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Abstract
We find the exact solution of two interacting friendly directed walks (modelling
polymers) on the square lattice. These walks are confined to the quarter plane
by a horizontal attractive surface, to capture the effects of DNA-denaturation
and adsorption. We find the solution to the model’s corresponding generating
function by means of the obstinate kernel method. Specifically, we apply
this technique in two different instances to establish partial solutions for two
simplified generating functions of the same underlying model that ignore either
surface or shared contacts. We then subsequently combine our two partial
solutions to find the solution for the full generating function in terms of the
two simpler variants. This expression guides our analysis of the model, where
we find the system exhibits four phases, and proceed to delineate the full phase
diagram, showing that all observed phase transitions are second-order.

Keywords: kernel method, interacting directed walks, polymer adsorption,
DNA denaturation
PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e

(Some figures may appear in colour only in the online journal)

1. Introduction

The adsorption of polymers both near a single surface, and confined between two interacting
surfaces, has been the subject of continued interest [1–14]. This has been in part due to the
advent of experimental techniques able to micro-manipulate single polymers [15–17] and
the connection to modelling DNA denaturation [18–24]. In the pursuit of exact solutions,
idealized two-dimensional directed walk models have been constructed to capture the effects
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of adsorption, where a polymer grafts itself onto a surface at low temperature [1, 4, 10, 25]; as
well as zipping, where two polymers are entwined with one another (again at low temperature)
[26–28]. However, exact solutions of directed models that capture both phenomena remain
elusive. Here we propose a system with both phenomena that translates to a model of two
directed friendly walks confined to the quarter plane which allows the walks to touch but not
cross one another. Now, while combinatorists have successfully tackled the non-interacting
version of such a model (along with many other variants and extensions) by means of the
Lindström–Gessel–Viennot lemma [29–35], the inclusion of multiple interaction parameters
greatly affects the model’s solvability. Even solutions of similar models that only include a
single interaction term are in most instances not straight forward (if known), while it was only
more recently that an exact solution of a two-friendly walker model in the quarter plane with
two distinct adsorption parameters was found [12].

In this paper, we consider a two-dimensional model of DNA denaturation in the presence
of an adsorbing wall consisting of two interacting upper and lower directed walks (polymers)
near a horizontal sticky surface.

We begin in section 2 by constructing our model by first defining the combinatorial
class of allowed configurations, and then introducing interaction parameters to assign our
configurations with corresponding Boltzmann weights.

In section 3, we introduce two further variables that mark the final heights of both walks for
any given configuration. These auxiliary variables, known as catalytic variables, are integral
to solving our model. We then establish a mapping between our class of allowed paired walks
onto itself which leads to a functional equation for the model’s corresponding generating
function that incorporates our added variables.

We then proceed in section 4 to determine an exact solution to the model’s generating
function by means of the obstinate kernel method [36]. While the beginnings of section 4 outline
the precise steps undertaken, we briefly mention that this technique consists of generating a
finite system of distinct functional equations by applying a set of different transformations
to our original relation determined in section 3. We then subsequently collapse our system
to construct a new refined functional equation which provides us (after some further work)
with a solution to our generating function. Most importantly, we note in contrast to previous
applications of the obstinate kernel method, we extend the process of this technique by
establishing instead two independent systems of equations (and thus two distinct refined
functional equations), which we then subsequently combine to arrive at our final solution. In
particular, this allows us to express the generating function of our model as a relation between
two simpler generating functions of the same underlying combinatorial class that ignore either
polymer–surface or polymer–polymer interaction effects.

Equipped with our exact solution of the generating function, we analyse our model in
section 5. Specifically, section 5.2 is devoted to determining the dominant singularity behaviour
of the generating function over our parameter space. This then allows us in section 5.3 to
identify four different phases of our system: a free, adsorbed, zipped and an adsorbed-zipped
phase. We additionally specify the regions of the phases and plot the phase diagram, finding
that all phases meet at a single critical point. Finally, in section 5.4 with the aid of our phase
diagram, we are able to show that all phase transitions are second-order.

2. The model

Consider an upper and lower directed walk on the square integer lattice consisting of an equal
number of pairwise steps. Both walks begin and end on a one-dimensional surface at y = 0 that
restricts both walks to lie on or above the boundary of the upper half-plane, Z×Z�0. Moreover,
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Figure 1. An example of an allowed configuration with ten paired steps. Here, we have
ma = 3 surface visits (filled circles) and mc = 7 shared contact sites (circles with filled
inner circles). Thus, the overall Boltzmann weight for this configuration is a3c7. Note
that the final site of the configuration is both a surface visit and shared contact site.

walks only can take steps in either the north-east (1, 1) or south-east (1,−1) direction. Finally,
steps of the lower walk can only either touch or lie below steps of the upper walk; with such
objects typically referred to as (infinitely) friendly walks. Let �̂ denote the class of allowed
paired walks of any length. An example of an allowable configuration is given in figure 1.

For any configuration ϕ ∈ �̂, we assign a weight a for each of the ma(ϕ) south-east
surface visit steps of the lower walk that touch the surface at y = 0. Additionally, a weight c
is assigned to each of the mc(ϕ) shared contact sites of the configuration where steps of the
lower and upper walk share a vertex excepting the common initial vertex at the origin. Note
that with this construction the trivial pair of walks of zero length has weight 1. With that in
mind, the partition function for our model consisting of L paired steps is

ZL(a, c) =
∑

ϕ∈�̂,|ϕ|=L

ama(ϕ)cmc(ϕ), (1)

where |ϕ| denotes the length of the configuration ϕ. The reduced free energy κ(a, c) given as

κ(a, c) = − lim
L→∞

1

L
log ZL(a, c). (2)

This thermodynamic quantity will be determined by solving for the model’s generating function
G(a, c; z), where

G(a, c; z) =
∞∑

L=0

ZL(a, c)zL (3)

and z is conjugate to the number of pairwise steps. Specifically, the relation between the free
energy κ and the radius of convergence of G(a, c; z) is given by

κ(a, c) = log zs(a, c) (4)

where zs(a, c) is the real and positive singularity of the generating function that is closest to
the origin. Now, considering concatenations of paired walks of arbitrary positive length and
recalling that these configurations must both start and end on the surface, it can be shown that
for all a, c ∈ R>0, {ZL}L�0 forms a positive super-multiplicative sequence—that is, that

ZN+M(a, c) � ZN (a, c)ZM(a, c), ∀N, M ∈ Z�0. (5)

Thus, a standard theorem on super-multiplicative functions due to Hille [37] (generalized in
[38, 39]), shows that the limiting free energy κ(a, c) in (2) exists. Moreover, by (4), this further
implies that G(a, c; z) is analytic at z = 0 for all a, c ∈ R>0.
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3. Constructing the functional equations

In section 2 we introduced the class of allowable configurations �̂ with corresponding
generating function G(a, c; z). We now want to establish a functional equation for G(a, c; z)
by considering the effect of appending a pair of steps to the end of any given configuration
ϕ ∈ �̂. However, as paired walks in �̂ both end on the surface, appending a step (which must
be in the direction (1,±1)) to each of the walks will result in a new configuration that is no
longer in �̂. Thus, our approach is to instead consider a larger combinatorial class containing
�̂ that allows us to append steps onto configurations while still remaining in our new, larger
class.

First, we define the class of paired walks �(i, j) that consists of configurations with final
lower walk height i and final distance between the two walks j, while still obeying the same
friendly and surface constraints. Thus, we define our larger combinatorial class �(0+, 0+) as

�(0+, 0+) ≡
⋃

i�0, j�0

�(i, j). (6)

Note that our original class of walks in our model �̂ ≡ �(0, 0). Now, equipped with our
larger combinatorial class, we can introduce its corresponding generating function F(a, c; z)
that encodes information about the number of steps, surface visits and shared contacts for
each configuration ϕ ∈ �(0+, 0+). However, determining whether appending a step-pair
onto a given configuration ϕ results in a new and allowable configuration (i.e. ϕ remains in
�(0+, 0+)) further requires knowledge of the final step heights of both walks. Thus, solely for
the purpose of establishing our functional equation for F(a, c; z), we additionally introduce
two auxiliary (or so-called catalytic) variables r and s to construct the expanded generating
function F(r, s, a, c; z) where

F(r, s, a, c; z) ≡ F(r, s) =
∑

ϕ∈�(0+,0+ )

z|ϕ|rh(ϕ)sd(ϕ)/2ama(ϕ)cmc(ϕ) (7)

and again z is conjugate to the length |ϕ| of a configuration ϕ ∈ �(0+, 0+), r is conjugate to
the distance h(ϕ) of the bottom walk from the surface and s is conjugate to half the distance
d(ϕ) between the final vertices of the two walks. Thus, for each ϕ ∈ �(0+, 0+), powers of r
and s in F(r, s) track the final step heights of the bottom and top walk respectively. Note that
due to the allowed step directions, d(ϕ) must always be even, ensuring that F(r, s) contains
only integer powers of s. Thus, we consider F(r, s) as an element of Z[r, s, a, c][[z]]: the ring
of formal power series in z with coefficients in Z[r, s, a, c].

We aim to solve F(0, 0, a, c; z) ≡ G(a, c; z) by establishing a functional equation
for F(r, s). Specifically, we construct a suitable mapping from �(0+, 0+) onto itself by
considering the effect of appending an allowable step-pair onto a configuration, translating
this map into its action on the generating function. Now, at the end of any given walk we can
append a step (1,±1). Hence, for a pair of walks, there are a total of four possible combinations
of paired steps that can be appended to a configuration. We denote the collection of allowable
steps by the set S, where

S = {{(1, 1), (1, 1)}, {(1,−1), (1, 1)}, {(1, 1), (1,−1)}, {(1,−1), (1,−1)}}
= {↑↑,↓↑,↑↓,↓↓}, (8)

that alter the corresponding configuration weight by factors of zr, zs
r , zr

s and z
r respectively.

