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Abstract For a standard or canonical ribbon from differential geometry the topological
White’s theorem connects the linking number, writhe and total twist of the ribbon. Here we
provide an integral expression, analog to the total twist of a canonical ribbon, that connects
linking number and writhe of two curves that do not necessarily form a canonical ribbon. First,
we apply this integral expression to derive an expression for the writhe of a polygonal curve.
Second, but importantly, we revisit the lattice ribbon. Lattice ribbons were introduced some
time ago to enable simulation of physical systems modeled by double stranded polymers.
Application of the integral expression yields an algorithm for determining the twist of the
lattice ribbon. An interesting relation between writhe of the center line of a lattice ribbon and
its linking number follows.

Keywords Lattice ribbon · White’s theorem · Ribbon

1 Introduction

1.1 Background on Canonical Ribbons

A canonical ribbon [3–5], C , is defined as the doublet (R, V ), where R is a closed curve and
V is a constant length vector field on R, that is orthogonal to R. Let r (s)

(
r : [0, 2π] → R

3
)

be a parametrization of R and v (t) of V, then

|v (t)| = const

v (t) · r′ (t) = 0 (1)
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In addition, it is required that the area traced out by v (t) does not cross itself. Besides R,
the parametrization induces a second boundary curve B to the ribbon. It has a parametrization
b (t) = r (t)+ v (t). A theorem accredited to Călugăreanu, Fuller and White [3–5,8,14,16]
relates the linking number Lk of the boundary curves R and B to writhe Wr and total twist
Tw of the ribbon

Lk (B, R) = Wr (R)+ TwC (B, R) . (2)

where the superscript C indicates that R and B form a canonical ribbon.
Regardless of whether they form a ribbon, for any two non-intersecting, closed curves

R and B the linking number is an integer measuring how much the curves intertwine. An
informative review on the linking number can found in [15]. To define the linking number,
denote the torus by T = [0; 2π ] × [0; 2π ] and for x ∈ T write x = (x1 , x2). The Gauss
map GB R : T → B × R → S2 of B and R, from the torus onto the two sphere can be
defined as

GB R (x) = b (x2)− r (x1)

‖b (x2)− r (x1)‖ (3)

In analogy, a Gauss map corresponding to R × R is denoted GR R (x)

GR R (x) = r (x2)− r (x1)

‖r (x2)− r (x1)‖ (4)

With the triple product [a,b, c] = a · b × c and the partial derivative ∂i ≡ ∂
∂xi

, the linking
number between the two curves R and B, which is a topological invariant, reads

Lk (B, R) = 1

4π

∫

T

d2x [∂1GB R (x) , ∂2GB R (x) ,GB R (x)] (5)

and hence

Lk (B, R) = Lk (R, B) . (6)

Since this definition is true for any two curves this symmetry holds true for the generalized
ribbon we shall define below. The writhe is a quantity defined on a single closed curve R and
measures its coiling. The writhe of the curve R reads

Wr (R) = 1

4π

∫

T /D

d2x [∂1GR R (x) , ∂2GR R (x) ,GR R (x)] (7)

where the diagonal D of T is excluded in the writhe integral.
The third quantity in the CFW theorem (2) is the total twist which can be calculated for a

canonical ribbon as

TwC (B, R) = 1

2π

2π∫

0

dt
[
v̂′ (t) , r̂′ (t) , v̂ (t)

]
(8)

For a canonical ribbon total twist and writhe are characteristic of the ribbon itself and refer
not just to a boundary curve as Eqs. (7), (8 ) might suggest. One may easily convince oneself
of this by writing down the twist formula (8) with respect to the curve B. This defines the
quantity TwC (R, B) which is obtained when r (t) and v (t) are exchanged for b (t) and
−v (t) in the total twist formula (8) . Importantly, the restrictions of Eq. (1) of the canonical
ribbon guarantee that the twist is symmetric in the boundary curves with
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TwC (B, R) = TwC (R, B) , (9)

so that by Eq. (2) the writhe of the two boundary curves of a canonical ribbon are equal:

Wr (R) = Wr (B) . (10)

In fact this result applies for every curve parametrized bu (t) = r (t)+u v (t)with u ∈ [0, 1]
and in particular for the center curve C of the ribbon which is parametrized when u = 1/2.
Therefore, Wr(C) = Wr (R) = Wr (B).

1.2 Results

Our main results are now summarized. In Sect. 2 the concept of a ribbon is generalized, so
that certain pairs of closed space curves R and B can be said to form a generalized ribbon.
There exist two quantities TwG(B, R) and TwG(R, B), which shall be referred to as total
twist with respect to R and total twist with respect to B, respectively. These satisfy a weak
version of the CFW theorem:

Lemma 1 Let r (t) be a piecewise C1 parametrization of a curve R and b (t) a piecewise
C1 parametrization of a curve B. Let a vector field V on R be parametrized by v (t) :=
b (t)− r (t). It is assumed that the area traced out by V does not cross itself, then

Lk (B, R) = Wr (R)+ TwG(B, R)

Lk (R, B) = Wr (B)+ TwG(R, B) (11)

where the total twist with respect to R reads

TwG(B, R) = lim
ε→0

1

4π

2π∫

0

ds

π∫

0

dθ

×‖r (s − ε cos θ)+ ε sin θ v (s − ε cos θ)− r (s)‖−3

×
[

r (s − ε cos θ)− r (s)+ ε sin θ v (s − ε cos θ) , (12)

r′ (s − ε cos θ)− r′ (s)+ ε sin θ v′ (s − ε cos θ) ,

ε sin θ r′ (s − ε cos θ)+ ε cos θ v (s − ε cos θ)

+ε2 sin2 θ v′ (s − ε cos θ)

]

An analogous formula holds for total twist with respect to B TwG(R, B).

For our purposes a C1 parametrization r(t) shall be called almost C2, when r′′(t) is
continous almost everywhere. Also, r′′(t) may vanish on intervals.

Lemma 2 With the definition as in lemma 1, but with r (t) being almost C2, the total twist
with respect to R becomes a one dimensional integral

TwG(B, R) = 1

2π

2π∫

0

dt

∣∣∣r
′ ∣∣∣

∣∣r′ ∣∣2 |v|2 − 〈
r′
, v
〉2

⎛

⎝
[
v

′
, r

′
, v
]

+
〈
r

′
, v
〉

∣∣r′ ∣∣2

[
v, r

′
, r

′′]
⎞

⎠ . (13)

An analogous formula holds for TwG(R, B) when corresponding conditions for b (t) are
satisfied.
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In the total twist formula, Eq. (13), the dependencies on the parameter t are suppressed,
eg r′ = r′ (t), etc. Note that we can also express the twist formula by setting all |•| = 1
and normalizing the remaining vector quantities. The proof of the lemmas (1, 2) builds on a
method used to prove the CFT theorem [7] and the associated total twist, by introducing a
generalized Gauss map on an appropriately defined integration space. In contrast to before-
mentioned publication [7], the language of abstract differential geometry is not used in this
paper. This comes at the expense of having to make a somewhat intuitive ansatz. Regarding
the twist formula (13), suppose there exists a parametrization such that

〈
r′ (s) , v (s)

〉 = 0
and |v (s)| = const , then the second term in Eq. (13) vanishes and the first term reduces
to the twist of the canonical ribbon TwC (B, R) (Eq. 8). Therefore, TwG (B, R) includes
TwC (B, R) as the special case where R and B form a canonical ribbon. Therefore, let
Tw (B, R) ≡ TwG (B, R) so that there is no need to distinguish by superscripts anymore.
The twist formula may be regarded as a tool that helps to compute the writhe of a curve R
when the linking number with B is known or vice versa compute the linking number when
the writhe is known. Note that alternatively, it is always possible to transform B, but without
changing Lk (B, R), until B and R form a canonnical ribbon. In fact, given a vector field
v(t), we may orthogonalize it with respect to R as v⊥(t) = v(t)− < v(t), r

′
(t) > r

′
(t). The

vectorfield parametrized by ˆv(t)
⊥

forms a canonical ribbon with R. Plugging ˆv(t)
⊥

into the
twist formula of the canonical ribbon (8) recovers formula (13). In addition, note that the
writhe difference between two curves is given by the local integral

Wr (B)− Wr (R) = Tw (B, R)− Tw (R, B) (14)

However, this expression (Eq. 14) is not as compact as the traditional formula for the
writhe difference [9] proved in [2].

