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Abstract. We investigate the behaviour of the mean size of directed compact
percolation clusters near a damp wall in the low-density region, where sites in
the bulk are wet (occupied) with probability p while sites on the wall are wet
with probability pw. Methods used to find the exact solution for the dry case
(pw = 0) and the wet case (pw = 1) turn out to be inadequate for the damp case.
Instead we use a series expansion for the pw = 2p case to obtain a second-order
inhomogeneous differential equation satisfied by the mean size, which exhibits a
critical exponent γ = 2, in common with the wet wall result. For the more general
case of pw = rp, with r rational, we use a modular arithmetic method for finding
ordinary differential equations (ODEs) and obtain a fourth-order homogeneous
ODE satisfied by the series. The ODE is expressed exactly in terms of r. We find
that in the damp region 0 < r < 2 the critical exponent γdamp = 1, which is the
same as the dry wall result.
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1. Introduction

Directed compact percolation, introduced by Domany and Kinzel [4], is an exactly solvable
model. The results for various cluster properties in the bulk case, away from any confining
walls, are given in [4] and [5]. The addition of a wet wall to the model was considered
in [8], and it was found that the critical exponents for the cluster properties follow those
for the bulk case. However, the addition of a dry or non-conducting wall, considered
in [1, 12, 6, 3], produced different exponents to the wet and bulk cases. This led to the
consideration of a damp wall, introduced in [13], which interpolates between the wet and
dry cases. It was found that the critical behaviour followed the dry case, and the calculation
of several cluster properties [7, 14] was possible using the same methods as near a
dry wall.Author: In several places I have standardized the English somewhat. Please check
that I have not inadvertently altered the meaning.

This paper extends the work on directed compact percolation near a damp wall, to
consider the mean size of finite clusters in the low-density region. In previous work on
the bulk [5], wet [8] and low-density dry [6] cases, the mean size was found by solving
the associated recurrence relations. For other cluster properties near a damp wall—
percolation probability [13], mean length [7] and mean number of contacts [14]—the same
methods yielded a solution, albeit in a more complicated form, exhibiting the same critical
behaviour as the dry case. So we proceed with the mean size near a damp wall, guided at
first by the work near a dry wall in [6].

However, we find that the recurrence relations for the mean size cannot be solved using
the same methods as for the dry wall case, and it can be shown that they do not have the
same form of solution. This was supported by a functional equations approach, which led
us to consider alternative methods of analysing the mean size.

The series expansion for the special case pw = 2p, which tends to a wet wall
near the critical point, can be successfully analysed using the Guess.m package [11]
for Mathematica; we find that the mean size in this case satisfies a second-order
inhomogeneous differential equation. We then applied a more involved series analysis
method [2, 10], which makes use of modular arithmetic to more efficiently find differential
equations satisfied by the series for the mean size. In the general case pw = rp with r
rational, the series is a solution to a homogeneous ODE of order 4 and degree 33, except
for the special cases corresponding to simpler models. Analysis of the ODE shows that
the critical exponent for the mean size in the general damp case (0 < r < 2) is γdamp = 1
and the physical critical point occurs at pc = 1/2, which is in line with the dry result.

1.1. The model

The model of compact percolation is defined on a directed square lattice, the sites of which
are the points in the (t, x)-plane with integer coordinates such that t ≥ 0, x ≥ 1, and t+x
is even. The damp wall is represented by the sites at x = 1, where each wall site is ‘wet’
(occupied) with probability pw and ‘dry’ (unoccupied) with probability qw = 1−pw, while
sites in the bulk (away from the wall) are wet with probability p and dry with probability
q = 1 − p. We begin with an initial seed of m contiguous sites at t = 0, the midpoint of
which is located y units above the wall. The seed is placed with certainty, and a cluster is

doi:10.1088/1742-5468/2014/03/P03004 3
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Figure 1. An example cluster, of size 14, grown from a seed of width m = 2
with midpoint located y = 4 units from the wall at x = 1. The probability of
this cluster being grown from the seed can be calculated a column at a time, as
(1)(pq)(q2)(pq)(p2)(pwq)(p)(qqw)(pq)(qqw) = p6q8pwq

2
w.

grown from this column by column according to the rules of directed compact percolation.
The new site (t, x) becomes wet with certainty if both the previous sites (t − 1, x ± 1)
are wet. If only one of the previous sites is wet the new site is wet with probability p and
dry with probability q = 1− p. When both previous sites are dry the new site is dry with
certainty, thus ensuring that the cluster remains compact.

1.2. The mean cluster size

The size of a cluster is defined as the number of wet sites in the cluster, including the
seed. We will also consider adjacent wet sites on the wall to form part of the cluster. We
define Sm,y(p, pw) to be the mean size of finite clusters grown from a seed of width m with
midpoint y units from the wall, and S̄m,y to be the unnormalized mean size,

S̄m,y = Sm,y(p, pw)Qm,y, (1.1)

where Qm,y is the probability that a finite cluster is grown from this seed. We note that
in the low-density region, below the critical point p = pc, we have Qm,y = 1 and hence
Sm,y = S̄m,y.