However, given the non-crossing constraint between the lower walk and the surface
as well as between both walks, indeed not all four combinations of appended paired steps
will necessarily result in allowable configurations. Additionally, surface and shared contact
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(a) (b)

(c) (d)

Figure 2. The possible four ways of appending a pair of steps to an allowed configuration
that results in no new surface or shared contacts.

interaction effects also need to be considered when attaching new steps. Thus, we identify
ten distinct cases that capture all possible changes in weight that can arise from appending a
pair of steps as seen in figures 2–4; allowing us to construct a functional equation for F(r, s),
highlighting the underlying decomposition for �(0+, 0+).

We denote {•} as the trivial zero-length configuration and introduce the following
shorthand notation

�(n+, j) ≡
⋃
i�n

�(i, j), �(i, m+) ≡
⋃
j�m

�(i, j), �(n+, m+) =
⋃

i�n, j�m

�(i, j), (9)

while

{s} · �(i, j) (10)
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(a) (b)

Figure 3. The two possible ways of appending a pair of steps to an allowed configuration
that results in a surface (but not shared) contact.

represents the class of configurations formed by appending the step-pair s ∈ S to the end of
each pair of walks ϕ ∈ �(i, j). With that in mind, we can build up our functional equation
F(r, s, a, c; z) by firstly establishing a relation for the non-interacting case F(r, s, 1, 1; z) and
subsequently incorporating the effects of surface and shared contacts respectively. To do this,
we consider the effect of appending a pair-step to a given configuration, making sure to
eliminate newly formed paired walks that are no longer part of our allowable class �(0+, 0+).
For F(r, s, 1, 1; z), we find

F(r, s, 1, 1; z) = 1 �
(
0+, 0+) = {•}

+zrF(r, s)
⋃{↑↑} · �(0+, 0+), figure 2(a)

+ z
r (F(r, s) − [r0]F(r, s))

⋃{↓↓} · �(1+, 0+), figure 2(b)

+ zs
r (F(r, s) − [r0]F(r, s))

⋃{↓↑} · �(1+, 0+), figure 2(c)

+ zr
s (F(r, s) − [s0]F(r, s))

⋃{↑↓} · �(0+, 1+), figure 2(d),

(11)

where [r j]F(r, s),[sk]F(r, s) and in general [r jsk]F(r, s) denote the coefficients of r j, sk and
r jsk in the generating function F(r, s) respectively. Note, that thus

[r0]F(r, s) = F(0, s),

[s0]F(r, s) = F(r, 0),

[r0s0]F(r, s) = F(0, 0).

(12)

Next, we add surface interaction effects to (11) to get a functional equation for F(r, s, a, 1; z),
with

F(r, s, a, 1; z) = rhs of equation (11)

+ z(a − 1)[r1]F(r, s) {↓↓} · �(1, 0+), figure 3(a)

+ zs(a − 1)[r1]F(r, s) {↓↑} · �(1, 0+), figure 3(b). (13)

Finally, we incorporate shared site contacts into (13) to get a functional equation for the
full generating function F(r, s, a, c; z) ≡ F(r, s) making sure we accommodate for the case

6
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(a) (b)

(c) (d)

Figure 4. The four possible ways of appending a pair of steps to an allowed configuration
that adds a new shared site contact. Note, that in (c) we add both a surface and shared
site contact.

where two downward steps may add both a new surface and shared site contact. Thus, we
have

F(r, s) = rhs of equation (13)

+ zr(c − 1)[s0]F(r, s) {↑↑} · �(0+, 0), figure 4(a)

+ z(c−1)

r ([s0]F(r, s) − [r0s0]F(r, s)) {↓↓} · �(1+, 0), figure 4(b)

+ z(a − 1)(c − 1)[r1s0]F(r, s) {↓↓} · �(1+, 0), figure 4(c)

+ zcr[s1]F(r, s) {↑↓} · �(0+, 2), figure 4(d).

(14)

7
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By collecting terms we simply (14) down to

F(r, s) = 1 + z

(
r + 1

r
+ s

r
+ r

s

)
F(r, s)

− z

(
1

r
+ s

r

)
F(0, s) + z

[
(c − 1)

(
r + 1

r

)
− r

s

]
F(r, 0) − z(c − 1)

r
F(0, 0)

+ z(a − 1)(s + 1)[r1]F(r, s) + zr(c − 1)[s1]F(r, s)

+ z(a − 1)(c − 1)[r1s0]F(r, s). (15)

We can further refine (15) by eliminating the terms [r1]F(r, s), [s1]F(r, s) and [r1s0]F(r, s).
Specifically, we additionally construct a functional equation for F(0, 0)

F(0, 0) = 1 + zac[r1s0]F(r, s) �(0, 0) = {•}
⋃

{↓↓} · �(1, 0) (16)

along with an equation for F(0, s)

F(0, s) = 1 �(0, 0+) = {•}
+ za([r1]F(r, s) − [r1s0]F(r, s))

⋃{↓↓} · �(1, 2+)

+ zac[r1s0]F(r, s)
⋃{↓↓} · �(1, 0)

+ zas[r1]F(r, s)
⋃{↓↑} · �(1, 0+)

(17)

and F(r, 0)

F(r, 0) = 1 �(0+, 0) = {•}
+ zcrF(r, 0)

⋃{↑↑} · �(0+, 0)

+ zc

r
(F(r, 0) − [r0s0]F(r, s) − r[r1s0]F(r, s))

⋃{↓↓} · �(2+, 0)

+ zac[r1s0]F(r, s)
⋃{↓↓} · �(1, 0)

+ zcr[s1]F(r, s)
⋃{↑↓} · �(0+, 2),

(18)

so that (15) simplifies to

K(r, s)F(r, s) = 1

ac
+

(
C − zr

s

)
F(r, 0) +

[
A − z

r
(s + 1)

]
F(0, s) − ACF(0, 0) (19)

where

A ≡ a − 1

a
, C ≡ c − 1

c
(20)

and the kernel K(r, s) is

K(r, s) ≡ K(r, s; z) =
(

1 − z

[
r + s

r
+ r

s
+ 1

r

])
. (21)

The importance of the kernel in finding a solution to the generating function will be revealed
in section 4.

4. Solution of the model

In section 3, we established functional equation (19) for our model containing the generating
functions F(r, s), F(r, 0), F(0, s), F(0, 0) as well as the kernel K(r, s). Recall, that our ultimate
goal is to find a solution to F(0, 0) ≡ F(0, 0, a, c; z) ≡ G(a, c; z), and so ideally we would
like to eliminate unknown terms from (19), which will be done by means of the obstinate
kernel method [36]. We begin in section 4.1 by finding eight transformations that leave the
kernel function (21) unchanged. Thus, substitution of these transformations into (19) results in
a system of eight distinct equations, each of which contains the same unchanged kernel K(r, s).

8
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In section 4.2 we utilize this fact by substituting in a root of the kernel with respect to s so
that terms attached to K(r, s) vanish and then proceed to eliminate further terms by collapsing
our system into a single refined functional equation. Specifically, this equation contains the
unknowns F(r, 0), F(1/r, 0) and F(0, 0). We will also show that by using a different root of
the kernel, now with respect to r, we can instead obtain an alternate equation consisting of
the unknowns F(0, s), F(0, 1/s) and F(0, 0). The key point is that both of these equations
now have generating functions containing powers of only one catalytic variable. Thus, as
featured in previous applications of the obstinate kernel method [12, 35, 36, 40], the hope is
that by extracting some carefully chosen coefficient of [ri] or [s j] from either of our functional
equations, we can get a new relation solely in terms of F(0, 0) ≡ G(a, c). Unfortunately,
irrespective of which functional equation we choose, we find that we are unable to directly
solve for the full generating function G(a, c) by the same process. However, in section 4.3 we
will find that by setting c = 1, extracting the coefficient of s1 from our equation containing
F(0, s), F(0, 1/s) and F(0, 0) does allow us to solve for the simpler generating function
G(a, 1) that ignores shared site contacts. Similarly, in section 4.4 by setting a = 1, we will
make use of our other functional equation containing F(r, 0), F(1/r, 0) and F(0, 0), showing
that by extracting the coefficient of r1 we can instead solve for the generating function G(1, c)

that ignores surface contacts.
Finally, in section 4.5 we make the surprising connection between the two refined

functional equations that allows us to express G(a, c) solely in terms of G(a, 1) and G(1, c).
Thus, our motivation for solving for these two simpler generating functions is additionally
driven by the fact that we will also obtain an exact solution to the full generating function
G(a, c).

4.1. Symmetries and roots of the kernel

Here, we follow the approach featured in [41]. Recalling the functional equation for F(r, s) in
(19), we observe that the corresponding kernel function K(r, s) (21) is symmetric under the
two transformations

� : (r, s) 	→
(

r,
r2

s

)
, � : (r, s) 	→

( s

r
, s

)
, (22)

where both � and � are involutions. These transformations generate a family of eight
symmetries F as seen in figure 5.