In Sect. 3 the results of Sect. 2 (Eqs. 13, 11) are used to derive an expression for the
writhe of a polygonal curve R P . Such an expression is useful in simulations that require
efficient computation of the writhe of a polygonal curve. Before considering a polygonal
curve, consider a closed C1 curve R. Choose a vector d whose direction does not coincide
with the orientation of any of the tangent vectors to the curve R. The set formed by all
normalized tangent vectors is called the tantrix TR of R. Then, there exists an ε such that R
and its pushed off curve R + ε d form a generalized ribbon with v (t) = ε d = const . The
writhe of R may then be expressed as the difference between linking number and generalized
total twist Eqs. (13, 11). The total twist integral contains two triple product. The first triple
vanishes due to the occurrence of v′ (t). It remains

Wr (R) = Lk (R + ε d, R)− 1

2π

2π∫

0

ds

∣∣∣r
′
(s)
∣∣∣
−1 〈

r
′
(s) , d

〉

∣∣r′
(s)
∣∣2 |d|2 − 〈

r′
(s) , d

〉2

[
d , r

′
(s) , r

′′
(s)
]

(15)

The linking number between the curve R and its pushed off curve R + ε d is called
directional writhe Wrd (R). Returning to the polygonal curve, Eq. (15) cannot be applied
because the second derivative r

′′
is not defined at vertices. This problem will be circumvented

by connecting edges at vertices through parts of a circle of radius δr . The curve which emerges
from R P by applying this procedure is C1 and shall be denoted Rδr . The limit δr → 0 under
which Rδr → R P shall be called the polygonal limit. The tantrix of R P is defined as
TR P := TRδr . The following lemma regarding the writhe of a polygonal curve can be derived
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Lemma 3 Let R P be an oriented, non-intersecting, closed, polygonal curve of length N.
Then, R P is formed by line segments whose orientation and length is given by vectors ai . Let
d be any vector so that d̂ /∈ TR P . Then, the writhe of R P reads

Wr
(

R P
)

= Wrd

(
R P

)
− 1

2π

N∑

i=1

sgn
(

d⊥
i

)
{

arctan

(
di−1 − di cosαi∣
∣d⊥

i

∣
∣ sin αi

)

(16)

+ arctan

(
di − di−1 cosαi∣
∣d⊥

i

∣
∣ sin αi

)}

(17)

where

cosαi = 〈
âi−1, âi

〉

di = 〈
d, âi

〉

d⊥
i sin αi = [

d, âi−1, âi
]

In addition, it is found that the polygonal limit has no effect on the generalized twist

Tw
(

R P + εd, R P
)

= Tw (Rδr + εd, Rδr )

As a consequence, the writhe difference between a polygonal curve R P and the corresponding
C1 curve Rδr must be an integer. In particular δr can always be chosen small enough so that

Wr
(

R P
)

= Wr (Rδr ) (18)

The same result Eq. (18) was found in [6].
Traditionally, different but analogous results to Eq. (16) have been derived [1,12] by

constructing a second curve B around a given curve R, so that a canonical ribbon C is
formed. Then, the relation

Wr (R)+ Tw (B, R) = Wrd (R)+ Twd (B, R) (19)

is used where Twd (B, R) is called the directional twist. This quantity is usually defined as
the crossing number between R and B, so that R and B cross locally in a projection diagram
along the direction d̂.

Note that by comparing Eq. (19) with Eq. (15) one concludes that for any canonical ribbon
on R

Tw (B, R)− Twd (B, R) = 1

2π

2π∫

0

ds

∣∣∣r
′
(s)
∣∣∣
−1 〈

r
′
(s) , d

〉

∣∣r′
(s)
∣∣2 |d|2 − 〈

r′
(s) , d

〉2

[
d , r

′
(s) , r

′′
(s)
]

In Sect. 4 some new results regarding the lattice ribbon are proved. A lattice ribbon [11], L ,
is constructed by concatenating unit squares (plaquettes) on the simple cubic lattice (Z3) as
shown in Fig. 1. Two of the four edges of each plaquette are part of two boundary curves of
the ribbon, which shall be denoted by R and B. When a plaquette has two edges belonging to
the curve R (B), it is called a R (B) corner plaquette. Otherwise, it is called ordinary. When
the boundary curves are closed, the lattice ribbon is referred to as closed (and oriented).

The lattice ribbon, L , is not canonical ribbon, because given the two boundary curves
of the lattice ribbon, in general it is not possible to find an orthogonal vector field V that
connects every point on R with a point on B. This can be seen in Fig. 1, which also makes
clear that in general Wr (R) �= Wr (B). Both linking number and writhe are well defined
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Generalizing Ribbons and the Twist of the Lattice Ribbon 397

Fig. 1 Example of a lattice ribbon with boundary curves R (light) and B (dark). The ribbon edges are the
lines that connect R and B. The curve in the middle is the center curve C . The writhes of the boundary curves
differ Wr (B) = 0, Wr (R) = −1/4. Also, Wr (C) = 0. The circled configuration consists of a B corner
plaquette between two ordinary plaquettes so that B twists around R by an angle of π/2. When the lattice
ribbon is build from these configurations and is otherwise planar, the twist can be inferred. For a general lattice
ribbon, it is not so trivial to identify the source of total twist

Fig. 2 All local twisting
configurations that can contribute
to Tw (B, R). The left-handed
configurations contribute −1/4,
the right-handed +1/4. A B
corner plaquette may not be
considered in more than one
configuration. The right handed
configurations emerge from the
left handed by reflection at a
plane

for a lattice ribbon, so that in previous work on the lattice ribbon [10], total twist was defined
as Tw (B, R) := L (B, R)− Wr (R). In a paper [13] on open and directed lattice ribbons,
right- and left-handed twisting configurations formed from three plaquettes (as circled in
the figure) were identified. However, it was not considered how these configurations would
have to be counted for Eq. (2) to hold. For an arbitrary lattice ribbon, the challenge lies in
identifying the configurations which have to be counted to yield the proper twist Tw (B, R).
The twist formula will be applied to derive the following lemma

Lemma 4 Let L be any lattice ribbon with boundary curves R and B. Whenever a B-
corner plaquette has at least one neighboring plaquette with perpendicular orientation, a
contribution to Tw (B, R) is made. This contribution has value 1/4 when the configuration
formed by the two plaquettes is right -handed and −1/4 when it is left handed.

The relevant configurations are shown in Fig. 2.
Finally, a lemma regarding the center curve of the lattice ribbon is proved.
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398 E. Dagrosa, A. L. Owczarek

Fig. 3 The top surface P represents the torus at x3 = 1. The bottom surface Gε represents the torus at x3 = 0
with an ε sized strip excluded around the diagonal. The light shaded surface Yε is an ε sized half tube. Note
that because of the periodicity of the torus parts of the tube reappear at the other side. The three surfaces
enclose the domain Vε

Lemma 5 For a closed lattice ribbon with boundary curves R, B and center curve C.

Wr (C) = Lk (R, B) (20)

Note from Fig. 1 that the center curve C is a self avoiding polygon (SAP) on the simple cubic
lattice with half integer spacing (Z/2)3. This lattice is trivially equivalent to Z

3. A general
SAP on this lattice is known [10] to have writhe Wr so that 4 Wr is an integer. Therefore,
according to Lemma 5, not all SAP on the half integer lattice can be center curves of a lattice
ribbon. This is discussed further in the Appendix 1.

2 Generalized Ribbon

Define a generalized closed ribbon by discarding the restrictions in Eq. (1).