The critical exponent for the mean size, γ, describes the behaviour near the critical
point. As p→ pc we have

Sm,y ∼ |pc − p|−γ. (1.2)

We briefly review the results found for the mean size in other cases of directed compact
percolation, which will guide our work on the damp wall case.

doi:10.1088/1742-5468/2014/03/P03004 4
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1.2.1. The bulk case. The mean size of finite clusters in the bulk case, found in [5] by
solving the associated recurrence relations, is

Sbulk
m (p) =


m

1− 2p

(
(1− p)2

1− 2p
+
m− 1

2

)
for p <

1

2
;

m

2p− 1

(
p2

2p− 1
+
m− 1

2

)
for p >

1

2
;

(1.3)

and so the critical exponent γbulk = 2.

1.2.2. A wet wall. The mean cluster size near a wet wall was found in [8], again by
solving the associated recurrence relations. This was done for clusters grown from a seed
of width m adjacent to the wet wall (the cluster then remaining attached due to the
attractive wet wall) with the result

2Swet
m (p) =

m− 2p(1− p)
(1− 2p)2

+
2m2 −m
|1− 2p|

. (1.4)

This exhibits the same critical behaviour as the bulk case with γwet = 2.
Note that the work in [8] does not include adjacent wall sites in a cluster’s size, unlike

the general damp model. This effectively shifts the location of the wall by one unit, and
so we consider the result in (1.4) to apply to seeds beginning on the wall. We consider in
particular the m = 1 case,

Swet
1 (p) := S1,0(p, 1) =

(1− p)2

(1− 2p)2
.

1.2.3. A dry wall. In [6], the mean size of clusters near a dry wall was calculated in the
low-density region by solving the recurrence relations. The result for the mean size of a
cluster grown from a seed of width m, with midpoint y units from a dry wall, is

Sdry
m,y(p) = Sbulk

m (p)− mp2

(1− 2p)2

(
p

1− p

)y−m−1
, p <

1

2
(1.5)

=
m(m+ 1)

2(1− 2p)
+

mp2

(1− 2p)2

(
1−

(
p

1− p

)y−m−1)
, p <

1

2
. (1.6)

It can be seen from (1.5) that in the bulk limit, as y →∞, the dry case tends to the bulk
result, and so in the bulk limit this expression has exponent γ = 2. However, everywhere
else the exponent is γdry = 1, as a factor of (1 − 2p) cancels in the second term of (1.6)
for any integer value of y, and hence the dry wall mean size exhibits different critical
behaviour to the bulk and wet cases.

We focus in particular on the case where a seed of a single site is situated adjacent to
the wall, and we define S(p) to be the mean size in this situation,

Sdry(p) := Sdry
1,1 (p) =

1− p
1− 2p

, p <
1

2
. (1.7)
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Table 1. The different configurations possible for a cluster beginning with a seed
of width m, with midpoint y units from the wall, and their probabilities for each
seed classification, shown through a sample cluster of initial seed width m = 4.

Possible configurations: (a) (b) (c) (d)

Second column, t = 1

Cluster width: m+ 1 m− 1 m m
Midpoint distance: y y y + 1 y − 1

Probability

Away from wall: p2 q2 pq pq
Adjacent to wall: ppw qqw pqw qpw
On the wall: — q p —

2. The mean size near a damp wall

2.1. Recurrence relations

We set up the recurrence relations by considering the possibilities after one time step for a
seed of width m, with midpoint y units from the wall, for each of three seed classifications:
seeds located on, adjacent to, and away from the wall.

2.1.1. Away from the wall, y > m. In the bulk the cluster is unaffected by the wall. The
corresponding recurrence for the mean size will therefore be the same as in the dry wall
case [6],

S̄m,y = pqS̄m,y+1 + pqS̄m,y−1 + p2S̄m+1,y + q2S̄m−1,y +mQm,y, y > m > 1. (2.1)

This encompasses the four different possible configurations of the cluster in the column
following the seed as illustrated in table 1. However, we note that for a seed consisting of
a single site, that is m = 1, the term with coefficient q2 in (2.1) would not be present, as
this would correspond to the cluster terminating. So we consider this case separately and
impose the condition

S̄1,y = pqS̄1,y+1 + pqS̄1,y−1 + p2S̄2,y +Q1,y, y > 1. (2.2)

2.1.2. Adjacent to the wall, y = m. For a cluster having a seed adjacent to the wall,
which corresponds to y = m, we can simply alter (2.1) to account for the probability pw
that the adjacent wall site is wet, or dry with probability qw, in place of an adjacent site
in the bulk. Thus we have, for clusters adjacent to the damp wall,

S̄m,m = pqwS̄m,m+1 + pwqS̄m,m−1 + ppwS̄m+1,m + qqwS̄m−1,m +mQm,m, m > 1. (2.3)

doi:10.1088/1742-5468/2014/03/P03004 6
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Similar to (2.2), we consider separately a seed of width 1 adjacent to the wall, for which
the mean size will satisfy

S̄1,1 = pqwS̄1,2 + pwqS̄1,0 + ppwS̄2,1 +Q1,1. (2.4)

2.1.3. On the wall, y = m−1. If the seed includes a site on the wall, which corresponds
to y = m− 1, then the cluster is unable to propagate downwards; so we can simply focus
on the probability of the adjacent upward site in the bulk being wet. Thus we have the
recurrence

S̄m,m−1 = pS̄m,m + qS̄m−1,m−1 +mQm,m−1, m > 1. (2.5)