Now, considering K(r, s) as a polynomial in s, we find two roots ŝ±

ŝ±(r; z) = r − z − r2z ±
√

(r2z + z − r)2 − 4r2z2

2z
,

ŝ−(r; z) = rz + (1 + r2)z2 + O(z3), ŝ+(r; z) = r

z
− (1 + r2) + O(z),

(23)

which when substituting into (19) sets the left-hand side of the functional equation to zero.
The choice of which roots result in legitimate substitutions is justified by determining whether
F(r, ŝ±) remains in Z[r, a, c][[z]]. In this instance, it suffices to check that F(0, s) remains
formally convergent in this ring when substituting in either of the roots, which translates into
ensuring that the coefficients of the truncated power series stabilize as polynomials in Z[r, a, c]
as the length of the series grows. Recalling that s is conjugate to half the distance between the
final heights of the upper and lower walks for any given configuration, we have

F(0, s; z) =
∑
L�0

{pL(a, c)s
L/2� + o(s
L/2�)}zL, pL(a, c) ∈ Z[a, c], (24)

9
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Figure 5. The family of transformations F that leave the kernel function K(r, s; z) =
(1 − z[r + s

r + r
s + 1

r ]) invariant.

as the final distance between the upper and lower walks can only be at most L for any given
configuration of length L. Substituting in the roots (23) we find

F(0, ŝ−; z) =
∑
L�0

{pL(a, c)r
L/2�zL+
L/2� + O(zL+
L/2�)},

F(0, ŝ+; z) =
∑
L�0

{pL(a, c)r
L/2�zL−
L/2� + O(zL−
L/2�)},
(25)

which implies

[zn]F(0, ŝ−; z) =
n∑

L=0

[zn]{pL(a, c)r
L/2�zL+
L/2� + O(zL+
L/2�)},

[zn]F(0, ŝ+; z) =
2n∑

L=0

[zn]{pL(a, c)r
L/2�zL−
L/2� + O(zL−
L/2�)}
(26)

and so both F(0, ŝ±) are formally convergent in Z[r, a, c][[z]].
Of course, we can also treat the kernel as a polynomial in r, giving us roots r̂±(s; z)

r̂±(s; z) = s ±
√

s[s − 4(1 + s)2z2]

2z(1 + s)
,

r̂−(s; z) = (1 + s)z + (1 + s)3

s
z3 + O(z3), r̂+(s; z) = s

(1 + s)z
− (1 + s) + O(1),

(27)

and again we determine which roots ensure that the generating function F(r, 0) is convergent
where

F(r, 0; z) =
∑
L�0

{bL(a, c)rL + o(rL)}zL, bL(a, c) ∈ Z[a, c], (28)

10
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recalling that r is conjugate to the final height of the lower walk above the surface. Substituting
the roots r̂±(s; z) into (28) we find

F(r̂−, 0; z) =
∑
L�0

{bL(a, c)(1 + s)Lz2L + O(z2L+1)},

F(r̂+, 0; z) =
∑
L�0

{
bL(a, c)

(
s

1 + s

)L

+ O(z)

}
,

(29)

and so while F(r̂−, 0) is formally convergent, it is clear that for each n ∈ Z�0, [zn]F(r̂+, 0)

cannot be determined by truncating the corresponding series in (29).
However, we note that while we are free to substitute the roots ŝ± and r̂− into (19), we in

fact find that it suffices to only consider ŝ− and r̂−. Thus, for the remainder of this paper, we
define ŝ(r; z) ≡ ŝ−(r; z) and r̂(s; z) ≡ r̂−(s; z). Finally, when the kernel (21) K(r, s) = 0 we
have

rs = z(1 + s)(r2 + s) (30)

and thus by Lagrange inversion [42], we have

r̂(s; z)k =
∞∑

n=k

k

n
[un−k]

{
(1 + s)n(u2 + s)n

sn

}
zn, k > 0

=
∞∑

n=k

k

2n + k

(
2n + k

n

)
(1 + s)2n+k

sn
z2n+k, (31a)

ŝ(r; z)k =
∞∑

n=k

k

n
[tn−k]

{
(1 + t)n(r2 + t)n

rn

}
zn, k > 0

=
∞∑

n=k

k

n

⎧⎨⎩
n−k∑
j=0

(
n

j

)(
n

k + j

)
r2(k+ j)−n

⎫⎬⎭ zn, (31b)

giving us explicit series representations for positive integer powers of the roots r̂ and ŝ, which
will later be utilized in finding a explicit solution to the generating function.

4.2. Using the symmetries of the kernel

Equipped with the roots ŝ and r̂ as well as the family of symmetries F that leave the
kernel invariant, we can now apply the obstinate kernel method. Specifically, we substitute
(r, s) 	→ (r, ŝ) and (r, s) 	→ (r̂, s) into the simplified functional equation (19), subsequently
applying a subset of transformations from F to generate a system of new functional equations.
With that in mind, mapping (r, s) 	→ (r, ŝ) we have the system

0 = ŝ

ac
+ (Cŝ − zr)F(r, 0) +

[
Aŝ − zŝ

r
(ŝ + 1)

]
F(0, ŝ) − ACŝF(0, 0),

(r, s) 	→ (r, ŝ) (32a)

0 = ŝ

ac
+

(
Cŝ − zŝ

r

)
F

(
ŝ

r
, 0

)
+ [Aŝ − zr(ŝ + 1)]F(0, ŝ)

− ACŝF(0, 0), (r, s) 	→
(

ŝ

r
, ŝ

)
(32b)

11
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0 = ŝ

acr2
+

(
Cŝ

r2
− zŝ

r

)
F

(
ŝ

r
, 0

)
+

[
Aŝ

r2
− z

r

(
ŝ

r2
+ 1

)]
F

(
0,

ŝ

r2

)
−ACŝ

r2
F(0, 0), (r, s) 	→

(
ŝ

r
,

ŝ

r2

)
(32c)

0 = ŝ

acr2
+

(
Cŝ

r2
− zŝ

r

)
F

(
1

r
, 0

)
+

[
Aŝ

r2
− zŝ

r

(
ŝ

r2
+ 1

)]
F

(
0,

ŝ

r2

)
−ACŝ

r2
F(0, 0), (r, s) 	→

(
1

r
,

ŝ

r2

)
, (32d)

where the chosen subset of transformations guarantee that each functional equation (32a)–
(32d) only contain non-negative powers of ŝ and thus the generating functions are formally
convergent in Q[a, c, r, r̄, s, s̄][[z]]. Now, considering the system of equations (32a)–(32d), we
can eliminate F(0, ŝ) by

0 = [coeff. of F(0, ŝ) in (32b)] × [rhs of (32a)]

− [coeff. of F(0, ŝ) in (32a)] × [rhs of (32b)]

= [Aŝ − zr(ŝ + 1)][rhs of (32a)] −
[

Aŝ − zŝ

r
(ŝ + 1)

]
[rhs of (32b)]. (33)

In a similar vein we can eliminate F
(
0, ŝ

r2

)
from the system by

0 =
[

coeff. of F

(
0,

ŝ

r2

)
in (32d)

]
× [rhs of (32c)]

−
[

coeff. of F

(
0,

ŝ

r2

)
in (32c)

]
× [rhs of (32d)]

=
[

Aŝ

r2
− zŝ

r

(
ŝ

r2
+ 1

)]
[rhs of (32c)] −

[
Aŝ

r2
− z

r

(
ŝ

r2
+ 1

)]
[rhs of (32d)] (34)

and combining (33) with (34) we can further eliminate F
(
0, ŝ

r2

)
0 =

[
coeff. of F

(
0,

ŝ

r2

)
in (34)

]
× [rhs of (33)]

−
[

coeff. of F

(
0,

ŝ

r2

)
in (33)

]
× [rhs of (34)], (35)

yielding a functional equation solely in terms of the generating functions F(r, 0), F
(

1
r , 0

)
and

F(0, 0). Specifically, we have

N1(r; z)F(1/r, 0) + N2(r; z)F(r, 0) = [M(r; z) − aH(r; z)]

(
1

ac
− ACF(0, 0)

)
(36)

where

N1(r; z) = (cr − r − cz)(r − ar + az − ar2z + a2r2z),

N2(r; z) = r(1 − c + crz)(r − ar − az + a2z + ar2z),

M(r; z) ≡ M(r, a, c; z) = −ac(a + c − 2)r(r2 − 1)z,

H(r; z) ≡ H(r, c; z) = (c − 2)c2(r4 − 1)z2 + O(z2).

(37)

Note, that H(r, c; z) in (36) is an algebraic function independent of the surface contact weight
a. This observation will be integral to establishing a solution to the full generating function
G(a, c) in section 4.5.

12
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Alternatively, by an identical process, we can instead use the root r̂ along with a subset
of transformations in F

(r̂, s) 	→ (r̂, s),

(
r̂,

r̂2

s

)
,

(
r̂

s
,

r̂2

s

)
,

(
r̂

s
,

1

s

)
(38)

that contain positive powers of r̂ to yield an alternate refined functional equation

N�
1 (s; z)F(0, 1/s) + N�

2 (s; z)F(0, s) = [M�(s) − c2H�(s; z)]

(
1

ac
− ACF(0, 0)

)
, (39)

where

N�
1 (s; z) = (−1 + c)s(−1 + (−1 + c)s) + c2(1 + s)z2,

N�
2 (s; z) = s(1 − a + s)((−1 + c)2 + s − cs + c2s(1 + s)z2)

s(a − 1) − 1
,

M�(s) ≡ M�(s, a, c) = a(−1 + c)c(−1 + s)(1 + s)

s(−1 + (−1 + a)s)
,

H�(s; z) ≡ H�(s, a; z) = a(−1 + s)(1 + s)(1 − (−2 + a)s + s2)z2

s2(−1 + (−1 + a)s)
+ O(z2).