Definition 1 A generalized closed ribbon G consists of a closed, piecewise C1 curve R and
a piecewise C1 vector field V along R that does not intersect itself.

With r (s) a parametrization of R, v (s) a parametrization of V and u ∈ [0, 1] the points
of G are parametrized by G (s, u) = r (s)+ u v (s). The condition that V does not intersect
itself is equivalent to G (s, u) being bijective. A second boundary curve B is defined by
r (s)+ v (s). In the introduction linking number and writhe are expressed as integrals on the
product manifold R × B and R × R/D, respectively. The latter are parametrized from the
torus. A geometric explanation for the CFW theorem can be found by extending, the torus
by one dimension to form the space T × R. Denote a point in this space by the coordinate
triplet x = (x1, x2, x3). Define a closed subset V = T × [0, 1] of T × R and remove an
epsilon sized tube along the diagonal of the bottom of V to form the region Vε depicted in
Fig. 3. The boundary of the parametrization region Vε is formed by the top P, bottom Gε and
tube shaped Yε surfaces, which themselves can be parametrized as

P = {(s, t, 1) | s ∈ S, t ∈ S}
Gε = {(s, t, 0) : |s − t | > ε | s ∈ S, t ∈ S}
Yε = {(s, s − ε cos θ, ε sin θ) | s ∈ S, 0 ≤ θ ≤ π}
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Generalizing Ribbons and the Twist of the Lattice Ribbon 399

On Vε define the generalized Gauss map

g (x) = r (x2)+ x3v (x2)− r (x1)

‖r (x2)+ x3v (x2)− r (x1)‖
and the vector field ψ : Vε → R

3

ψ (x) = 1

4π

⎛

⎜
⎜
⎝

[
g, ∂2g, ∂3g

]

[
∂1g, g, ∂3g

]

[
∂1g, ∂2g, g

]

⎞

⎟
⎟
⎠

Regarding 	, note that when the surface traced out by v does not cross itself, ψ (x) has
no singularities on Vε. Further, considering that g is a unit vector, all its partial derivatives
lie in the plane perpendicular to g implying

[
∂1g, ∂2g, ∂3g

] = 0. Further, as long as the
derivatives of r and b are defined everywhere, it holds that ∂i∂ j g = ∂ j∂i g . Therefore, the
divergence of ψ vanishes by construction

div (ψ) = 0

Note that r and b being piecewise C1 is a sufficient condition for the vanishing of the
divergence, which when combined with

Gauss’s divergence theorem
∫

V

d3x div (ψ) =
∫

∂V

ψ · dA

gives

0 =
∫

∂Vε

ψ · dA

=
∫

P

ψ · dA −
∫

Gε

ψ · dA −
∫

Yε

ψ · dA (21)

where the minus signs results when the surface normals of G and Y are oriented with positive
x3 component. Note that r and b being piecewise C1 and V not crossing is a sufficient
condition to guarantee a well defined integral of the divergence of div (ψ) and the surface
integrals. By comparison of Eq. (21) with Eq. (5) one identifies the integral over P with the
linking number of R and B. In the limit ε → 0, the integral over G is identified (Eq. (7)) as
the writhe of R and the integral over Yε shall be called the generalized total twist Tw (B, R)
with respect to R (In the following Tw (B, R) is often just referred to as twist). Therefore,
Eq. (21) is essentially the CFW theorem and the first part of Lemma 1 is proven.

In order to evaluate the twist integral
∫

Yε
ψ (x) · dA, note that with p (x1 , x2, x3) =

r (x2)+ x3v (x2)− r (x1)

[
g, ∂i g, ∂ j g

] =
[

p, ∂i p, ∂ j p
]

(p · p)
3
2

In the transformed coordinates on Yε

xYε (s, θ) =
⎛

⎝
s
s − ε cos θ
ε sin θ

⎞

⎠
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the integral reads

∫

Yε

ψ (x) · dA = ε

2π∫

0

ds

π∫

0

dθ ψ (s, θ) ·
⎛

⎝
cos θ
− cos θ
sin θ

⎞

⎠ (22)

The derivatives transform as

∂1 → ∂̃1 = ∂s − 1

ε
sin θ ∂θ + cos θ ∂ε

∂2 → ∂̃2 = 1

ε
sin θ ∂θ − cos θ ∂ε

∂3 → ∂̃3 = 1

ε
cos θ ∂θ + sin θ ∂ε

so that after some algebraic transformations

ψ (s, θ) ·
⎛

⎝
cos θ
− cos θ
sin θ

⎞

⎠ = 1

4π

ε−1

(p · p)
3
2

[
p (s, θ, ε) , ∂sp (s, θ, ε) , ∂θp (s, θ, ε)

]
(23)

When the explicit form of p and its derivatives is inserted into the last Eq. (23), together
with the identification of Tw (B, R) as the limit ε → 0 of Eq. (22), the proof of lemma 1 is
concluded.

In the following it is assumed that r (s − ε cos θ), r′ (s − ε cos θ), v (s − ε cos θ) and
v′ (s − ε cos θ) can be approximated by Taylor expansion around s. Then, the quantity p and
its derivatives read

p (s, θ, ε) = r (s − ε cos θ)− r (s)+ ε sin θ v (s − ε cos θ)

= ε
{− cos θ r′ (s)+ sin θ v (s)

}+ O
(
ε2)

∂sp (s, θ, ε) = r′ (s − ε cos θ)− r′ (s)+ ε sin θ v′ (s − ε cos θ)

= −ε cos θ r′′ (s)+ ε sin θ v′ (s)+ O
(
ε2)

∂θp (s, θ, ε) = ε sin θ r′ (s)+ ε cos θ v (s)+ O
(
ε2)

With the above, relation (23) becomes

ψ (s, θ) ·
⎛

⎝
cos θ
− cos θ
sin θ

⎞

⎠ = ε−1

4π

{
sin θ

[
r′, v, v′]+ cos θ

[
r′, r′′, v

]

(
cos2 θ |r′|2 − 2 cos θ sin θ r′ · v + sin2 θ |v|2) 3

2

+O (ε)

}

which when used in relation (22) and taking the limit ε → 0 gives the total twist

Tw (B, R) = 1

4π

2π∫

0

ds

π∫

0

dθ
sin θ

[
r′, v, v′]+ cos θ

[
r′, r′′, v

]

(
cos2 θ |r′|2 − 2 cos θ sin θ r′ · v + sin2 θ |v|2) 3

2

Note, that the dependence on the integration variable s of the vector quantities has been
suppressed for formatting reasons. In order to perform the integral over θ , let t (x) =
cos(x), sin(x), then an integral function of

ft (x) = t (x)
(
a sin2 (x)+ 2b cos(x) sin(x)+ c cos2(x)

) 3
2
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Generalizing Ribbons and the Twist of the Lattice Ribbon 401

can be found by making the ansatz Ft (x) = At sin(x)+ Bt cos(x)√
a sin2(x)+ 2b cos(x) sin(x)+ c cos2(x)

and deter-

mining At and Bt from the derivative F
′
t (x)

!= ft (x). This allows to perform the integration
over θ yielding the result of lemma 2

Tw (B, R) = 1

2π

2π∫

0

dt

∣
∣r (t)′

∣
∣

|r′ (t)|2 |v (t)|2 − 〈r′ (t) , v (t)〉2

×
{
[
v′ (t) , r′ (t) , v (t)

]+
〈
r′ (t) , v (t)

〉

|r′ (t)|2
[
v (t) , r′ (t) , r′′ (t)

] }
(24)

Note that in deriving above formula (24), it was assumed that the vector quantities could
be expanded everywhere. As a consequence the result contains the second derivative of r (t).
However, its existence is not guaranteed for piecewise C1 parametrization. Therefore, for
formula (24) to be applicable, in general, an almost C2 parametrization of R with is required.
In the special case, where

〈
r′ (t) , v (t)

〉 = 0 everywhere, the term containing r′′ (t) vanishes
and a piecewise C1 parametrization for the curves R and B is sufficient for a total twist
formula to be applicable. In particular, this is true for a canonical ribbon.