This is in fact similar to the case for the position adjacent to the wall in the dry wall
problem [6], as this is the point where the cluster growth is restricted. Again we impose
separately a condition for m = 1,

S̄1,0 = pS̄1,1 +Q1,0. (2.6)

2.1.4. Low-density constraints. Here we restrict our study of the mean size to the low-
density region. In the low-density region there are no infinite clusters, so for all of the
above equations we will use the fact that

Qm,y = 1 for p < 1
2
, (2.7)

as shown for the general damp wall in [15]. We require that in the limit y→∞, where the
cluster is no longer affected by the wall, the mean size must behave like the bulk result [5].
So, for the low-density region of p < 1

2
, we have

lim
y→∞

Sm,y =
m

1− 2p

(
(1− p)2

1− 2p
+
m− 1

2

)
. (2.8)

2.2. Series expansion for the low-density region

Using (2.1)–(2.7) we can derive a series expansion for the mean size in the low-density
region for a given m and y. For the case of a seed of width 1 adjacent to the wall, that is
m = 1 and y = 1, the mean size is equal to

S1,1(p, pw) = (1 + pw) + (1 + 2pw + 2p2w)p+ (2 + 2pw + 3p2w + 5p3w)p2

+ (4 + 5pw + 3p2w + 2p3w + 14p4w)p3

+ (8 + 8pw + 11p2w + 9p3w − 14p4w + 42p5w)p4

+ (16 + 19pw + 11p2w + 16p3w + 58p4w − 108p5w + 132p6w)p5

+ (32 + 30pw + 48p2w + 26p3w − 71p4w + 387p5w − 561p6w + 429p7w)p6

+ O(p7). (2.9)

We note that the constant coefficient of pn, for n ≥ 1, is equal to 2n−1, which allows us
to derive the dry wall result given in (1.7), for pw = 0, as a simple geometric series. We
further note the presence of Catalan numbers in the mean size series expansion above,
appearing as the coefficient of the highest power of pw for a given power of p.

doi:10.1088/1742-5468/2014/03/P03004 7
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3. Investigating the mean size

3.1. Using a dry wall form of solution

Guided by the work for near a dry wall [6], we attempt to solve the recurrence relations
for the mean size near a damp wall, in the low-density region, using a similar form of
solution. It was noted in [6] that the mean size in the bulk case, Sbulk

m , is a particular
solution to the inhomogeneous part of (2.1), and the solutions to the homogeneous part
were given in [8]. Of the solutions to the homogeneous part we choose only those which
vanish as y →∞, to satisfy (2.8). So we try a solution of the form

Sm,y =


Sbulk
m (p) + f(m; p, pw)λy−m, y ≥ m− 1,

Sbulk
m (p) + g(m; p, pw), y = m,

Sbulk
m (p) + h(m; p, pw), y = m+ 1,

(3.1)

in the low-density region. In line with the result from the dry case we first used trial
functions f , g and h linear in m; however we found that substituting this form of trial
solution into the recurrence relations (2.1)–(2.6) produces an inconsistent system.

Next we attempted to use a form of trial solution allowing f , g and h to be polynomials
in m of degree up to 2, which is the degree of the bulk mean size, but we were again unable
to satisfy all recurrences. This was the case even when the form of solution in (3.1) was
generalized further to a more general dependence on y, and also if the assumption of the
bulk term was removed. As a result we conclude that the mean size in the damp wall case
must have a different form of solution to the dry wall mean size, and that the solution is
of a more complicated form. This is perhaps not surprising given the presence of Catalan
numbers in the series expansion in (2.9), which leads us to believe that the generating
function for the mean size is not rational.

3.2. Functional equations

A functional equation approach, trying to apply the kernel method, was also unsuccessful.
This required a two-variable generating function to be formed, in variables conjugate to
the width of the cluster in the leftmost column (variable a) and the height of the cluster
above the wall (variable b). For the dry wall case, the known solution is equivalent to a
rational form for the generating function with one triple pole in a and two poles in b.
However, the kernel method approach is somehow degenerate for the dry wall case, so
the equation has to be solved in a non-standard way to find the rational function.

An expansion of the generating function in the damp wall case displays Catalan
numbers: a likely sign that at best the generating function is algebraic and more probably
transcendental. An approach to this kind of problem brings us to the cutting edge of
kernel problems. The kernel of the functional equation displays a group of 8 symmetry,
that is, there are eight different transformations of the catalytic variables that leave the
kernel invariant. This can, in principle, be used to find a solution. However, because of
the complicated nature of the coefficients in the functional equation it will only lead to
an algorithm and not a closed form.

doi:10.1088/1742-5468/2014/03/P03004 8
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3.3. Seeking recurrences for coefficients: pw = 2p

Since the method used near a dry wall for the mean size was not successful for the damp
wall, and the kernel method did not work, we must try other methods. Rather than working
directly with the recurrence relations, we consider working with a series expansion for the
mean size produced from them instead.