(40)

Again, we note that H�(s; z) is an algebraic function independent of the shared contact weight
c, while M�(s) is a rational function solely in terms of s, a and c.

Overall, by using the symmetries of the kernel we have established two new refined
functional equations (36) and (39), containing unknown generating functions in only one
catalytic variable (either in r or s respectively). As mentioned at the beginning of section 4,
the potential benefit of these new equations is that by extracting the coefficients of ri or s j for
some choice of i or j (depending on which of the functional equations we consider), we hope
to arrive at a relation solely in terms of F(0, 0) ≡ G(a, c). Unfortunately, we find that while
coefficient extraction is able to further refine our equations, we are unable to solve for the full
generating function. However, by setting either c = 1 or a = 1, we will find that both of (36)
and (39) can be utilized to solve for G(a, 1) and G(1, c), which we indeed proceed to do in
sections 4.3 and 4.4 respectively. Keep in mind that we are ultimately leading up to section 4.5
where we establish a relation that expresses G(a, c) in terms of G(a, 1) and G(1, c). Thus, to
solve for our full generating function G(a, c), we do indeed need to first determine solutions
to the two simpler generating functions.

4.3. Solving the simplified generating function: c = 1

Our aim now is to utilize the refined functional equations that were established in section 4.2.
Specifically, for functional equation (39) that contains powers of s, we find extracting the
coefficient of s1 gives us

(−1 + a)(a(−1 + c)2 + c(1 + c(−1 + z2)))F(0, 0) + (−1 + a)(−1 + c)2[s1]F(0, s)

= (
[s1]M�(s) − c2[s1]H�(s; z)

) (
1

ac
− ACF(0, 0)

)
(41)

and subsequently setting c = 1,

(a − 1)z2G(a, 1) = −1

a
[s1]H�(s; z)

= [s1]
(1 − s)(1 + s)(1 − (−2 + a)s + s2)z2

s2(−1 + (−1 + a)s)
. (42)

13
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Thus, we have related G(a, 1) to coefficients of s1 of the algebraic function H�(s; z). However,
while (41) will be important in solving the full generating function G(a, c), thankfully, at this
point we do not need to attempt to further refine our equation, as an exact solution for G(a, 1)

has already been determined in [43] and [12]. Specifically, we have

G(a, 1) = 1 +
∞∑

i=1

z2i
i∑

m=1

am m(m + 1)(m + 2)

(i + 1)2(i + 2)(2i − m)

(
2i

i

)(
2i − k

i

)
. (43)

In section 4.4, a solution for the simplified generating function G(1, c) is found by employing
the same method featured in [12] that was used to solve for G(a, 1) (43).

4.4. Solving the simplified generating function: a = 1

To establish a relation for the alternate simplified model that instead weighs only shared
site contacts, we consider functional equation (36) containing powers of r. By extracting the
coefficient of r1 we find

z[a(a − 2) − c(1 + a(a − 3))]F(0, 0) − (a − 1)(acz2 + c − 1)[r1]F(r, 0)

+ az(a − 1)(c − 1)[r2]F(r, 0)

= ([r1]M(r; z) − a[r1]H(r; z))

(
1

ac
− ACF(0, 0)

)
, (44)

which when setting a = 1 simplifies to

G(1, c) = [r1]R(r, c; z) ≡ [r1]
ŝ(r2 − 1)[r − cr + cz(1 + r2 − ŝ)]

(c − 1)(ŝ − cŝ + crz)
, (45)

where we recall that G(a, c) = F(0, 0, a, c; z). Thus, our generating function is expressed in
terms of coefficients of r1 contained in the algebraic function R(r, c; z). Following a similar
approach to [12], we begin by expanding R(r, c; z) as a power series in c, so that (45) becomes

G(1, c) =
∞∑

m=0

[r1]cm (r2 − 1)(r2 − ŝ)(ŝ − 1)
(
1 − rz

ŝ

)m

r
. (46)

Therefore, if we can find a series representation for
(
1 − rz

ŝ

)m
in z and r, then extracting the

coefficients of our sum in (46) becomes a fairly straightforward (though time-consuming) task.
With that in mind, we have(

1 − rz

ŝ

)m
=

m∑
k=0

(
m

k

)
(−1)k

( rz

ŝ

)k
, (47)

which implies that we need to determine an expansion for ŝ−k. Recall in section 4.1, we gave
a series representation for positive powers of ŝ(z) by means of Lagrange inversion which
utilized the relation

ŝ(z) = z

r
(1 + s)(r2 + ŝ(z)) (48)

that was determined by setting the kernel (21) to zero. Now, for an arbitrary function H(u), a
more generalized form of the Lagrange Inversion Theorem [42] gives us

[zn]H(ŝ(r; z)) = 1

n
[un−1]

(
H ′(u)

1

rn
(u + 1)n(u + r2)n

)
. (49)

Thus, in particular, when H(u) = u−k for k ∈ N+, we find

[zn]ŝ(r; z)−k = − k

nrn
[un−k]

(u + 1)n(u + r2)n

uk+1
, (50)
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which with some work gives us

ŝ(r; z)−k = −
⎧⎨⎩

∞∑
n=k

k

n

n−k∑
j=0

(
n

j

)(
n

k + j

)
r2 j−nzn

⎫⎬⎭ + (−1)k

(
1 + 1

r2k

)

+
⎧⎨⎩

k∑
n=1

k

n
(−1)k−n

k−n∑
j=0

(
n + j − 1

j

)(
k − j − 1

n − 1

)
rn−2k+2 jz−n

⎫⎬⎭ . (51)

Substituting (51) into (47), we are now in a position to extract coefficients of r for the expression(
1 − rz

ŝ

)m
. For instance, one can show that

[r0]
(

1 − rz

ŝ

)m
=

⎧⎨⎩
m∑

k=1

(−1)k+1

(
m

k

) ∞∑
p=0

k

2p + k

(
2p + k

p

)(
2p + k

p + k

)
z2p+2k

⎫⎬⎭
+

⎧⎨⎩
m∑

k=2

(
m

k

) 
 k−1
2 �∑

p=1

k

k − 2p
(−1)k

(
k − p − 1

p

)(
k − p − 1

k − 2p − 1

)
z2p

⎫⎬⎭ . (52)

Returning to our expression for G(1, c) at (46), we partition the coefficients of cm into common
powers of r, ŝ and

(
1 − rz

ŝ

)m
so that

[cm]G(1, c) = ([r0] − [r−2])
(

1 − rz

ŝ

)m
+ ([r−2] − [r2])ŝ

(
1 − rz

ŝ

)m

+ ([r2] − [r0])ŝ2
(

1 − rz

ŝ

)m
. (53)

Therefore, along with [r0]
(
1 − rz

ŝ

)m
found in (52), there remain five other components in (53)

whose series representation can be determined in the same fashion. Finally, we change the
order of summation to get terms that are power series in z (all negative powers of z vanish
after coefficient extraction) and with the aid of Maple 3 to combine our sums we find the exact
solution for G(1, c) to be

G(1, c; z) = 1 + c2z2 + c3(1 + 2z)z4 +
∞∑

i=3

z2i
2i∑

m=3

cm
m∑

k=3

(−1)k+1

× k(k − 1)(k − 2)(2i − k + 1)(i − k + 2)

i2(i − 1)2(i + 1)(i − 2)

(
m

k

)(
2i − k

i − 2

)(
2i − k − 1

i − 3

)
. (54)

The above expression is more complicated than the double sum expression for G(a, 1) given
in (43). We were unable to refine the triple sum expression into a double sum.

4.4.1. Finding a differential equation: a = 1. In section 4.4, G(1, c) was solved by explicitly
finding the series representation of the algebraic function R(r, c; z) (45) and subsequently
extracting coefficients. As an alternative approach, one can employ an algorithm due to
Almkvist and Zeilberger [44] that involves differentiating hyperexponential functions under
the integral sign to instead establish a homogeneous linear differential equation solved by
[r1]R(r, c; z).

We begin by noting that a general multivariable function g(x) ≡ g(x1, . . . , xn) is
hyperexponential if for each i = 1, . . . , n, the logarithmic derivative

(
∂/∂xi g(x)

)
/g(x) is

a rational function in C(x1, . . . , xn). For further details about the underlying theory and
innards of the algorithm, we direct the reader to [44] and [45] respectively. Utilizing the

3 Maplesoft: a division of Waterloo Maple Inc. Maple 14 (software package).
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Maple package DETools which implements the so-called fast Zeilberger algorithm applicable
to hyperexponential functions, we find the linear differential operator L to be

L = [(236 544c19 + · · · + 88 704c16)z27 + · · · + (−140c11 + · · · + 560)z5](∂/∂xi )
5

+ [(2838 528c19 + · · · + 1064 448c16)z26 + · · · + (−1960c11 + · · · + 7840)z4](∂/∂xi )
4

+ · · · + [(13 824c15 + · · · + 14 515 200)z2 + · · · − 322 560c11 + · · · + 1290 240], (55)

satisfying the equation

L[r1]R(r, c; z) = 0. (56)

In section A.2 of the appendix, we explicitly write out the leading polynomial coefficient of
(55), which will prove to be useful in our analysis of G(1, c) in section 5.1. Note, that naively
attempting to solve differential equation (56) using Maple was unsuccessful. However, as we
have already established an exact solution to G(1, c) by alternate means, no attempt was made
to further refine the linear operator L in (55) in the hope that a solution to our differential
equation (56) could be computed.