3 Writhe of Polygonal Curves

An orientated line segment s can be represented by a pair of vectors (p, a) ∈ R
3 × R

3 so
that

s = {p + u a| u ∈ [0, 1)}
A closed polygonal curve R P of length N is formed by N connected, non-intersecting line

segments si ≡ si (pi , ai ), where the pi are called the vertices. Then

R P =
N⋃

i=1

si

so that

1. The curve does not intersect itself si ∩ s j = ∅ for i �= j
2. The curve is connected and closed pi + ai = p(i+1)mod N

Let âi = |ai |−1 ai and let Gi be the geodesic on S2 that connects âi−1 and âi . The tantrix of
R P reads

TR =
N⋃

i=1

Gi

Let d ∈ R
3 so that d̂ /∈ TR . A pushed off curve R P + ε d is obtained by translating a copy

of R P by the vector ε d .

R P + ε d =
N⋃

i=1

s
′
i (pi + ε d, ai )

The parameter ε > 0 must be chosen small enough, so that for all ε′ with 0 < ε′ ≤ ε(
R P + ε′ d

) ∩ R P = ∅. The curves R P and R P + ε d form a generalized ribbon with
v (t) = ε d = const . Therefore, the writhe of R may be determined from the relation (11) as
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Fig. 4 The segments si−1 and si
form the angles α and
ᾱ = π − α. The constructed
segment w divides the angle ᾱ
symmetrically. The point C is
found on w at a distant δr away
from si . This point is the center
of a circle of radius δr inscribed
in the wedge formed by the
segments si and si+1

Wr (R) = Lk
(

R P , R P + ε d
)

− Tw
(

R P + ε d, R P
)

However, it is not yet possible to apply the simple expression for the total twist Eq. (13),
because the second derivative r′′ (t) is not defined near the vertices of the polygonal curve.
Therefore, in order to determine Tw

(
R P + ε d, R P

)
, the edges at vertices shall be connected

by quarter circles of small radius δr . The curve obtained by this smoothening procedure shall
be called Rδr and the limit δr → 0 which recovers the polygonal curve R → R P shall be
called polygonal limit.

Given a parameter δr , consider a vertex pi of R P . The incident line segments form an
inner angle ᾱi = π − αi , where

cosαi = 〈
âi−1, âi

〉

As shown in Fig. 4, draw a line segment w through the vertex pi , so that it divides the
angle ᾱi symmetrically. On w lies the point Ci which is defined so that its shortest distance
to si and si−1 is δr . Remove the pieces between the vertex pi and the points of distance δr
from Ci from the segments si and si+1. Reconnect the segments through a circle segment
with center Ci , radius δr and length α δr . Applying this procedure to all vertices of R Poly

constructs the curve Rδr .
Let lδr be the length of Rδr and let uδr = lδr/ (2π) . The curve Rδr consists of straight

segments on which the parametrization r (t) shall look as r (t) ∼ uδr t â and circle segments.
Suppose the circle segment with center Ci is parametrized from the interval [ai , ai + δti ].

Then, with t̂i = âi−1 and n̂i = (sin αi )
−1
(

âi −
〈
âi , t̂i

〉
t̂i

)
the parametrization of the

segments reads

ri (t) = Ci + δr sin

(
αi

δti
(t − ai )

)
t̂i − δr cos

(
αi

δti
(t − ai )

)
n̂i (25)

where δti is fixed by

uδr = δr αi

δti

In order to determine Tw (Rδr + ε d, Rδr ), set v (t) = ε d = const so that the rotation
term in Eq. (13), which contains v′ vanishes. Only the acceleration term containing r′′ (t)
survives. However, on straight segments r′′ (t) = 0, so that the source of generalized total
twist comes from the circle segments only
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Tw = 1

2π

∑

i

ai +δti∫

ai

I (t)

I (t) =
∣
∣r′

i (t)
∣
∣−1 〈r′

i (t) , d
〉

∣
∣r′

i (t)
∣
∣2 d2 − 〈

r′
i (t) , d

〉2
[

d, r′
i (t) , r′′

i (t)
]

(26)

For the sake of brevity, drop the index i temporarily. Let ŝ = t̂ × n̂ = âi−1×âi
sin α , so that t̂,

n̂,ŝ are orthonormal to each other and d can be expressed as

d = dt t̂ + dn n̂ + ds ŝ

Compute the terms relevant to the integrand

r′ (t) = u cos
( α
δt
(t − a)

)
t̂ + u sin

( α
δt
(t − a)

)
n̂

r′′ (t) = −u
α

δt
sin

( α
δt
(t − a)

)
t̂ + u

α

δt
cos

( α
δt
(t − a)

)
n̂

〈
r′ (t) , d

〉 = u dt cos
( α
δt
(t − a)

)
+ u dn sin

( α
δt
(t − a)

)

[
d, r′

i (t) , r′′
i (t)

] = u2 α

δt
ds

∣∣r′
i (t)

∣∣ = u

∣∣r′
i (t)

∣∣2 d2 − 〈
r′

i (t) , d
〉2 = u2

{
d2

t + d2
n + d2

s −
[
dt cos

( α
δt
(t − a)

)

+dn sin
( α
δt
(t − a)

)]2
}

= u2
(

d2
s +

[
dt sin

( α
δt
(t − a)

)
− dn cos

( α
δt
(t − a)

)]2
)

Combining Eqs. (3)–(28) under the integral

ai +δti∫

ai

dt I (t) = ds

a+δt∫

a

dt
dt cos

(
α
δt (t − a)

)+ dn sin
(
α
δt (t − a)

)

d2
s + [

dt sin
(
α
δt (t − a)

)− dn cos
(
α
δt (t − a)

)]2

= ds

d2
s

a+δt∫

a

dt
dt cos

(
α
δt (t − a)

)+ dn sin
(
α
δt (t − a)

)

1 +
[

dt sin( αδt (t−a))−dn cos( αδt (t−a))
|ds |

]2

= ds

|ds |

dt sin(α)−dn cos(α)
|ds |∫

− dn|ds |

dx

1 + x2

= sgn (ds)

{
arctan

(
dt sin (α)− dn cos (α)

|ds |
)

(27)

+ arctan

(
dn

|ds |
)}

(28)
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Switching back to using the index i, let di := 〈
d, âi

〉
, d⊥

i := âi−1×âi
sin αi

so that near Ci ,

dt = di−1, ds = d⊥
i and dn = (sin αi )

−1 (di − di−1 cosαi ). When the di s are entered into
Eqs. (26), (27) reads

Tw (Rδr + εd, Rδr ) = 1

2π

N∑

i=1

sgn
(

d⊥
i

)
{

arctan

(
di−1 − di cosαi∣
∣d⊥

i

∣
∣ sin αi

)

+ arctan

(
di − di−1 cosαi∣
∣d⊥

i

∣
∣ sin αi

)}

Note that all dependence on the parameter δr has canceled so that the effect of the polygonal
limit δr → 0 is trivial, i.e.

Tw
(

R P + εd, R P
)

= Tw (Rδr + εd, Rδr ) (29)

This concludes the Proof of Lemma 3. With the conservation for generalized ribbons Eq. (11),
it follows immediately from Eq. (29) that

Wr (Rδr )− Wr
(

R Poly
)

= Lk (Rδr + ε d, Rδr )− Lk
(

R Poly + ε d, R Poly
)

(30)

Therefore the difference between the writhe of a polygonal curve R Poly and its related
curve Rδr must be an integer. Note that the difference in linking number in Eq. (30) can only
differ from zero, when the curve Rδr passes through itself in the polygonal limit δr → 0.
However, δr can always be chosen small enough so that one may say that for every polygonal
curve exist radii δr small enough so that the rounded off curve Rδr has the same writhe as
the polygonal curve.