The series expansion in (2.9) is difficult to analyse; no relationship could be found for
the coefficients of p in terms of pw, or vice versa. It is preferable to consider a simpler case
which would result in a series in a single variable, ideally with integer coefficients. This
can be achieved by setting pw equal to an integer; however, the two integer values in the
domain of pw correspond to special cases—with pw = 0 corresponding to a dry wall and
pw = 1 to a wet wall. Instead we set pw equal to an integer multiple of p, as this will also
lead to a series in p alone with integer coefficients. The case pw = p is also a special case:
the neutral wall, which is equivalent to a variant of the dry wall scenario as noted in [14].
We thus choose to work with pw = 2p, and note that for the low-density region p < 1

2
this

will remain in the domain of pw.
The first few terms in the low-density expansion of S1,1 with pw = 2p, obtained from

recursively generating (2.1)–(2.7), are

S1,1(p, 2p) = 1 + 3p+ 6p2 + 16p3 + 30p4 + 84p5 + 130p6 + 464p7 + 380p8

+ 3048p9 − 1666p10 + 27 232p11 − 60 116p12 + 332 216p13 + O(p14). (3.2)

We used the Guess.m package [11] for Mathematica to analyse the first fifty terms of the
series for S1,1(p, 2p), and found that the coefficients satisfy the recurrence relation

(n+ 2)2an − (n+ 2)(3n+ 7)an−1 − 2(7n2 − 20n+ 4)an−2

+ 16(5n2 − 15n+ 13)an−3 − 16(9n2 − 40n+ 46)an−4

+ 16(n− 3)(7n− 22)an−5 − 32(n− 4)2an−6 = 0, (3.3)

where an is the nth coefficient of the mean size. That is, we give the definition

S := S1,1(p, 2p) =
∞∑
n=0

anp
n. (3.4)

From the recurrence in (3.3), we can find a second-order inhomogeneous differential
equation satisfied by S,

2(1− 2p)(2− 11p− 14p2 + 76p3 − 88p4 + 32p5)S

+ p(1− 2p)2(5− 2p− 58p2 + 96p3 − 40p4)S ′

+ p2(1− p)(1− 2p)3(1 + 4p− 4p2)S ′′

= 4− 3p− 44p2 + 86p3 − 72p4 + 24p5, (3.5)

which has a confluent singularity at p = 1
2

with exponents 2 and −2. So we can conclude
that for pw = 2p the critical exponent γ = 2, which equals the exponent found in the wet
wall case. This follows what we might expect, as for pw = 2p on letting p→ 1

2
we approach

the wet case of pw = 1. So this corresponds to another ‘special case’ value of pw; although

doi:10.1088/1742-5468/2014/03/P03004 9
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this is not exactly the same as the wet wall scenario, it will be equivalent at the critical
point.

We attempted to apply the same method for other pw = kp, where k is an integer, but
were unable to find any other simple recurrences for the mean size and therefore looked
to other methods of analysing these cases.

4. The modular arithmetic method

We used a series analysis method, outlined in [2] and [10], to determine the minimal order
linear homogeneous ODE satisfied by the mean size, and from this derive the critical
behaviour. For convenience we will simply refer to this method as ‘the modular arithmetic
method’, since the computation of the ODE is performed modulo specific primes.

4.1. The general case pw = rp

We consider the case where the wall occupancy probability pw = rp, where r is a rational
number. The series expansion for the mean size in this case is

S1,1(p, rp) = 1 + (1 + r)p+ (2 + 2r)p2 + (4 + 2r + 2r2)p3 + (8 + 5r + 3r2)p4

+ (16 + 8r + 3r2 + 5r3)p5 + (32 + 19r + 11r2 + 2r3)p6

+ (64 + 30r + 11r2 + 9r3 + 14r4)p7 + O(p8). (4.1)

Applying the modular arithmetic method [2, 10] to this series, we were able to reconstruct
the minimal ODEs satisfied by the mean size for any given r.

We found that, for general rational values of r, the series for the mean size is a solution
to a homogeneous ODE of order 4 and degree 33. The exceptions are r = 2, which yields
a reduction to a third-order ODE, and also r = 1 and 0, which both yield a reduction to
first-order ODEs.

4.2. Singularities

We locate the singularities of the problem by analysing the head polynomial, that is the
polynomial coefficient of the highest-order term in the minimal ODE. For a given value
of r, where pw = rp, we generate and factorize the head polynomial, which was in general
of degree 33. We remove factors corresponding to apparent singularities, in the form of
high-degree polynomials, and work with the remaining factorized polynomial, generally of
degree 13. For the examples r = 3, 4, 5 and 6, this tells us that the singularities are given
by the roots of the following polynomials:

Q4(p, 3p) = (1− 2p)4(1− p)(1 + 4p− 4p2)(1− 3p)(2− 3p)(1− 18p2 + 36p3 − 18p4); (4.2)

Q4(p, 4p) = (1− 2p)4(1− p)(1 + 4p− 4p2)(1− 4p)(3− 4p)(3− 64p2 + 128p3 − 64p4);

(4.3)

Q4(p, 5p) = (1− 2p)4(1− p)(1 + 4p− 4p2)(1− 5p)(4− 5p)(1− 25p2 + 50p3 − 25p4); (4.4)

Q4(p, 6p) = (1− 2p)4(1− p)(1 + 4p− 4p2)(1− 6p)(5− 6p)(5− 144p2 + 288p3 − 144p4).

(4.5)
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We then seek to write a general expression for the head polynomial in terms of r and
p—which is why we have chosen integer values of r, so that we may easily generalize our
result using these expressions. Naturally we have also avoided the special cases of r = 0, 1
and 2, so that we may find the general damp behaviour without considering the isolated
exceptions which behave like the dry or wet wall.