Overall, it should not be concluded that finding the differential equation satisfied by
[r1]R(r, c; z) was a fruitless exercise. Firstly, we highlight that this approach is a far less
laborious and error-prone process than that of finding the series representation and then
subsequently extracting the coefficients of R(r, c; z). Thus, at a minimum, one should be
encouraged to employ this algorithm as a means of confirming the correctness of a given
solution. More importantly, as our differential equation solely contains polynomial coefficients
in z and c, one can easily determine both the singularities and coefficient asymptotics of
G(1, c; z), which indeed we proceed to do in section 5.1.

4.5. Solution of the full model G(a, c)

In sections 4.3 and 4.4 we solved for the two simpler generating functions G(a, 1) and G(1, c)

respectively. In particular we made use of the two refined equations that were established in
section 4.2—(36) that contains the unknowns F(r, 0), F(1/r, 0) and F(0, 0); as well as (39)
that contains F(0, s), F(0, 1/s) and F(0, 0). We are now in a position to connect these two
refined equations which will ultimately allow us to express G(a, c) in terms of G(a, 1) and
G(1, c).

Recall, when solving for G(1, c) in section 4.3 we utilized functional equation (41) which
when setting c = 1, gave us (42)

(a − 1)z2G(a, 1) = −1

a
[s1]H�(s, a; z). (57)

Now, solving (57) for [s1]H�(s, a; z) which is independent of c, and substituting into (41)
gives

(−1 + a)(a(−1 + c)2 + c(1 + c(−1 + z2)))G(a, c) + (−1 + a)(−1 + c)2[s1]F(0, s)

= ([s1]M�(s, a, c) + a(a − 1)c2z2G(a, 1))

(
1

ac
− ACG(a, c)

)
, (58)

leaving us with a relation containing G(a, c), G(a, 1) and the boundary term [s1]F(0, s).
Similarly, when solving for G(a, 1) in section 4.4 we employed functional equation (44) and
when setting a = 1 gave us

z(c − 1)G(1, c) = 1

c
([r1]M(r, 1, c; z) − [r1]H(r, c; z)). (59)
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(a) (b) (c)

Figure 6. The three possible ways of appending a pair of steps to an allowed
configuration so that both walks end at a height 1 above the surface (�(1, 0)): (a)
�(0, 0)· ↑↑ (b) �(2, 0)· ↓↓ (c) �(0, 1)· ↑↓.

In this instance, we solve for [r1]H(r, c; z) in (59), which is independent of a, and substitute
into (44). Finally, as M(r, a, c; z) is a polynomial in r and z, we find

z[a(a − 2) − c(1 + a(a − 3))]G(a, c) − (a − 1)(acz2 + c − 1)[r1]F(r, 0)

+ az(a − 1)(c − 1)[r2]F(r, 0)

= [c(−1 + c + a(−2 + a + c))z + zac(c − 1)G(1, c)]

(
1

ac
− ACG(a, c)

)
, (60)

giving us a relation containing G(a, c), G(1, c), [r1]F(r, 0) and [r2]F(r, 0).
Our aim now is to combine equations (58) and (60) to express G(a, c) solely in terms

of the simpler generating functions G(a, 1) and G(1, c). Thus, to do this, we need to
eliminate the lingering boundary terms [s1]F(0, s), [r1]F(r, 0) and [r2]F(r, 0). Firstly, we will
require the previously established relation (16) that relates G(a, c) and [r1]F(r, 0). Now, we
can construct an additional relevant relation by considering the combinatorial decomposition
for �(1, 0)—the class of allowed paired walks that both end at a height one above the surface.
Specifically, we have

�(1, 0) = {�(0, 0)· ↑↑}
⋃

{�(2, 0)· ↓↓}
⋃

{�(0, 1)· ↑↓}, (61)

as highlighted schematically in figure 6. Translating the decomposition in terms of weights
gives us

[r1]F(r, 0) = zc
(
G(a, c) + [r2]F(r, 0) + [s1]F(0, s)

)
, (62)

equipping us with another relation that contains G(a, c) along with the boundary terms
[r1]F(r, 0), [r2]F(r, 0) and [s1]F(0, s).

Finally, combining the four equations (58), (60), (16) and (62) gives the desired expression

G(a, c; z) = 1

(a − 1)(c − 1)

[
1 + p0(a, c; z)

Gb(a, c; z)

]
(63)

where

Gb(a, c; z) ≡ p1(a, c, z)G(a, 1; z) + p2(a, c, z)G(1, c; z) + p3(a, c, z),

p0(a, c; z) = (a − 1)(c − 1)2(a − c)(ac − c − a)

− (c − 1)(2a − a2 + 3c − 3ac + a2c − 2)a2c2z2 − (a − 1)a2c4z4,

17



J. Phys. A: Math. Theor. 47 (2014) 015202 R Tabbara et al

p1(a, c; z) = (a − 1)a2c3(1 − a − c + ac)z4,

p2(a, c; z) = (a − 1)a(c − 1)3c2z2,

p3(a, c; z) = (a − 1)(c − 1)2(a − c) − a2(c − 1)c2[1 + c(a − 2)]z2 + (a − 1)a2c4z4. (64)

We have not been able to find a more direct combinatorial proof for (63). It is certainly not
immediately obvious how one can express a given configuration from our underlying class of
allowed paired walks as a combination of configurations whose corresponding weights ignore
either surface or shared surface contacts.

5. Phase structure and transitions

In section 4.5 we found an exact solution for our model, expressing in (64) the generating
function G(a, c; z) ≡ G(a, c) in terms of the two simpler generating function G(a, 1; z) ≡
G(a, 1) and G(1, c; z) ≡ G(1, c). In particular, the decomposition of G(a, c) highlights that
the dominant singularity zs(a, c) of the full generating function is determined for any a, c � 0
by considering the dominant singularity of G(a, 1), the dominant singularity of G(1, c) and
the roots of Gb (defined in (64)) that give rise to poles of the generating function. Recall that
zs(a, c) dictates the reduced free energy κ(a, c), and thus phases of the model. With that in
mind, we begin in section 5.1 by determining the dominant singularities and phases of our two
simpler generating functions G(a, 1) and G(1, c). In section 5.2, we will then use our results
from section 5.1 to describe the dominant singularity structure of the full generating function
G(a, c), allowing us to subsequently construct the phase diagram of our model. Finally, in
section 5.4 we determine the order and behaviour of all exhibited phase transitions.

5.1. Transitions and asymptotics of G(a, 1) and G(1, c)

For the generating function G(a, 1; z), it was found in [43] that the dominant singularity
zs(a, 1) is given as

zs(a, 1) =
⎧⎨⎩

zb ≡ 1/4, a � 2

za(a) ≡
√

a − 1

2a
, a > 2.

(65)

Introducing the order parameter A(a, c) the limiting average surface contacts as

A(a, c) = lim
L→∞

〈ma〉
L

= a
∂κ

∂a
, (66)

we say that the system is in a desorbed phase when

A = 0, (67)

while an adsorbed phase is observed when

A > 0. (68)

Thus, by use of (65), we have

A(a, 1) =
⎧⎨⎩

0, a � 2
a − 2

2(a − 1)
, a > 2,

(69)

highlighting that the singularities zb and za(a) correspond to a desorbed and adsorbed phase
respectively, with the model exhibiting a second-order adsorption phase transition as is seen
in figure 7(a).
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A

a
(a)

C

c
(b)

Figure 7. (a) The limiting average number of visit sites A(a) for the adsorption-only
model with generating function G(a, 1; z). (b) The limiting average number of shared
site contacts C(c) for the friendly interaction-only model with generating function
G(1, c; z).

For the generating function G(1, c), zs(1, c) can be determined from the linear
homogeneous differential equation obtained in section 4.4. Specifically, the differential
equation (55) only contains polynomial coefficients in z, which by standard results in the
theory of linear differential equations [42, p 519] implies that the singularities of G(1, c; z)
are given by the zeroes of the leading polynomial (which can be found in the appendix). Thus,
we find the dominant singularity zs(1, c) to be

zs(1, c) =
⎧⎨⎩

zb ≡ 1/4, c � 4/3

zc(c) ≡ 1 − c + √
c2 − c

c
, c > 4/3.

(70)

In a similar fashion to G(a, 1), we introduce an appropriate order parameter C(a, c) the limiting
average shared site contacts as

C(a, c) = lim
L→∞

〈mc〉
L

= c
∂κ

∂c
, (71)

and say that the system is in a unzipped phase when

C = 0, (72)

while a zipped phase is observed when

C > 0. (73)

Considering the singularity structure (70), we thus find

C(1, c) =
⎧⎨⎩

0, c � 4/3

c − 2 + √
c(c − 1)

2(c − 1)
, c > 4/3,

(74)

and so for the model that only weights shared contacts we observe a second-order zipping
transition as is seen in figure 7(b).

Finally, to determine the singularity structure zs(a, c) of the full generating function in
section 5.3, we will require knowledge of the asymptotics of the two simpler generating
functions which we now proceed to calculate. For the generating function G(a, 1; z), we know
from [12] that the singular part of the generating function near its radius of convergence
behaves as

G(a, 1; z) ∼

⎧⎪⎨⎪⎩
A−(1 − 4z)4 log(1 − 4z), a < 2,

A0(1 − 4z)2 log(1 − 4z), a = 2,

A+(1 − z/za(a))1/2, a > 2.

