (q), is computable in polynomial time. There are no closed-form
expressions known.

However, there are well-known closed-form expressions [16, example 5.9] for the
generating function

G(z, q) =
∞∑

N=0

ZN (q)zN, (3.2)

namely,

G(z, q) = Aq(z)

Aq(z/q)
, (3.3)

where

Aq(z) =
∞∑

n=0

qn2
(−z)n

(q; q)n
(3.4)

is Ramanujan’s Airy function. Here, we use the q-product notation (t; q)n = ∏n−1
k=0(1 − tqk).

Note that the radius of convergence zc(q) of G(z, q) is simply related to the thermodynamic
limit of the partition function via

log zc(q) = − lim
N→∞

1

N
log ZN (q). (3.5)

For q = 1, G(z, q) = (1 − √
1 − 4z)/2 is simply the Catalan generating function and hence

zc(1) = 1/4; to leading order there are 4N Dyck paths with 2N steps.
At the level of the generating function, the recurrence (3.1) is equivalent to the functional

equation

G(z, q) = 1 + zG(z, q)G(qz, q), (3.6)

which in turn leads to a nice continued fraction representation for G(z, q):

G(z, q) = 1

1 − z

1 − qz

1 − q2z

1 − q3z

1 − · · ·

. (3.7)

We can calculate the surface pressure in the thermodynamic limit from the generating function
by relating the pressure to the density of contacts with the surface. In order to do so, we need
to introduce a surface weight κ for contacts with the surface, which we will set to one after
the calculation. Let G(z, q; κ) be the generating function for area-weighted Dyck paths where
each contact with the surface (except for the origin) is associated with a weight κ . A simple
necklace argument gives

G(z, q; κ) = 1

1 − zκG(qz, q)
. (3.8)

The density of contacts with the surface well away from the ends of the walk is
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Figure 3. Convergence of the scaled generating function G(z, q) to the scaling function
f (s) for q = 0.99, 0.9999, and 0.999 999. Numerical evaluation of G(z, q) has been
done using the continued fraction representation (3.7).

ρ(q) = − ∂ log zc(q; κ)

∂ log κ

∣∣∣∣
κ=1

, (3.9)

where zc(q; κ) is the location of the closest singularity of G(z, q; κ) in z to the origin. The
surface pressure in the thermodynamic limit, for any fixed value of 0 < x = m/N < 1, is then
given as the constant

P(q) = − log(1 − ρ(q)) + log q. (3.10)

We shall refer to this as the bulk pressure.
Much work has been done on the computation of the asymptotics for q-series such as those

involved here [17]. In the vicinity of q = 1 and z = zc(1) = 1/4, one can show convergence
of suitably scaled generating function. More precisely, one finds that the limit

f (s) = lim
q→1−

−((1 − q)−1/3G(1/4 − s(1 − q)2/3, q) − 2) (3.11)

exists and is equal to the scaling function

f (s) = −2
Ai′(4s)

Ai(4s)
(3.12)

The convergence to the scaling function is shown in figure 3.
We note that the continuum version of area-weighted Dyck paths corresponds to area-

weighted Brownian excursion, which was rigorously treated in [19]. A derivation of Airy-
function scaling for area-weighted Brownian excursion based on path integrals is given in
[20], and an appealing derivation based on Langevin equations is given in [21].

3.2. Pressure profiles

We now consider the profile of the pressure for finite N. In figure 4 we show pressure profiles
as a function of x = m/N for three different values of q with positive, zero, and negative
osmotic pressures, and for lengths N = 50, 100, and 200.
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Figure 4. Pressure profiles for q = 0.98 (left), 1.00 (centre), and 1.02 (right) and lengths
N = 50, 100, and 200, from top to bottom.

Figure 5. The rates of approach to the bulk pressure, calculated via the pressure at the
centre of the vesicle for q = 0.9 (left) and q = 1.1 (right). Clearly the convergence is
exponential in N for q < 1 and exponential in N2 for q > 1. The straight line (right) is
our theoretical prediction.