4 Lattice Ribbon

This section deals with the Proofs of Lemmas 4 and 5. It is divided in three sub sections.
The first subsection defines the lattice ribbon. In the second subsection Lemma 4 is proved.
Finally, Lemma 5 is proved in the third subsection. There will be several references to the
formula 13 of the generalized total twist. Henceforth, it shall be just referred to as twist
integral.

4.1 Definition of the Lattice Ribbon

The lattice ribbon L consists of two close avoiding curves on the simple cubic lattice Z3. It
can be constructed by using plaquettes. A plaquette ρ is a unit square with integer vertices
from which one constructs a closed ribbon L as an ordered sequence of plaquettes indexed
by i = 1, . . . , N such that

1. Plaquettes ρi and ρi+1 which are adjacent in the sequence share a common edge. Also,
ρ1 and ρN share a common edge. These shared edges gi = ρi ∩ ρi+1 are called ribbon
edges. All other edges are called boundary edges.

2. No plaquette except ρi and ρi+1 can share the edge g(rib)
i = ρi ∩ ρi+1.

3. Only next- neighbor plaquettes can share only one vertex v. If v = ρi ∩ ρ j ⇒
|i − j |mod N = 2.

4. When |i − j |mod N > 2 ⇒ ρi ∩ ρ j = ∅.
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The boundary edges of the plaquettes of L form two lattice curves R, B. It shall also be
required that the boundary curves R and B are closed. A plaquette is called an ordinary
plaquette when it has one edge belonging to R and one edge belonging to B. Otherwise a
plaquette is called a R (B)-corner plaquette, eg it has two edges belonging to R (B). Note,
that it follows from conditions (2) and (3) that no two corner plaquettes of the same label can
be adjacent.

Every plaquette ρi induces a center curve C starting at the midpoint of g(rib)
i−1 , stepping to

the barycenter of the plaquette and ending on the midpoint of g(rib)
i . Corresponding to the

steps of the center curve associate two vectors

c1 (ρi ) = Center (ρi )− Center
(

e(rib)
i−1

)

c2 (ρi ) = Center
(

e(rib)
i

)
− Center (ρi )

of length 1/2 with the plaquette ρi .

4.2 Total Twist of the Lattice Ribbon

The lattice ribbon L is bounded by the curves R and B. We are interested in deriving an
algorithm to determine the total twist with respect to R. The curve Rδr is obtained from R
by connecting edges at corners of R through quarter circles of radius δr . As described in the
previous section, this automatically induces a C1 parametrization r (t) of Rδr with

∣∣r′ (t)
∣∣ = u R

δr

where u R
δr = l (Rδr ) / (2π) is the constant parametrization speed, which depends on the

length l (Rδr ) of the curve Rδr . In combination with the polygonal limit, the parametrization
r (t) of Rδr can be used in the twist integral to determine

Tw (B, R) = lim
δr→0

Tw (B, Rδr ) (31)

In order to compute Eq. (31), we also require a piecewise C1 parametrization of a vector field
Vδr which points from Rδr onto B, covering both. In practice, Vδr can be defined through
v (t) = b (t) − r (t), i.e. by providing a piecewise C1 parametrization of B. B will be
parametrized linearly everywhere with a parametrization speed that is may jump between
finitely many intervals I . Thus, there are many choices to define the vector field Vδr and
the proof basically consists of making a particular choice. We denote the generalized ribbon
formed by (Rδr , Vδr ) by Gδr , and the generalized ribbon obtained from Gδr in the polygonal
limit by G . We define a section S of Gδr as a piece of the curve Rδr and the corresponding
vector field Vδr on it. By dividing Gδr into connected sections, we may write

Gδr = ∪i Si

Tw (B, R) =
∑

i

lim
δr→0

Tw (Si |Rδr ) (32)

where Tw (Si |Rδr ) is the twist with respect to Rδr of section Si . This quantity can be computed
from the twist integral by changing the integral boundaries to the parametrization time of the
corresponding section. The two vectors that bound a section S shall be denoted Va (S) and
Vb (S).

We describe a method where the underlying lattice ribbon induces the vector field Vδr on
Rδr , so that the sections for which limδr→0 Tw (S|Rδr ) �= 0 can be traced back to a few

123



406 E. Dagrosa, A. L. Owczarek

predefined configurations of plaquettes. These configurations may then be regarded as the
source of the twist.

4.2.1 Sequence and Section

An ordered sequence of connected plaquettes {ρ1, ρ2, . . . , ρn} ∈ L with n > 0 shall be
called a sequence s. In addition to the two boundary curves R and B, a sequence is bounded
by ribbon edges ga ∈ ρ1 and gb ∈ ρn . Denote the first and last point in s which lie on the
curve R by Ra [s] and Rb [s]. The analogous points on the curve B shall be denoted by Ba [s]
and Bb [s]. Then, the vectors

Va [s] = Ba [s] − Ra [s]

Vb [s] = Bb [s] − Rb [s]

point along the ribbon edge ga and gb, respectively.
Any division of a lattice L = {ρ1, . . . , ρN } into connected, non-overlapping sections si

can be regarded as a sketch of a generalized ribbon G . By this we mean that a division into
sequences defines vectors Va [s] at points Ra [s] along the lattice curve R. These may be
regarded as part of the vector field V , that defines the generalized ribbon G . However, these
few points do not define V completely. V is merely sketched.

The division of the lattice ribbon also defines a sketch of a ribbon Gδr with boundary
curves Rδr and B and vector field Vδr . The divisions of the ribbon Gδr are called sections S
and we will distinguish two kind of sections.

A ribbon edge section (RES) S− (s) is induced near a ribbon edge ga = s′ ∩ s at which
two sequences s′ and s join. The RES consists of all points on Rδr that lie within a distant
δr of Ra [s]. Also, all parts of B that lie within a distant δr from Bb [s] belong to the RES.
The vector field Vδr on the RES shall be defined by its parametrization as follows. Suppose,
the parts of Rδr on the RES are parametrized from the interval [aS, bS], then parametrize the
parts of B on the RES from the same interval with constant parametrization speed

u B
RES =

{
4π−1u R

δr if Ra is a corner vertex
u R
δr otherwise

(33)

Then, Vδr on the RES is defined by v (t) = b (t)− r (t) , t ∈ [
aS− , bS−

]
. The outer vectors

of the vector field Vδr on a section are denoted by Va [S] and Vb [S]. In this case they read

Va
[
S− (s)

] = v (aS−)

Vb
[
S− (s)

] = v (bS−)

In the polygonal limit these vectors converge, from opposite sides, towards the vector Va [s]
which lies along the ribbon edge. Note that the notation of a RES S− (s) contains a minus
as superscript. This is meant to indicate that the RES is found near the first ribbon edge ρa

of the sequence s. A second ribbon edge section is found near the end of s. This RES shall
then be denoted S+ (s). Of course, when sk and sk+1 are two consecutive sequences S+ (sk)

and S− (sk+1) identify the same section.
The second type of section shall be called sequence induced section (SIS). A sequence

s induces a SIS, that is bounded by the sections S− (s) and S+ (s). Any choice of parame-
trization b (t) of B on the interval

[
bS− , aS+

]
with v (bS−) = Vb

[
S− (s)

]
and v (aS+) =

Va
[
S+ (s)

]
can be used to define the twist of the underlying sequence s as

Tw (s) = lim
δr→0

Tw (S (s) |Rδr )
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First, note from the twist integral that when all points of Rδr and B of any section S lie in
a plane the twist vanishes. These sections shall be called planar. In particular a sequence that
lies in a plane induces a planar section so that Tw (s) = 0. Such a sequence shall be called
planar sequence.