(75)
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We compute the asymptotics of G(1, c; z) from the differential equation satisfied by the
generating function which was found in section 4.4.1. Specifically, substituting into (55) the
general power series solution

G(1, c; z) =
∑
n�0

Znzn, (76)

we can establish a recurrence for the coefficients Zn ≡ Zn(1, c) of G(1, c; z). With the
assistance of the Maple package Gfun [46] we find

16c8n(7c − 6)(n − 4)(n − 2)(n + 1)(n + 3)Zn+10

+ q2(c, n)Zn+8 + q3(c, n)Zn+6 + q4(c, n)Zn+4 + q5(c, n)Zn+2

+ 2(c − 1)4(2c2 − 3+)(n + 6)(n + 8)(n + 10)2(n + 12)Zn = 0,

qi=2,...,5(c, n) ∈ Z[c, n], (77)

giving us a tenth-order homogeneous linear recurrence equation with polynomial coefficients
in n. Note that the explicit expression for the recurrence can be found in the appendix. The
growth of Zn can be directly determined from recurrence (77) by appealing to the method of
Wimp and Zeilberger [47], showing the existence and specific form of a basis set of asymptotic
solutions for any given linear recurrence which, in particular, contains rational coefficients (in
n). In this instance, we substitute into (77) the ansatz

Zn = μnnγ−1(b0 + b1/n + b2/n2 + O(1/n3)), b0 �= 0 (78)

where μ, γ , bi�0 ∈ R. By collecting dominant powers of n and equating their corresponding
coefficients to zero we can solve for μ, γ as well as an arbitrary number of correction
coefficients bi�1 (as factors of b0). In doing so we find

Zn ≡ Zn(1, c)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B−4nn−5

(
1 + 5(16−24c+c2 )

2n(4−3c)2 + O(1/n2)
)

, c < 4/3,

B04nn−3(1 + 9/2n + O(1/n2)), c = 4/3,

B+zc(c)−nn−3/2

×
(

1 + 3
2n(4−3c)2

(
24 + c(11c − 30)− (98c3 − 313c2 + 296c − 80)

4
√

c(c − 1)

)
+ O(1/n2)

)
, c > 4/3,

(79)

which implies that the singular part of the generating function near the radius of convergence
behaves as

G(1, c; z) ∼
⎧⎨⎩

B−(1 − 4z)4 log(1 − 4z), c < 4/3,

B0(1 − 4z)2 log(1 − 4z), c = 4/3,

B+(1 − z/zc(c))1/2, c > 4/3.

(80)

5.2. Singularities of the full model

We now want to describe the dominant singularity zs(a, c) for all a, c > 0. For c � 1, the
coefficients of G(a, c; z) grow at the same exponential rate as G(a, 1; z). This can be seen
from the expression (63) noting the denominator is never zero in this region. Thus, in this
region, the dominant singularities of these two generating functions, G(a, c; z) and G(a, 1; z),
are equivalent and so from section 5.1 we have

zs(a, c) =
⎧⎨⎩

zb ≡ 1/4, a � 2, c � 1

za(a) ≡
√

a − 1

2a
, a > 2, c � 1.

(81)
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By a similar argument, we can additionally conclude that for a � 1

zs(a, c) =
⎧⎨⎩

zb ≡ 1/4, c � 4/3, a � 1

zc(c) ≡ 1 − c + √
c2 − c

c
, c > 4/3, a � 1.

(82)

We now show that

zs(a, c) = zb ≡ 1/4 for all 1 � a � 2, 1 � c � 4/3. (83)

Note, within this region the coefficients of G(a, c) cannot grow more slowly than those of either
G(a, 1) or G(1, c), implying that zs(a, c) � min(zs(a, 1), zs(1, c)) = zb. Thus, it suffices to
show that G(2, 4/3; zb) is convergent as G(a, c; zb) would additionally be convergent for any
1 � a � 2, 1 � c � 4/3. With that in mind, we begin by recalling the decomposition of
G(a, c) in (63)

G(a, c; z) = 1

(a − 1)(c − 1)

[
1 + p0(a, c; z)

Gb(a, c; z)

]
(84)

where

Gb(a, c; z) ≡ p1(a, c, z)G(a, 1; z) + p2(a, c, z)G(1, c; z) + p3(a, c, z) (85)

and pi=0,1,2,3(a, c; z) are polynomials in z. Moreover, we denote the smallest positive root of
Gb to be zac(a, c). We find that p0(2, 4/3; 1/4) = 0, while using our exact solutions to our
two generating function we find

G(2, 1; 1/4) = 8 − 64

3π
, G(1, 4/3; 1/4) = 32

π
− 9, (86)

which when subsequently substituting into the denominator (84) gives Gb(2, 4/3; zb) = 0.
Now, picking z < 1/4 and expanding Gb around zb ≡ 1/4 (recall that za(2) = zc(4/3) = 1/4)
we find

Gb(2, 4/3; z) = 1

243
[−96(1 − 4z) + G(1, 4/3; 1/4)(1 − 4z) + 2A0(1 − 4z)2 log(1 − 4z)

+ 3G(2, 1; 1/4)(1 − 4z) + 3B0(1 − 4z)2 log(1 − 4z)] + O(1 − 4z)3

= 16(9π − 32)

243π
(1 − 4z) + 1

243
(2A0 + 3B0)(1 − 4z)2

× log(1 − 4z) + O(1 − 4z)3 (87)

where we have used the asymptotic behaviour of the singular parts of G(a, 1) and G(1, c) near
za(2) and zc(4/3) respectively found in section 5.1 to make the substitutions

G(2, 1; z) ∼ G(2, 1; 1/4) + A0(1 − 4z)2 log(1 − 4z),

G(1, 4/3; z) ∼ G(1, 4/3; 1/4) + B0(1 − 4z)2 log(1 − 4z).
(88)

Moreover, from the explicit definition of p0(a, c; z) in (64) we have

p0(a, c; z) = − 256
81 (1 − 4z)2 + O(1 − 4z)3. (89)

Thus, overall our expansion of G(2, 4/3) becomes

G(2, 4/3; z) ∼ 3

[
1 −

256
81 (1 − 4z)2

16(9π−32)

243π
(1 − 4z) + 1

243 (2A0 + 3B0)(1 − 4z)2 log(1 − 4z)

]

∼ 3

[
1 − 48π

9π − 32
(1 − 4z) + 3π2(2A0 + 3B0)

(9π − 32)2
(1 − 4z)2 log(1 − 4z)

]
. (90)

In particular, the singular part of G(2, 4/3; z) is then given as

G(2, 4/3; z)singular ∼ 3π2(2A0 + 3B0)

(9π − 32)2
(1 − 4z)2 log(1 − 4z) (91)

21



J. Phys. A: Math. Theor. 47 (2014) 015202 R Tabbara et al

Figure 8. An example of an allowed configuration where the lower walk has a maximal
number of surface contacts, while the upper walk is free to make arbitrary excursions
above the lower walk.

which implies that G(2, 4/3; zb ≡ 1/4) is convergent, with

G(2, 4/3; 1/4) = 3. (92)

Now we argue that

zs(a, c) = zac(a, c) for all a � 2, c � 4/3. (93)

We begin, by noting that wherever the smallest root zac(a, c) of Gb is defined, we must have

zac(a, c) � min(za(a), zc(c), zb). (94)

If we instead assume the converse, then either G(a, 1; zac) and/or G(1, c; zac) would be
divergent, which from (85) further implies that Gb diverges and thus zac could not be a root
for the expression.

It is straightforward to argue that for large a and c that zs(a, c) = zac(a, c) by considering
a subset of configurations of the model. Specifically, let G�(a, c; z) be the generating function
for the sub-class of allowed configurations where the lower walk permanently zig-zags along
the surface, while the upper walk is free to make arbitrary excursions as seen in figure 8. Thus,
we essentially have a single adsorbing Dyck path model whose generating function is known
(see [48]), where the upper walk ‘adsorbs’ (with weight c) onto the peaks of the lower walk.
In this instance, the generating function G�(a, c; z) is given as

G�(a, c; z) = 1 + 2acz2

2 − c − 2ac2z2 + c
√

1 − 4az2
, (95)

which has smallest positive root zu(a, c)

zu(a, c) =
(

1 − c + √
(c − 1)(3 + c)

2ac2

)1/2

(96)

for all a > 2, c > 4/3. Moreover, as G� is counting a subset of configurations from our
original model, we know zs(a, c) � zu(a, c) for all a, c > 1. Now, one can show that zu(a, c)

is monotonically decreasing in c and a at a faster rate to zc(c) and za(a) respectively, implying
that for large a�, c�

zu(a, c) < min(zc(c), za(a)), c > c�, a > a�. (97)

But because the radius of convergence of the full generating function zs(a, c) � zu(a, c), the
only remaining possibility is that additionally

zac(a, c) � zu(a, c) < min(zc(c), za(a)), c > c�, a > a�. (98)
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Figure 9. An example of an allowed configuration where all sites are shared contacts,
so that the paired walks are in effect a single adsorbing Dyck path.

By considering the denominator on the rhs of equation (63) it can be seen numerically that
zs(a, c) = zac(a, c) extends to the region a � 2, c � 4/3. Once this is conjectured one can
prove that for all a > 2 and small c the system has zs(a, c) = za(a), while for large c the
system has zs(a, c) = zac(a, c). Moreover there is a single change of dominant singularity on
increasing c at a point c = α(a) where 1 < α(a) < 4/3. Similarly, one can show that for all
c > 4/3 and small a the system has zs(a, c) = zc(c) and on increasing a the system has a
single change of dominant singularity at a = γ (c) to zs(a, c) = zac(a, c) for large a.

We can now fully describe the dominant singularity zs(a, c) of the generating function
G(a, c; z) as

zs(a, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

zb ≡ 1/4, a � 2, c � 4/3,

za(a) ≡
√

a − 1

2a
, a > 2, c � α(a)

zc(c) ≡ 1 − c + √
c2 − c

c
, a � γ (c), c > 4/3

zac(a, c), a > γ (c), c > α(a).