Looking at equations (4.2)–(4.5), the linear factors can be easily determined in terms
of r, and in fact some factors are constant for all r. For the quartic factor we utilize that
any ODE can be multiplied by an arbitrary constant. On the basis of the pattern observed
we make the guess that the constant term of the quartic is equal to r−1. With this ansatz
it easily follows that the other coefficients are given by −4r2, 8r2 and −4r2, respectively,
and so we have determined the general form of the quartic. Thus we find that in the
general case the singularities are given by the roots of the following polynomial:

Q4(p, rp) = (1− 2p)4(1− p)(1 + 4p− 4p2)(1− rp) (r − 1− rp)P4(p, rp),

where P4(p, rp) = r − 1− 4r2p2 + 8r2p3 − 4r2p4. (4.6)

Although we have calculated this using integer values of r, it can be verified that this
holds for any rational r. Since the method used to find the ODE assumes that the series
coefficients (and hence the coefficients in the ODE) are integers modulo a prime number,
this cannot be directly extended to irrational values of r, but it is reasonable to expect
that the behaviour when pw = rp for r real would be the same as that for r rational.

4.2.1. Roots of Q4(p, rp). The roots of the quartic, P4(p, rp), are

p4,1 =
r +

√
r2 + 2r

√
r − 1

2r
, p4,2 =

r −
√
r2 + 2r

√
r − 1

2r
,

p4,3 =
r +

√
r2 − 2r

√
r − 1

2r
, p4,4 =

r −
√
r2 − 2r

√
r − 1

2r
,

(4.7)

which combine with the other roots of Q4(p, rp), which are

p1 =
1

2
, p2 = 1, p±3 =

1

2

(
1±
√

2
)
, p4 =

1

r
, p5 = 1− 1

r
, (4.8)

and so we have the singularities for the general damp case in terms of r. The associated
critical exponents, found using Maple to solve the indicial equation of the ODE at the
singularity, are listed in table 2.

We consider the singularities for different values of r. Since pw = rp is a probability,
and we are looking at the low-density region p < 1

2
, we will consider r ∈ [0, 2]. We recall

that r = 0 and r = 1 correspond to dry and ‘dry-like’ cases, while r = 2 corresponds to a
‘wet-like’ case. Hence it is natural to consider the behaviour between these exceptions.

In the region 0 < r < 1 the closest singularity on the positive real axis is pc = 1/2,
while for 4 − 2

√
3 < r < 1 the pair of complex conjugate roots p4,2 and p4,4 of P4(p, rp)

are closer to the origin. In the region 1 < r < 2 the closest singularity on the positive real
axis is pc = 1 − 1/r, though the negative root p4,2 from P4(p, rp) is closer to the origin
after r > 1.186 659 . . .. It is of interest to note that when r = 2, three of the singularities
in table 2 coalesce at pc = 1

2
, highlighting this special case.
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Table 2. Critical exponents at the roots of Q4(p, rp).

Singularity Exponents

0 −2, −2, −1, 0
1/2 −1, 1, 1, 3

(1±
√

2)/2 0, 1, 2, 4
1/r −2, 0, 1, 2
1− 1/r −3, 0, 1, 2
1 0, 0, 1, 2
P4(p, rp) 1/2, 0, 1, 2
∞ 1, 2, 2, 4

4.2.2. Analysis of singularities. The roots of Q4(p, rp) give an indication of the
singularities of the mean size, when we consider only the positive real axis. For 0 < r < 1
we are thus not surprised to see a singularity at pc = 1/2, as this is the critical point for
directed compact percolation. However, the singularity pc = 1 − 1/r found in the region
1 < r < 2 looks suspect on physical grounds. It is hard to imagine how a damp wall could
lead to a physical critical point that is lower than the one for the wet case. And we shall
indeed see that while 1− 1/r is a singularity of the ODE, and appears explicitly in exact
solutions to the ODE, the actual physical low-density series is not singular at 1− 1/r but
the physical singularity occurs at pc = 1/2. A simple numerical demonstration will suffice.
We take the low-density series, which is correct to order 200 in p for any rational value of r,
and look at a Padé approximant (ratio of polynomials) to S1,1(p, rp) with r fixed. Plotting
the Padé approximants as a function of p clearly reveals that the series is not singular
at 1 − 1/r, and only diverges at p = 1/2. In figure 2 we plot a Padé approximant with
degree 50 polynomials to S1,1(p,

3
2
p). Clearly there is absolutely no sign of a singularity at

p = 1/3 (note that the critical exponent at 1 − 1/r is −3 so we should see divergence if
the series is singular). We note that in the mean length calculation [7] a similar apparent
divergence was found at q = 1/(1 + pw). With the choice of pw = rp, the specific value of
p = 1− 1/r satisfies q = 1/(1 + pw), and so this is the same mathematical quirk.

Naturally we are interested in the critical exponent for the percolation problem, so
we focus on pc = 1

2
, which is the physical singularity in the damp region 0 < r < 2.

The dominant behaviour is divergence with an exponent of 1, which corresponds to the
exponent γdamp = 1, in line with the dry wall mean size. When r = 2 we tend to a wet
wall scenario and we have γ = 2.