Second, the twist integral and thus the twist of a sequence and a section is invariant under
the first three of the following symmetry transformations

1. Translation by a vector d ∈ Z
3: s′ = s + d

2. Rotation: A rotation of s by π/2 around any of the coordinate axis
3. Reversal: s′ = {ρn, . . . , ρ2, ρ1}
4. Reflection: reflection at one of the coordinate planes

Under the fourth transformation, reflections, the twist picks up a sign due to the triple prod-
uct structure of the twist integral. The symmetry transformations can be used to define an
equivalence class C called configuration. Two sequences s1 and s2 are equivalent if s1 can be
transformed into s2 by any combination of the transformations (1–4). The configuration class
can be split into two sub classes of equivalence denoted as Cr and Cl , where Cr contains
the sequences with Tw (s) > 0. The reflection symmetry transforms between the helical sub
classes. We define

Tw (C) = Tw (s)

for any sequence s ∈ Cr . When Cr = Cl , Tw (C) = 0 and the configuration has no helicity.

4.2.2 A Basic Set of Configurations

With a division of the ribbon into sequences sk , eq (32) can be written as

Tw (B, R) =
∑

k

Tw (sk)+
∑

k

Tw
(
S+ (sk)

)

The goal is to have a set of configurations Ci i = 1, . . . , NC and to find a division of the
lattice ribbon into sequences sk so that either sk ∈ Ci for some i or sk is planar. It shall also
be required that S+ (sk) = 0 for all k. When we also count by nr/ l

i how often a sequence
of configuration Ci with right/left-handed helicity is found in the ribbon, the twist of such a
division is given by

Tw (B, R) =
NC∑

i

(
nr

i − nl
i

)
Tw (Ci ) (34)

To see what happens in general, consider the lattice ribbon L = {ρ1, . . . , ρ6} shown in
Fig. 5. Its twist is Tw (B, R) = 0. However, when we divide it into three sequences sk of
two plaquettes each so that L = s1 ∪ s2 ∪ s3, we find that

Tw (s) �=
∑

k

Tw (sk) = 1/4

Note the arrows from the curve R onto B drawn into Fig. 5. These represent parts of the
vector field V on R. Therefore, the arrows represent a sketch of a ribbon G . This sketch is
induced by the division of L into the sequences sk .

While the sequences s1 and s3 yield no twist, Tw (s2) = 1/4. The unaccounted twist
difference can be associated with the ribbon edges between the sections. There are three
such ribbon edges in our example: g1 = s1 ∩ s2, g2 = s2 ∩ s3, g3 = s3 ∩ s1. With the
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Fig. 5 The depicted lattice ribbon L is formed by six plaquettes with the first and last plaquette labeled by
number. The lattice ribbon is divided into three sequences, each two plaquettes long. This sketches the ribbon
G as indicated by the arrows along the ribbon edges between the sequences. The rhs shows a sketch of a RES
of Gδr . In the polygonal limit the ribbon edge section, bounded by the shown arrows, collapses into the vector
along the ribbon edge. This particular ribbon edge is problematic because the twist of the RES does not vanish
in the polygonal limit

parameterizations (Eq. 33) of the RES, it can be shown with the twist integral, that there is no
twist from the RESs at g1 and g3 in the polygonal limit, i.e. limδr→0 Tw

(
S+ (s1/3

) |Rδr
) = 0.

For the RES at g2 the twist integral produces a diverging result in the polygonal limit. This
limit is inicated on the right-hand side of Fig. 5. The figure shows the outer vectors of the
RES section collapse into the vector Va [s3]. However, note that this vector is aligned with
one of the two tangents to R at Ra [s3]. Thus, our paramaetrization has not produced a proper
generalized ribbon. We shall label all ribbon edges at which this may potentially occur as
problematic. A RES at a problematic ribbon edge shall be called a problematic RES.

Table 1 shows all problematic ribbon edges. RES at ribbon edges that are not problematic
yield no twist in the polygonal limit.

We want to find a basic set of configurations and an algorithm that divides the lattice
ribbon into sequences s ∈ Ci and planar sequences, so that the lattice ribbon is never divided
along a problematic edge. In order to keep the basic set as simple as possible, this will be
achieved by introducing half sized plaquettes.

1. Every ordinary plaquette ρ is divided in the middle. Thereby, introducing a ribbon edge
that connects the middle of the R edge with the middle of the B edge. Denote the two
emerging half sized plaquettes byρa andρb. When the lattice ribbon is split into sequences
at one of these new ribbon edges, the induced RES is planar and yields no contribution
to twist in the polygonal limit.

2. Every B corner plaquette ρ , whose two neighboring plaquettes lie in the same plane as
ρ is split along the diagonal. The new ribbon edge connects the midpoint of B on this
plaquette with the R vertex across. We shall address the emerging half sized plaquettes
as ρa and ρb. Note that a corresponding induced RES is planar and thus twist free.

The diagrams in Table 2 define our basic set of configurations. The twist values of a con-
figuration can be computed via the twist integral. In the appendix such a computation is
performed for configuration C6. Alternatively, it suffices to consider how much Va has to be
twisted around R to obtain Vb.

4.2.3 Algorithm for Extracting the Twist

With the basic configuration set defined, any lattice ribbon L can be divided by the following
procedure. Divide every ordinary plaquette of L in the middle to produce additional ribbon
edges as well as additional plaquettes. Also, divide B corner plaquettes whose neighbors lie
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Table 1 The table shows parts of
a curve R (light) and B (dark)
near problematic ribbon edges

Characteristic of problematic
ribbon edges is that an arrow
drawn along the ribbon edge,
from the R vertex onto the B
vertex is tangent to R. The
exceptions are planar ribbon
edges

No No

1 2

3 4

in the same plane. Plaquettes that retain their original size shall be adressed specifically as
full plaquettes when the distinction is required.

Pick an ordinary plaquette (there must be four at least) and start at the inner ribbon edge
that divides the plaquette. Choose an orientation and label the plaquettes by index so that ρi

and ρi+1 share a ribbon edge g.
Traverse the lattice ribbon until reaching a ribbon edge at which the two incident plaquettes

are perpendicular to each other. Analyze if plaquettes near that ribbon edge form a config-
uration Ci i = 1, . . . , 4. When more than one configuration is found pick the configuration
whose first plaquette has the smallest index. If no configuration is formed, the two plaquettes
form a configuration Ci i = 5, . . . , 8. All plaquettes that form the discovered configuration
shall be marked as a sequence s of the division of L . Proceed to traverse the ribbon starting at
the ribbon edge incident on the marked plaquette with the highest index. Now however, when
a ribbon edge is reached, plaquettes that are marked may not be considered in the formation
of configurations a second time. Count by nr/ l

i how often the configuration Ci was identified
with helicity r/ l .

This algorithm (with the choice of basic configurations) has the following properties

1. When ρk is a plaquette that remains unmarked, move against the ribbon orientation until
a marked plaquette ρk−m−1 is encountered. Afterwards, move to the other side until a
marked plaquette ρk+p+1 is reached. Then, the sequence

{
ρk−m, . . . , ρk, . . . ρk+p

}
is

planar.
2. No B corner plaquette which has a perpendicular neighbor is part of a planar sequence.

(This is not true for R corner plaquettes)
3. The algorithm does not divide the ribbon at problematic ribbon edges.

While property 1 is trivial, the other two can be shown by considering the combinatorics.
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Table 2 The sequences of plaquettes shown in the diagrams define eight equivalence classes of configurations

No Tw (C) No Tw (C)

1 0 5 0

2 1/4 6 0

3 1/4 7 1/4

4 1/2 8 1/4

The curve R is shown in light-, the curve B in dark. Every configuration is numbered and has an associated twist.
We distingish between full and half-sized plaquettes. The arrows border the configuration. The configurations
on the left are incident on three different full sized plaquettes. In addition, the diagrams show a piece of a
fourth full plaquette. Although this fourth plaquette is not part of the configuration itself, the configuration is
only identified when the fourth plaquette is aligned as indicated

In order to show property 2, one considers that a full B corner plaquette σ is attached
at the end of planar sequence. Then, assume on the other side the plaquette τ is attached
perpendicularly to σ . By considering the behavior of the algorithm as it approaches the
ribbon edge g = σ ∩ τ from both sides, while taking into account the possibilities for the
neigboring plaquettes of τ : τ ′, τ ′′, . . ., one finds that τ and σ must be part of the same
sequence.