(99)

Now, while we cannot locate the boundaries α(a) and γ (c) explicitly, we can employ low-
temperature arguments to describe their asymptotic behaviour. Specifically, considering first
the zc-to-zac boundary γ (c), as c → ∞, G(a, c; z) is dominated by those configurations where
both the upper and lower walk always share a common site for each pairwise step as seen
in figure 9. Thus, the two-walker model simplifies into a single adsorbing Dyck path model
whose generating function is known (see [49]) and we have

G(a, c; z) ∼ 2

2 − a(1 − √
1 − 4c2z2)

, c → ∞. (100)

Equating the two singularities of the limiting generating function implies that

γ (c) ∼ 2, c → ∞. (101)

By a similar low-temperature approximation argument, as a → ∞, G(a, c; z) is now
dominated by configurations where the lower walk permanently zig-zags along the surface,
while the upper walk is free to make arbitrary excursions, whose corresponding generating
function G�(a, c; z) is at (95). Thus, in this instance, the limiting generating function becomes

G(a, c; z) ∼ G�(a, c; z) = 1 + 2acz2

2 − c − 2ac2z2 + c
√

1 − 4az2
, a → ∞ (102)
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and equating the two found singularities, we find

α(a) ∼
√

5 − 1 ≈ 1.2306, a → ∞ , (103)

and we observe that√
5 − 1 < α(a) < 4/3 . (104)

In section 5.5, more refined asymptotic expansions for the boundaries α(a) and γ (c) will be
established.

5.3. Phases and phase diagram of full model

With the dominant singularity structure of G(a, c) established in section 5.2, we can now
introduce the phases of our model using the same order parameters A and C that were
introduced in section 5.1. Specifically, we say that the system is in a free (desorbed and
unzipped) phase when

A = C = 0, (105)

while an adsorbed (adsorbed and unzipped/a-rich) phase is observed when

A > 0, C = 0, (106)

a zipped (desorbed and zipped/c-rich) phase is observed when

A = 0, C > 0, (107)

and finally an adsorbed-zipped (ac-rich) phase occurs when

A > 0, C > 0. (108)

Now, the dominant singularity zs(a, c) at (99) as well as our analysis of the two simpler
generating functions G(a, 1) and G(1, c) in section 5.2 allow us to conclude that the
singularities zb, za(a) and zc(c) correspond to the free, adsorbed and zipped phases respectively.
Moreover, in section 5.4, we will additionally show, rather unsurprisingly, that zac(a, c)

corresponds to the adsorbed-zipped phase of our system.
Finally, we plot the full phase diagram in figure 10, estimating the boundaries adsorbed to

adsorbed-zipped α(a) and zipped to adsorbed-zipped γ (c) where zac(a, c) coincides with za(a)

and zc(c) respectively. Specifically, to estimate γ (c), we begin by picking an a > 0, c > 4/3
and use the exact solutions of our generating functions to evaluate truncated estimates of
G(a, 1) and G(1, c) when z = zc(c). Next, we employ a technique featured in [12] of
accelerating the convergence of our estimate for G(1, c; zc(c)) whose terms cnzc(c)n grow as
n−3/2 (see section 5.1). Now, as

G(1, c; zc(c)) = GN (1, c; zc(c)) + GN+1,∞(1, c; zc(c)) (109)

where

GN (1, c; z) =
N∑

n=0

cnzn, GN+1,∞(1, c; z) =
∞∑

n=N

cnzn, (110)

by the Euler–Maclaurin asymptotic expansion of a sum [42] we thus have

GN,∞(1, c; zc(c)) ∼
∞∑

n=N+1

Bn−3/2 ∼ B
∫ ∞

N+1
n−3/2dn = B (N + 1)−1/2 , N → ∞ (111)

and so by considering the system of equations

G(1, c; zc(c)) = GN (1, c; zc(c)) + B (N + 1)−1/2

G(1, c; zc(c)) = GN−1(1, c; zc(c)) + BN−1/2,
(112)
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c

a

2, 4
3

Figure 10. The phase diagram of our model. All transitions are second-order while the
critical point where all boundaries meet (filled circle) occurs when a = 2 and c = 4/3.
Additionally, the vertical and horizontal dashed lines show the asymptotic estimates of
the boundaries α(a) ∼ √

5 − 1 and γ (c) ∼ 2 as a → ∞ and c → ∞ respectively.

Table 1. The growth rates of the coefficients Zn(a, c) modulo the amplitudes of the full
generating function G(a, c; z) over the entire phase space.

Phase region Zn(a, c) ∼
Free 4nn−5

Free to adsorbed boundary 4nn−3

Free to zipped boundary 4nn−3

a = 2, c = 4/3 4nn−3

Adsorbed za(a)−nn−3/2

Zipped zc(c)−nn−3/2

Adsorbed to adsorbed-zipped boundary (α(a)) za(c)−nn−1/2

Zipped to adsorbed-zipped boundary (γ (c)) zc(c)−nn−1/2

Adsorbed-zipped zac(a, c)−nn−1

we can solve for the non-zero constant B, and thus subsequently G(1, c; zc(c)). Equipped with
the estimates, we can then finally check whether Gb(a, c; zc(c)) = 0 to determine whether
zc(c) = zac(a, c) for our chosen a and c > 4/3. We follow the same process to estimate the
adsorbed to adsorbed-zipped α(a) boundary, with the exception that now z = za(a). As seen in
figure 10, we find that the asymptotic behaviour of both estimated boundaries as either a → ∞
or c → ∞ agrees with our low-temperature approximations from section 5.2. Overall, in
table 1 we summarize the growth rate of the coefficients Zn ≡ Zn(a, c) of the full generating
function G(a, c) along the entire phase space. Note, that along the boundaries α(a) and
γ (c) the sub-exponential behaviour of our growth rates are estimates that are deduced from
the nature of the corresponding dominant singularities in the surrounding adsorbed-zipped
(simple pole) and adsorbed/zipped regions (convergent square-root singularity). In particular,
this restricts the possible behaviour of Zn that may be observed on the boundaries. Moreover,
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by generating the sequence {Zn+1/Zn} for large n for fixed points a,c along α(a) and then γ (c),
fitting the coefficients into a equivalent ansatz form as in (78) and solving for the unknown
exponents, we can conclude that along both boundaries, the dominant singularity behaves as
a divergent square-root singularity.

5.4. Transitions of the full model

In section 5.3 we associated phases of our system to the different singularities of the generating
function G(a, c) dependent on our choice of a, c > 0. In particular, we found that lying in a
free phase implies zs(a, c) = zb, an adsorbed phase implies zs(a, c) = za(a), while a zipped
phase implies zs(a, c) = zc(c). Thus, moving from a free to an adsorbed (zipped) phase we
observe the same critical behaviour in our full model as with the c = 1 (a = 1) subcases,
which from our analysis in section 5.1, implies the system similarly exhibits a second-order
adsorption (zipping) phase transition.

What remains is to describe the critical behaviour of our model as we move across
the adsorbed to adsorbed-zipped α(a) and zipped to adsorbed-zipped γ (c) boundaries.
Considering first the former case, picking a > 2, we know from section 5.3 that zac is
given implicitly in (64) as the smallest positive root of Gb(a, c, z), where

Gb(a, c; z) = p1(a, c, z)G(a, 1; z) + p2(a, c, z)G(1, c; z) + p3(a, c, z), (113)

with each of p1, p2 and p3 polynomials in z. Thus, if we consider the expression

Gb(a, α(a); za) − Gb(a, c; zac) = 0, (114)

and expand za around zac we have

Gb(a, α(a); zac) + G′
b(a, α(a); zac)(za − zac) − Gb(a, c; zac) + O(zc − zac)

2 = 0. (115)

From (113), this expansion is implicitly an expansion of both G(a, 1; za) and G(1, α(a); za).
In the former case, we know from section 5.1 that for a > 2 and zac ≈ za

G(a, 1; zac) ∼ G(a, 1; za) + A+(a)(za − zac)
1/2. (116)

Now, in section 5.3, a low-temperature approximation argument showed that α(a) → √
5−1 ≈

1.2306 < 4/3. Moreover, as we expect the order of the transition to remain unchanged along
the boundary for all a > 2, we are justified in assuming α(a) < 4/3 within this region. Thus,
we can conclude that the radius of convergence of G(1, α(a)) is greater than that of G(a, 1).
Moreover, as the polynomials p1 and p2 in (113) contain constant terms independent of z, our
expansion (115) as zac → za becomes

F(a, c) [c − α(a)] ≈ (za − zac)
1/2 (117)

where F(a, c) is a non-zero algebraic function, which solving for zac gives us

zac(a, c) ≈ za(a) + F(a, c)2 [c − α(a)]2 , (118)

which implies we have a second-order adsorbed to adsorbed-zipped phase transition, as there
is a finite-jump discontinuity in the second-derivative (with respect to c) in the free energy
κ(a, c) = log zac.

We now move on to the transition from across the zipped to adsorbed-zipped boundary
γ (c) which can be analysed by a similar process, only now the leading behaviour of
Gb(ac, c; zc) near zac is dictated instead by G(1, c; zac) as

G(1, c; zac) ∼ G(1, c; zc) + C+(c)(zc − zac)
1/2, (119)

for c > 4/3 and zc ≈ zac. The remainder of the argument follows exactly from the adsorbed
to adsorbed-zipped transition case, and so we conclude that as we move from a zipped to
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adsorbed-zipped phase, we again observe a second-order phase transition with a finite-jump
discontinuity in the second-derivative of the free energy.