4.3. Solutions to ODEs

We further examined the ODEs using the very powerful Maple package DETools. Trying
to solve a given ODE with dsolve yielded for each value of r a simple algebraic solution,
which we show for the examples r = 3, 4, 5,

S(p, 3p) =

√
1− 18 p2 + 36 p3 − 18 p4 (1− 2 p) (2 + 9 p− 9 p2)

p2 (2− 3 p)3 (1− 3 p)2
; (4.9)
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Figure 2. The mean size in the low-density region for r = 3
2 .

S(p, 4p) =

√
3− 64 p2 + 128 p3 − 64 p4 (1− 2 p) (3 + 16 p− 16 p2)

p2 (3− 4 p)3 (1− 4 p)2
; (4.10)

S(p, 5p) =

√
1− 25 p2 + 50 p3 − 25 p4 (1− 2 p) (4 + 25 p− 25 p2)

p2 (4− 5 p)3 (1− 5 p)2
. (4.11)

From these, all factors except the quadratic in the numerator are able to be generalized
from our previous work on the head polynomial, and the quadratic factor is easily
expressed in terms of r. Hence we can write S(p, rp) generally as

S(p, rp) =

√
sign(r − 1)(r − 1− 4r2p2 + 8r2p3 − 4r2p4) (1− 2p) (r − 1 + r2p− r2p2)

p2 (r − 1− rp)3 (1− rp)2
,

(4.12)

where the sign(r − 1) ensures that the square root has a Taylor expansion with real
coefficients. We see that this solution vanishes at p = pc = 1

2
.

4.3.1. The rational solution. The Maple package DETools also has a number of
procedures for looking for simple solutions and one of these, ratsols, yielded a rational
solutionR(p, rp) for any value of r. We were particularly interested in the region 1 < r < 2,
as this spans between the two special cases of the ‘dry-like’ neutral wall, pw = p, and the
‘wet-like’ case of pw = 2p. It turns out that in this region the rational solution is the
dominant behaviour.

However, for the sake of generalizing the solution, we again focus on integer values of
r other than the special cases. For r = 3 we have a rational solution, equal to

R(p, 3p) =
−10 + 43 p− 87 p2 + 596 p3 − 2688 p4 + 5292 p5 − 4752 p6 + 1620 p7

p2 (1− 2 p) (1− 3 p)2 (2− 3 p)3
. (4.13)
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From this, the denominator can be seen to follow the pattern of factors already found
in section 4.2. However, the numerator N(p, rp) is a little more tricky. Looking at it, for
r = 3, 4, 5, we have

N(p, 3p) = −10 + 43p− 87p2 + 596p3 − 2688p4 + 5292p5 − 4752p6 + 1620p7, (4.14)

N(p, 4p) = −9 + 24p+ 3p2 + 543p3 − 3144p4 + 6304p5 − 5504p6 + 1792p7, (4.15)

N(p, 5p) = −44 + 61p+ 311p2 + 3228p3 − 20 720p4 + 41 450p5 − 35 500p6 + 11 250p7.

(4.16)

There is no clear pattern at this stage, but we have not yet utilized the arbitrary
constant that can simplify the search for a general expression. At first we tried to express
the coefficients of N(p, rp) as a polynomial in r; however, with an arbitrary constant
multiplying each N(p, rp), this is an ill-defined problem. Hence we need to somehow
determine the arbitrary constant.

We note that since R(p, rp) is a solution of the ODE, it is possible that it appears
as part of a direct sum decomposition and can be ‘removed’ from S1,1(p, rp). That is, we
form the function

Gr(p) = p2S1,1(p, rp)− crp2R(p, rp) (4.17)

noting that the extra factor p2 is introduced to cancel the 1/p2 appearing in R(p, rp).
Generically, Gr(p) will be a solution only to the original fourth-order ODE. However, if
the rational solution is removable then there is a unique value of cr for whichGr(p) becomes
a solution of a third-order ODE. The value of cr must be rational since both functions
have rational Taylor coefficients. So we form the series for Gr(p) modulo a prime and do
a brute force search through all values of cr up to the value of the prime. We search for
an ODE of order 4 and degree 33 as was originally done, which normally requires 170
series terms. For a particular value of cr far fewer terms are needed, signifying that for
this value the ODE simplifies to a third-order ODE (sometimes two primes were required
to determine cr uniquely). We did this for integer values of r = 3, . . . , 10, and thus formed
the polynomials crN(p, rp). We found that the coefficients of these polynomials could be
expressed as polynomials in r of degree at most 5, as follows:

a0(r) = 4− 11 r + 10 r2 − 3 r3, (4.18)

a1(r) = −16 + 52 r − 60 r2 + 27 r3 − 3 r4 (4.19)

a2(r) = 24− 96 r + 148 r2 − 91 r3 + 15 r4, (4.20)

a3(r) = −8 + 64 r − 176 r2 + 156 r3 − 44 r4 + 8 r5 (4.21)

a4(r) = −16 r + 128 r2 − 168 r3 + 96 r4 − 40 r5, (4.22)

a5(r) = −48 r2 + 96 r3 − 112 r4 + 72 r5 (4.23)

a6(r) = −16 r3 + 56 r4 − 56 r5, (4.24)

a7(r) = −8 r4 + 16 r5. (4.25)