We see that the pressure converges to a non-zero bulk pressure when the osmotic pressure
is non-zero. For q = 1, one can compare the finite-size data shown in this figure to the exactly
known scaled profile shown in figure 1. Moreover, closer inspection shows that the rate of
convergence is significantly different for positive and negative osmotic pressure. As we know,
for q = 1 the bulk pressure is zero, and convergence obeys the power law N−3/2. For q 	= 1,
the rate of convergence to the bulk pressure is exponential in N and N2 for q < 1 and q > 1,
respectively, as can be seen in figure 5.

One can derive these results in the following way. Convergence to the thermodynamic
limit is encoded in the singularity structure of the generating function. For q < 1, the leading
singularity of the generating function is an isolated simple pole, and the finite-size corrections
to scaling are therefore exponential, with the rate of convergence given by the ratio between
the magnitudes of the leading singularity and the sub-leading one. A closer analysis reveals
that the rate depends on the value x = m/N as

P(m)
N (q) ∼ − log(1 − ρ(q)) + log q + O(e−D min(x,1−x)N ), (3.13)
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Figure 6. A plot of the pressure at the centre of the vesicle against q for vesicle lengths
10, 20, 40 and 80, from top to bottom (left) and of the thermodynamic limit bulk pressure
of the vesicle against q (right).

where D does not depend on the value of x. The singularity structure can also be seen in
figure 3 for negative values of the scaling parameter s.

For q > 1, it is easier to argue directly via the partition functions. For positive osmotic
pressure, configurations with large area dominate, and using arguments in [18] one can deduce
that

ZN (q) ∼ 1

(q−1; q−1)∞
q(N

2) (3.14)

where (t; q)∞ = ∏∞
k=0(1 − tqk) is again a q-product. The appearance of the factor

1/(q−1; q−1)∞ is due to fluctuations around configurations of maximal area.
Substituting this into equation (2.4) shows that

P(m)
N (q) ∼ log q + 1

(q−1; q−1)∞
q−m(N−m) = log q + 1

(q−1; q−1)∞
q−x(1−x)N2

. (3.15)

Note that the decay rate depends on the value of x = m/N.

3.3. Bulk pressure

We now turn to the consideration of the pressure in the centre of the vesicle, so as to consider
the bulk pressure. Using our results above, we already know that for q > 1 the bulk pressure is
given by log q. In figure 6 on the left we have used the recursion (3.1) to calculate the pressure
at the centre of the vesicle as a function of q for N = 10, 20, 40, and 80. One can see that the
convergence to a limit is slowest around q = 1, which of course aligns with our predictions
above for the rates of convergence in the different regimes.

We have now used the continued fraction expansion (3.7) to numerically estimate the
thermodynamic limit bulk pressure as a function of q, shown on the right in figure 6. It should
be clear that the finite-size curves approach the curve shown here in the limit of large N. It is
interesting to see the competition of the osmotic pressure and the entropic pressure for q < 1.

Clearly the limiting behaviour of the pressure for q > 1 is P(q) ∼ q − 1 as q → 1+.
Extracting the limiting behaviour of the pressure for q < 1 is considerably more difficult. A
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Figure 7. An estimate of the finite-size scaling function for the pressure, using N = 40,
80, and 160, from bottom to top.

calculation starts by considering that from equations (3.6) and (3.8) we find that the critical
fugacity zc = zc(q; κ) satisfies

G(zc, q) = κ

κ − 1
. (3.16)

Differentiating this expression with respect to κ allows us to write the density ρ(q) in terms
of the generating function as

ρ(q) = G(zc, q)(G(zc, q) − 1)

z ∂
∂zc

G(zc, q)
. (3.17)

Utilizing the scaling form (3.11) now shows that ρ(q) ∼ 2(1 − q) as q → 1− and hence
P(q) ∼ 1 − q. Put together, this implies that

P(q) ∼ |1 − q| as q → 1. (3.18)

The existence of the scaling function f (s) in the variable s = (1/4−z)/(1−q)2/3 implies
by standard Laplace transform that there should be a finite-size scaling form for the pressure
in the variable t = N3/2(1 − q). Hence we define the scaling function

g(t) = lim
N→∞

N3/2P(N/2)

N (1 − tN−3/2). (3.19)

In figure 7, we numerically estimate the scaling function g(t) for a range of t. Asymptotic
matching with (3.18) requires that g(t) → |t| for t → ±∞. We note the convergence to the
scaling function is poor for q > 1, which arises because of the unusually differing rates of
convergence to the thermodynamic limit in the two regimes.
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