Property 3 is shown by considering the behaviour of the algorithm when it approaches a
problematic ribbon edge formed between the plaquettes σ and τ . Considering all possibilities
one concludes that σ and τ must be part of the same sequence. Note that in addition to the
configurations C1−4, it is necessary to consider the problematic ribbon edge formed when σ
is an R corner plaquette perpendicular to the B corner plaquette τ . Their neighbors σ ′ and
τ ′ must lie in the same plane as σ and τ , respectively. Another problematic ribbon edge is
formed when an ordinary plaquette σ is attached to a perpendicular B corner plaquette τ ,
and τ ′ lies in the same plane as τ .

In consequence of the properties, the twist is given by Eq. (34) and every full B corner
plaquette which has at least one perpendicular neighbor is part of a sequence that forms one of
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Fig. 6 The left-hand side shows
all configurations (modulus
symmetry transformations)
which contribute to either
Tw(B, R) or Tw(R, B), or both.
It also shows the center curve C
on the plaquettes. Also, the grid
of the half integer lattice is
drawn. The center curve C and
the curve R form a lattice ribbon
on the half integer lattice. The
right-hand side shows relevant
two plaquette configurations of
this ribbon that emerge from the
configuration on the left. One
finds that a configuration that
yields twist with respect to R of
the original ribbon, produces a
configuration of the half integer
ribbon that yields twist with
respect to R. However, it has no
twist with respect to C . Every
configuration that does not yield
twist with respect to R, produces
a configuration that yields neither
twist w.r.t. R nor to C

the configurations C2, C3, C4, C7 or C8. But, these configurations are the only configurations
that have twist so that by considering them and their twist value, we can conclude Lemma 4.

Lemma 4 shall be formulated in an alternative form. Denote the set of all R (B) corner
plaquettes of L by LR(B).

With

sgn (x) =
⎧
⎨

⎩

0 x = 0
1 x > 0
−1 x < 0

the total twist of a lattice ribbon reads

Tw (B, R) = 1

4

∑

ρi ∈LB

sgn
{[

c2 (ρi−1)+ c1 (ρi+1) , c1 (ρi ) , c2 (ρi )
]}

Tw (R, B) = 1

4

∑

ρi ∈LR

sgn
{[

c2 (ρi−1)+ c1 (ρi+1) , c1 (ρi ) , c2 (ρi )
]}

This formulation is equivalent to Lemma 4, when it is noted that by the construction rules of
the ribbon c2 (ρi−1)+ c1 (ρi+1) �= 0 is implied as long as ρi is a corner plaquette. The sign
of the triple product of c1 (ρi ) , c2 (ρi ) with a neighboring center curve vector determines
weather a left- or right-handed configuration is formed.

4.3 Writhe of the Center Curve

The above result regarding which configurations of plaquettes are responsible for the twist
can be used to prove Lemma 5 on the center curve C of a lattice ribbon. It states that for a
closed lattice ribbon with boundary curves R and B
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Wr (C) = Lk (R, B)

Proof The center curve C and the boundary curve R form a new lattice ribbon on the half
integer lattice. One finds (Fig. 6) that there is no configuration of the half integer ribbon
that produces twist with respect to to C so that Tw (R,C) = 0. Also, every configuration
of the original ribbon that contributes twist with respect to R , turns into a configuration
of the half integer ribbon that contributes the same amount of twist to Tw (C, R), so that
Tw (C, R) = Tw (B, R). Using the conservation relation for generalized ribbons

Wr (C) = Lk (R,C)− Tw (R,C)

= Lk (R,C)

= Wr (R)+ Tw (C, R)

= Lk (B, R)
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Appendix 1: SAPs as Center Curves of Lattice Ribbons

In this section of the appendix, we discuss the properties of SAPs which can be center curves
of a lattice ribbon. The center curve C of a lattice ribbon lies on the half integer simple cubic
lattice.

We can distinguish two properties of C , a local property, and a closing condition. The
closing condition guarantees that the boundaries are formed by two different SAP (ie. The
ribbon is orientable).

Rather than lying on the half integer lattice, suppose C is a SAP on the regular (integer)
simple cubic lattice. Then, the size of a plaquettes is L × L , where L = 2 k−1 with k = 1.
The parameter k ∈ N was introduced to generalize the plaquette size, so that that the results
apply to lattice ribbons with rescaled plaquettes. Denote the orientation of a plaquette σ by
its normal vector σ̂ . Suppose the SAP is formed by Ns segments s. Denote the orientation of
a segment by ŝ.

Suppose two segments s1 and s2 of C meet at a vertex v = s1 ∩ s2 . Then there are two
possibilities for plaquettes to be orientated around v.

1. v is the center of a corner plaquette. Then, all plaquettes on the segments s1 and s2 have
the same orientation given by ŝ1 × ŝ2

2. v is the center of a ribbon edge between two plaquettes. In this case, the plaquettes on s1

have orientation ŝ2 and the plaquettes on s2 have orientation ŝ1

Denote the length of a segment s by l (s). In order to fit plaquettes onto the segment the
following condition has to be met

l (s) = nC (s) k−1 + nO (s) 2k−1 (35)

where nC = 0, 1, 2 is the number of corner plaquettes on the segment s and nO denotes the
number of ordinary plaquettes fitted onto the line segment. Note that corner plaquettes can
be found only at the beginning or the end of a segment so there can be no more than two.
Corner plaquettes contribute one half of there center line to the length of different segments
so there length contribution to one segment is L/2 = k−1.
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Consecutive segments of center curves of lattice ribbons have to meet condition 35 and
the condition on possible plaquette orientation at the same time . For example, the following
constellation can not be part of the center curve of a lattice ribbon.

Consider three consequtive segments s1 s2 s3 with orientations
[
ŝ1, ŝ2, ŝ3

] �= 0 and
lengths li = l (si ), so that k l1 and k l3 are odd and k l2 even. Because of condition (Eq. 35)
s1 and s3 must have exactly one corner plaquette, whereas s2 may have either 0 or 2 corner
plaquettes. There are two possibilities for the position of the corner plaquette on s1

1. The corner plaquette is on the vertex s1 ∩ s2. Then, s2 must have two corner plaquettes
because it cannot have only one. Therefore, the corner plaquette on s3 is the same as the
second corner plaquette of s2. The plaquettes on s2 must have orientations ŝ1 × ŝ2 and at
the same time ŝ2 × ŝ3 so that one finds

ŝ1 × ŝ2 = ŝ2 × ŝ3

which contradicts the setup
[
ŝ1, ŝ2, ŝ3

] �= 0.
2. There is no corner plaquette on the vertex s1∩s2. Consequently, s2 cannot have any corner

plaquettes, so there is no corner plaquette at s2 ∩ s3. The implies that the plaquettes on
s2 are orientated as ŝ1 and at the same time as ŝ3. So that

ŝ1 = ŝ3

which again contradicts the setup.

Even when the SAP satisfies the local conditions discussed above, it may only admit a
non-orientable lattice ribbon. A non-orientable lattice ribbon possesses only one boundary
curve so that linking number is not defined. Nevertheless, it is possible to make sense of
linking number. Cut an ordinary plaquette σ perpendicular to the boundary edges. Label the
cutting points of the boundary edges R0 and B0. As the ribbon is traversed in one direction
the boundaries are labeled either R or B. When the cutting point is neared, the R boundary is
about to connect to B0 and B is about to connect with R0. Instead of making the connection,
connect the end of B across the plaquette onto B0 and likewise for R. Therefore, the two
curves R and B are closed and linking number is defined. Linking number can be determined
from a projection diagram as one half of the sum of all signed crossings. When we choose
a projection diagram in the direction σ̂ + ε (1, 1, 1), one can make sure by choosing the
cutting point, that the cross connection of the curves do not produce any signed crossings
except the one which is due to the cross connections passing over each other. This crossing
contributes 1/2 to the linking number. Therefore, if we had not made the cross connection,
determining the linking number from a projection diagram yields Lk = n + 1/2 with some
n ∈ Z. Assuming that the relation Lk(B, R) = Wr(C) extends to the broader definition
of linking number, one may conclude that a SAP C that admits a non-orientable ribbon has
writhe Wr(C) = n + 1/2.