4.4. Factorizing the differential operator

We naturally conjecture, following on from these results, that the fourth-order differential
operator L4(p, rp) for S1,1(p, rp) can be written as a product of a second-order operator
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L2(p, rp) and two first-order operators LS(p, rp) (for the square-root-type solution) and
LR(p, rp) (for the rational solution) with the latter appearing as part of a direct sum
decomposition,

L4(p, rp) = L2(p, rp) · LS(p, rp)⊕ LR(p, rp). (4.26)

As we have already investigated S and R, we now turn to the determination of L2(p, rp).
This involves finding the polynomials Qj(p, rp) such that

L2(p, rp) = Q2(p, rp)
d2

dp2
+Q1(p, rp)

d

dp
+Q0(p, rp). (4.27)

To do this we make use of some very powerful procedures from DETools. First we
calculated the series expansion for S1,1(p, pw) to order 200 in p and order 100 in pw
yielding series correct to order 200 in p for any value of pw = rp. We then fixed r at an
integer value ≥3 and used our ODE finder to calculate L4(p, rp) modulo several primes.
From these modular results we then reconstructed the exact ODE, which required the use
of 10 distinct primes. Next we used the procedure DFactorLCLM from DETools to factor
L4(p, rp) (for fixed r) into a direct sum of a third-order operator and LR(p, rp), and next
we use the procedure DFactor to factor out LS(p, rp) leaving us with L2(p, rp). For r = 3
we find that

Q2(p, 3p) = p2(1− 2p)(1− p)(1 + 4p− 4p2)(2− 3p)(1− 18p2 + 36p3 − 18p4)

× (2 + 9p− 9p2)2(1− 2p+ 11p2 − 90p3 + 225p4 − 216p5 + 72p6). (4.28)

All factors except one are known from our previous working, and we just need to find the
remaining sixth-degree polynomial. For r = 4 this polynomial is

3− 6p+ 38p2 − 320p3 + 800p4 − 768p5 + 256p6. (4.29)

Again keeping in mind the presence of an arbitrary constant, and the previous results, it
seems likely that the constant term is just r−1, which helps us fix the ‘normalization’—and
indeed we find that the general expression for the sought after polynomial is

r − 1− 2(r − 1)p− 2(1− r − r2)p2 − 20r2p3 + 50r2p4 − 48r2p5 + 16r2p6, (4.30)

so

Q2(p, rp) = p2(1− 2p)(1− p)(1 + 4p− 4p2)(r − 1− rp)
× (r − 1 + r2p− r2p2)2(r − 1− 4r2p2 + 8r2p3 − 4r2p4)

× (r − 1− 2(r − 1)p− 2(1− r − r2)p2 − 20r2p3

+ 50r2p4 − 48r2p5 + 16r2p6). (4.31)

Similarly, although they are more onerous to compute, we found expressions for Q1(p, rp)
and Q0(p, rp)—the full polynomials are listed in the appendix. Thus we found the second-
order operator L2(p, rp) as defined in (4.27). To accomplish this feat the calculations
outlined above were repeated for all integers r between 3 and 14 and the resulting
expressions for L2(p, rp) were used to calculate the general expressions for Q1(p, rp) and
Q0(p, rp). As a technical aside, this again required us to ‘fix’ an arbitrary constant, say
by fixing the very simple expressions for the highest-degree coefficients.
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5. Results and conclusions

We were not able to investigate the mean size of directed compact percolation near a
damp wall using methods successful in finding exact closed form solutions for the dry
wall case. However, we did have some success with analysing the series expansion. Using
the modular arithmetic method we found an ODE for any rational r where pw = rp, and
these ODEs completely determine the singular behaviour of the system. So even though
we were not able to find a closed form solution, we are still able to analyse the result for
mean size near a damp wall.

5.1. Differential equations

For wall occupancy probability pw = rp, where r is a rational number, the series for the
mean size is a solution to an homogeneous ODE of order 4 and degree 33. The exceptions
are for r = 2, which yields a reduction to a third-order ODE, and r = 1 and 0, which both
yield a reduction to first-order ODEs.

The r = 0 and r = 1 cases correspond to the dry and neutral wall mappings, pw = 0
and pw = p respectively, and thus it is not surprising that we have a greatly simplified
situation for these values of pw. The pw = 2p case is a special ‘wet-like’ case that we
considered with our initial series analysis techniques in section 3.3, and we found it to be
satisfied by an inhomogeneous ODE of order 2. There is no contradiction between this
result and our later finding that the minimal order ODE for the pw = 2p case is 3, because
this refers to homogeneous ODEs of Fuschian type.

In the region 1 < r < 2 the ODE has a singularity at 1 − 1/r < 1/2, which at first
sight appears to be the physical singularity. However, the simple numerical test of looking
at Padé approximants to the actual series shows that the series itself is not singular until
pc = 1/2. So in the whole of the damp region the physical singularity occurs at pc = 1/2.
The singularity at 1 − 1/r is explicitly present in the two particular solutions that we
found for the ODE so somehow the solutions combine in such a way as to cancel this
singularity in the physically relevant linear combination yielding the low-density series.

5.2. The critical exponent

Although we do not have an expression for the mean size, the ODEs give us the critical
behaviour. So we find that for pw = rp, where 0 ≤ r < 2, the critical exponent

γdamp = 1, (5.1)

which is the same as the dry wall exponent. This includes the special cases pw = 0 and
pw = p, which both correspond exactly to a dry wall scenario. For pw = 2p we find that
the exponent γ = 2, the same as the wet wall exponent. This case is not exactly a wet wall
situation, but as p→ 1

2
the proportion of wet sites on the wall tends to 1, so it is ‘wet-like’.

We note that although we have only considered the general damp case for pw = rp, the
finding of a common critical exponent for all 0 < r < 2 implies that this should be the
same for all pw except for ‘wet-like’ cases. These exponents are summarized in table 3.

Thus, as expected, the mean size follows the pattern of the percolation probability,
mean length and mean number of contacts, in that its critical behaviour is the same as
the corresponding dry wall result. We have the dry wall exponent γ = 1 for pw ∈ [0, 1),
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Table 3. Critical exponents for mean size, for different values of pw. Note that
for pw = rp we have listed the result for 0 < r < 2.

pw 0 p rp 2p 1

γ 1 1 1 2 2

and the wet exponent γ = 2 only at the wet singularity pw = 1, and at the wet-like case
of pw = 2p.
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Appendix. The polynomials Q1(p, rp) and Q0(p, rp)

A.1. Q1(p, rp)

Q1(p, rp) = p(r − 1 + r2p− r2p2)
17∑
n=0

bn(r)pn (A.1)

where

b0(r) = 6(r − 1)4

b1(r) = (r − 1)3(r − 2)(6− 7r)
b2(r) = −(r − 1)2(28− 42r − 39r2 + 62r3)
b3(r) = (r − 1)2(112− 280r + 104r2 + 125r3 − 34r4)
b4(r) = 2(r − 1)(70− 316r + 685r2 − 689r3 + 221r4 + 48r5)
b5(r) = −2(r − 1)(40− 266r + 1808r2 − 3351r3 + 2266r4 − 480r5 + 36r6)
b6(r) = −2(8− 128r + 3836r2 − 12 328r3 + 16 107r4 − 10 619r5 + 3568r6 − 488r7)
b7(r) = −2r(24− 5336r + 19 108r2 − 25 748r3 + 18 075r4 − 7763r5 + 2180r6)
b8(r) = −4r2(2372− 9376r + 8729r2 + 261r3 − 2058r4 − 872r5)
b9(r) = 4r2(1168− 5500r − 7460r2 + 33 837r3 − 31 571r4 + 10 118r5)
b10(r) = −8r2(120− 856r − 11 826r2 + 38 080r3 − 42 551r4 + 23 886r5)
b11(r) = −8r3(104 + 12 720r − 45 638r2 + 64 846r3 − 55 321r4)
b12(r) = 16r4(3728− 16 832r + 31 869r2 − 40 228r3)
b13(r) = −16r4(1184− 7664r + 20 668r2 − 39 027r3)
b14(r) = 64r4(40− 496r + 2147r2 − 6343r3)
b15(r) = 64r5(56− 520r + 2665r2)
b16(r) = 512r6(7− 82r)
b17(r) = 4608r7.

(A.2)
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A.2. Q0(p, rp)

Q0(p, rp) =
19∑
n=0

cn(r)pn (A.3)

where

c0(r) = 6(r − 1)5

c1(r) = (r − 1)4(16− 28r + 15r2)
c2(r) = 4(r − 1)3(4− 15r + 42r2 − 38r3 + 2r4)
c3(r) = (r − 1)2(20− 48r + 356r2 − 843r3 + 711r4 − 211r5)
c4(r) = −2(r − 1)2(16− 2r − 220r2 + 198r3 + 400r4 − 537r5 + 44r6)
c5(r) = −(r − 1)(16 + 44r − 4488r2 + 14 058r3 − 16 044r4

+ 6591r5 + 163r6 − 462r7)
c6(r) = −8(r − 1)r(8− 1482r + 5311r2 − 8213r3 + 6705r4

− 2631r5 + 257r6 − 16r7)
c7(r) = 4r(4− 4152r + 21 289r2 − 51 652r3 + 74 765r4 − 64 156r5 + 30 124r6

− 6658r7 + 486r8)
c8(r) = 4r2(3312− 20 040r + 61 048r2 − 112 851r3 + 121 460r4 − 75 705r5

+ 25 080r6 − 2980r7)
c9(r) = −2r2(2848− 22 768r + 90 080r2 − 206 662r3 + 258 498r4 − 196 969r5

+ 86 149r6 − 17 868r7)
c10(r) = 16r2(64− 904r + 4652r2 − 11 542r3 + 11 019r4

− 4029r5 + 1336r6 − 2180r7)
c11(r) = 4r3(496− 2240r − 9776r2 + 82 392r3 − 186 525r4

+ 139 737r5 − 31 298r6)
c12(r) = −16r4(304− 6836r + 36 692r2 − 94 962r3 + 84 274r4 − 36 391r5)
c13(r) = 8r4(192− 8520r + 58 712r2 − 204 132r3 + 217 558r4 − 151 819r5)
c14(r) = 32r5(640− 6752r + 34 336r2 − 44 638r3 + 49 757r4)
c15(r) = −16r5(160− 3456r + 29 052r2 − 47 800r3 + 87 825r4)
c16(r) = −64r6(96− 1776r + 4036r2 − 13 105r3)
c17(r) = −64r7(192− 776r + 5095r2)
c18(r) = −1024r8(4− 73r)
c19(r) = −7680r9.

(A.4)
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