Appendix 2: Computing the Twist of a Configuration

As an example, we compute the twist of a sequence s ∈ C6, by defining a section on
Rδr (Fig. 7). The section can be defined by providing a parametrization b (t) relative to r (t).
Suppose, the section is parametrized from the interval IS = [ta, tb] and Ra = r (ta) is the first
point of Rδr on the section. On the section, Rδr consists of three straight segments, where circle
segments connect the first and second and the second and third straight segment. Every of the
five segments is parametrized from an interval Ii = [

ti , t̄i
] ∈ IS i = 1, . . . , 5. The length of
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Fig. 7 A sketch of a section
S ∈Gδr on the configuration C6

these intervals is given by dividing the segment length by the constant parametrization speed
u R
δr . Denote the length of the intervals I2 and I4 by δt = πδr/

(
2 u R

δr

)
so that the polygonal

limit corresponds to taking δt → 0. The parametrization of the segments ri (t) read

r1 (t) = Ra +
(

1

2
+ u R

δr (t − ta)

)
e1

r2 (t) = Ra +
(

1 + δr
(

sin
[ π

2δt
(t − t2)

]
− 1

))
e1 + δr

(
1 − cos

[ π
2δt

(t − t2)
])

e2

r3 (t) = Ra + e1 +
(
δr + u R

δr (t − t2)
)

r4 (t) = Ra + e1 +
(

1 + δr
(

sin
[ π

2δt
(t − t4)

]
− 1

))
e2 + δr

(
1 − cos

[ π
2δt

(t − t4)
])

e3

r5 (t) = Ra + e1 + e2 +
(
δr + u R

δr (t − t5)
)

e3

We define the parameterizations bi (t) on the intervals Ii as

b1 (t) = Ra + e3 +
{

u B
1 (t − t1)

}
e1

b2 (t) = Ra + e3 +
{

6

10
− δr + u B

2 (t − t2)

}
e1

b3 (t) = Ra + e3 +
{

6

10
+ δr + u B

3 (t − t3)

}
e1

b4 (t) = Ra + e3 +
{

8

10
− δr + u B

4 (t − t4)

}
e1

b5 (t) = Ra + e3 +
{

8

10
+ δr + u B

5 (t − t5)

}
e1

where u B
1 = (1/10 − δr) / (1/2 − δr) u R

δr , u B
3 = u B

5 = u R
δr (2/10 − δr) / (1 − 2 δr), u R

2 =
u B

4 = 4π−1α u R
δr . Then, the twist can be obtained as

Tw (s) =
5∑

i=1

lim
δr→0

Tw (B, Rδr | Ii )

123



Generalizing Ribbons and the Twist of the Lattice Ribbon 415

where Tw (B, Rδr | Ii ) is the twist integral on the interval Ii . As examples, the results for
Tw (B, Rδr | I2) and Tw (B, Rδr | I3) shall be computed. For Tw (B, Rδr | I2) compute the
relevant vector quantities

r (t) = Ra + e1 + δr
(
−1 + sin

( π
2δt

(t − t2)
))

e1

+ δr
(

1 − cos
( π

2δt
(t − t2)

))
e2

r′ (t) = u R
δr cos

( π
2δt

(t − t2)
)

e1 + u R
δr sin

( π
2δt

(t − t2)
)

e2

r′′ (t) = −u R
δr
π

2δt
sin

( π
2δt

(t − t2)
)

e1 + u R
δr
π

2δt
cos

( π
2δt

(t − t2)
)

e2

v (t) = e3 +
{
− 4

10
− δr sin

( π
2δt

(t − t2)
)

+ β2 (t − t2)

}
e1

−δr
(

1 − cos
( π

2δt
(t − t2)

))
e2

= e3 − 4

10
e1 + O (δt)

v′ (t) =
{
−u R

δr cos
( π

2δt
(t − t2)

)
+ u B

2

}
e1 − u R

δr sin
( π

2δt
(t − t2)

)
e2

By substituting t − t2 → t , and ω ≡ π (2 δt)−1 in the twist formula the integral boundaries
become [0, δt]. The denominator in the integral reads

r′2v2 − 〈
r′, v

〉2 = u R
δr

2

(

1 +
(

4

10

)2

sin2 ωt + O (δt)

)

Consider, the first term in the twist formula given. It requires the triple product
[
r ′, v′, v

]
,

however with the three vector quantities from above one can find a constant C such that −C <[
r′ (t) , v′ (t) , v (t)

]
< C on the interval [0, δt], in addition the denominator r′2v2 − 〈

r′, v
〉2

has no singularity on the interval, so that in the lattice limit δt → 0 the first term (rotation
term) in the twist formula vanishes. For the second term (acceleration term), it is required to
compute

[
r′, r′′ v

] =
(

u R
δr

)2 π

2δt
[e1, e2, e3]

〈
r′, v

〉 = − 4

10
u R
δr cos ω t

Thus

Tw (B, Rδr | I2) = 1

2π
[e1, e2, e3]

δt∫

0

π

2

dt

δt

− 4
10 cos π

2δt t

1 + ( 4
10

)2
sin2 π

2δt t + O (δt)

= − 1

2π
[e1, e2, e3]

4
10∫

0

(
1 + x2)−1

= − 1

2π
[e1, e2, e3] arctan

(
4

10

)
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By substituting x = 4
10 sin π

2δt t

Tw (B, Rδr | I2) = − 1

2π
[e1, e2, e3]

4
10∫

0

(
1 + x2)−1

= − 1

2π
[e1, e2, e3] arctan

(
4

10

)
(36)

On the third interval I3

r (t) = Ra + e1 +
(
δr + u R

δr

(
t − t+k+1

))
e2

r′ (t) = u R
δr e2

r′′ (t) = 0

v (t) = e3 +
{
− 4

10
+ δr + u B

3 (t − t3)

}
e1 −

(
δr + u R

δr (t − t3)
)

e2

= e3 +
{

u B
3 (t − t3)− 4

10

}
e1 − u R

δr (t − t3) e2 + O (δt)

v′ (t) = u B
3 e1 − u R

δr e2

Substitute t − t3 → t in the integral, then t ∈
[
0,
(
u R
δr

)−1
(1 − 2 δr)

]
and the denominator

r′2v2 − 〈r, v〉2 =
(

u R
δr

)2
{

1 +
{

u B
3 t + δr − 4

10

}2
}

has no singularity on the integration interval. Because r ′′ = 0, the acceleration term vanishes
automatically and only the rotation term remains.

[
v′, r′, v

] = [e1, e2, e3] u R
δr u B

3

Therefore, after substituting x = u B
3 t + δr − 4

10

Tw (B, Rδr | I3) = 1

2π
[e1, e2, e3]

u B
3 (1−2δr)+δr−4/10∫

δr−4/10

1

1 + x2 + O (δt)

123



Generalizing Ribbons and the Twist of the Lattice Ribbon 417

= 1

2π
[e1, e2, e3]

{
arctan

(
u B

3

u R
δr

(1−2δr)+δr−4/10

)

− arctan (δr − 4/10)

}
+ O (δt)

In the polygonal limit
(
u R
δr

)−1
u B

3 = 2/10 so that

lim
δt→0

Tw (B, Rδr | I3) = 1

2π
[e1, e2, e3] {arctan (4/10)− arctan (2/10)} (37)

The integrals on I4 and I5 can be treated analogously. Compute limδt→0 Tw (B, Rδr | I4) = 0
and limδt→0 Tw (B, Rδr | I5) = 1

2π [e1, e2, e3] arctan (2/10). Therefore, the twist of the
sequence reads

Tw (c) =
4∑

i=1

lim
δt→0

Tw (Ii )

= 0
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