Thus, overall, all phase transitions are second-order and moreover as alluded to in
section 5.3, the singularity zac(a, c) corresponds to our system lying in an adsorbed-zipped
phase where both A, C > 0.

5.5. Asymptotics of the boundaries α(a) and γ (c)

In section 5.2, by means of a low-temperature approximation argument, we found that the
zipped to adsorbed-zipped critical boundary γ (c) behaves as

γ (c) ∼ 2, c → ∞, (120)

while the adsorbed to adsorbed-zipped boundary α(a) behaves as

α(a) ∼
√

5 − 1 ≈ 1.2306, a → ∞. (121)

However, by employing a similar approach seen in [12], we can obtain more accurate
asymptotics of both these boundaries. Beginning with γ (c) where the singularities zc(c)

and zac(a, c) coincide, we know from (64) that

Gb (a, c; zc) ≡ p1 (a, c, zc) G (a, 1; zc) + p2 (a, c, zc) G (1, c; zc) + p3 (a, c, zc) = 0, (122)

with each of p1, p2 and p3 polynomials in z also defined in (64). Now, note that the coefficients
Zn(a, 1) are independent of c and moreover that

zc(c) ∼ 1

2c
, c → ∞. (123)

Thus, the dominant asymptotic behaviour of G(a, 1; zc) with respect to c is captured by the
initial terms of our generating function

G(a, 1; z) = 1 + az2 + a(2a + 1)z4 + a(5a2 + 6a + 3)z6 + O(z6), (124)

by setting z = zc and expanding to give

G(a, 1; zc) ∼ 1 + a

4c2
− a

8c3
+ a(8a + 1)

64c4
− a(16a + 11)

128c5
. (125)

Unfortunately, we cannot compute the asymptotics of G(1, c; zc) in the same manner as
our coefficients Zn(1, c) are no longer independent of c. Moreover, despite being equipped with
a solution for G(1, c), the general form of the coefficients Zn(1, c) further makes it difficult to
find an explicit expansion. This is in contrast to [12], where the simpler form of the coefficients
Zn(a, 1) allowed them to proceed analytically to determine the asymptotic expansion of the
corresponding critical boundary. Instead, we assume the ansatz for the asymptotic expansion
of G(1, c; zc(c))

G(1, c; zc(c)) ∼ y0 + y1

c
+ y2

c2
+ · · · + y5

c5
, yi ∈ R (126)

and aim to conjecture a solution for each yi. Specifically, we consider the truncated series
of G(1, c; vzc(c)), where the auxiliary variable v is introduced to guide our estimates of the
coefficients yi. Specifically, for [c0]G(1, c; vzc(c)) we find

[c0]G(1, c; vzc) = 1 + v2

4
+ v4

8
+ 5v6

64
+ 7v8

128
+ 21v10

512
+ 33v12

1024
+ O(v12). (127)

By inspection, our coefficients in (127) appear to follow the sequence{
Cn

4n

}
=

{
1

4n(n + 1)

(
2n

n

)}
, (128)
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where Cn are the Catalan numbers whose generating function is known [42]. Thus, we
conjecture that

[c0]G(1, c; vzc) = 1 +
∑
n�1

Cn

4n
v2n = 2(1 − √

1 − v2)

v2
. (129)

Moreover, we can further test our computation for [c0]G(1, c; vzc) by employing a technique
of rationalizing the generating function seen in [50] and [6]. Specifically, if we perform the
substitution

v 	→ 2q

q2 + 1
(130)

then √
1 − v2 	→ 1 − q2

1 + q2
, 0 � q � 1 (131)

and so the conjectured generating function [c0]G(1, c; vzc) becomes

[c0]G

(
1, c; 2q

q2 + 1
zc

)
= 1 + q2. (132)

Thus, if our computation for [c0]G(1, c; (2q/q2 + 1)zc) is correct, our truncated series
expansion should stabilize to 1 + q2 irrespective of how many correction terms (with respect
to v before our substitution) we include. Indeed, this is precisely what we observe. Therefore,
overall, setting the auxiliary variable v = 1 in (129), we conclude that

y0 ≡ [c0]G(1, c; zc) = 2. (133)

Next, finding y1, we first look at the truncated series [c−1]G(1, c; vzc(c)) where

[c−1]G(1, c; vzc) = −
(

v2

8
+ v4

16
+ 5v6

128
+ 7v8

256
+ 21v10

1024
+ 33v12

2048

)
+ O(v12). (134)

In this instance, we cannot directly guess the general form of the coefficients by inspection.
However, if we make substitution (130) we find

[c−1]G

(
1, c; 2q

q2 + 1
zc

)
= −q2

2
+ O(q12), (135)

which once again suggests that our coefficients follow a modified Catalan sequence. Thus,
setting q = 1 (and thus v = 1) in (135), we can conclude that

y1 ≡ [c−1]G(1, c; zc) = −1

2
. (136)

As far as we have observed, we are able to repeat this process for subsequent coefficients yi>1,
giving us

G(1, c; zc(c)) ∼ 2 − 1

2c
− 5

8c2
− 7

16c3
− 29

128c4
− 5

256c5
, c → ∞, (137)

where our truncated expansion contains the first six dominant terms.
We are now in a position to improve upon the asymptotics of γ (c). By substituting (125),

(137) along with the ansatz

a = γ (c) ∼ 2 + x1

c
+ x2

c2
+ . . . + x5

c5
, xi ∈ R, (138)

into the asymptotic expansion of (122) Gb (a, c; zc) = 0, our aim is to equate coefficients in c
to zero and solve for each xi. For instance, we have

[c−2]Gb (a, c; zc) = 1
4 (2x1 + 1) = 0, (139)
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c

(a )

a

c

(b)

Figure 11. Numerical (solid line) against asymptotic (dashed line) estimates of the
critical boundaries (a) γ (c) and (b) α(a) respectively. Note, that both the origin and
axis scales differ between the two figures.

and thus x1 = −1/2. By repeating this process and incrementally eliminating coefficients,
overall we find

γ (c) ∼ 2 − 1

2c
+ 3

8c2
− 3

16c3
+ 51

128c4
− 65

256c5
, c → ∞. (140)

Finding the asymptotic behaviour for the boundary α(a) follows the exact some procedure
as for γ (c). However, as seen in [12], in this instance one can use the series solution of G(a, 1; z)
to explicitly calculate the coefficients of the asymptotic expansion G(a, 1; za(a)), giving us

G(a, 1; za) ∼ 2 − 2

a
+ 1

a3
+ 5

4a4
+ 15

16a5
, a → ∞. (141)

Thus, using expansions of both G(a, 1; za) and G(1, c; za), we find

α(a) ∼
√

5 − 1 +
(

5 − 11√
5

)
1

a
+

(
−39 + 437

5
√

5

)
1

a2
+

(
673

2
− 37611

50
√

5

)
1

a3

+
(

−24 861

8
+ 1389 823

200
√

5

)
1

a4
+

(
961 077

32
− 1343 139 703

20 000
√

5

)
1

a5
, a → ∞.

(142)

Note, that our improved asymptotics of both γ (c) and α(a) correspond closely to our numerical
estimates of the boundaries for large c and a as seen in figures 11(a) and (b) respectively.

5.6. Physical models

In section 2 we described our model combinatorially by associating weights a and c with the
different types of interactions in our model. Let us now translate our findings into the more
physical language of energies and temperature. We first define energies associated with visits
to the surface −εa and contacts shared between the polymers −εc so that

a ≡ eεakB/T and c ≡ eεckB/T (143)

where T is the temperature and kb is Boltzmann’s constant. If both energies are positive (that
is, εa, εc < 0 and so a, c < 1) so that the interactions are repulsive the system will stay in the
free phase for all temperatures. If either one of the energies is negative so that the interaction
is attractive there will be a single phase transition on lowering the temperature; an adsorption
transition if εa > 0 and alternatively a zipping transition if εc > 0.
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Let us now consider a family of models where the ratio of the energies is held fixed: we
define

r = εc

εa
(144)

in a similar approach featured in [12] and let us examine εa, εc > 0 so that both interactions
are attractive and 0 < r < ∞. At high temperatures the system is in the free phase. At very
low temperatures where both a and c are large the system is in the adsorbed-zipped phase.
The intermediate behaviour of the system depends on the size of r. There is a special value of
r we call r� defined via

r� ≡ log 2

log 4/3
≈ 2.4092. (145)

For 0 < r < r� there are two second-order phase transitions on lowering the temperature;
firstly a zipping transition from the free to the zipped phase and then another second-order
adsorption transition at a lower temperature occurs to the adsorbed-zipped phase. Conversely,
for r > r� there are two second-order phase transitions on lowering the temperature; firstly
an adsorption transition from the free to the adsorbed phase and again another second-order
zipping transition at a lower temperature occurs to the adsorbed-zipped phase. When r = r�

precisely there is only one second-order pause transition on lowering the temperature directly
from the high temperature free phase to the low temperature adsorbed-zipped phase.

6. Conclusion

We have solved exactly a model of two interacting friendly directed walks near an attractive
surface, as a means of simultaneously capturing the effects of DNA denaturation and polymer
adsorption. By means of the obstinate kernel method, we established two distinct systems
of functional equations that correspond to the two auxiliary (catalytic) variables that were
introduced within our model. Ultimately, this allowed us to express the full generating function
G(a, c; z) in terms of the two simpler generating functions G(a, 1; z) and G(1, c; z) whose
underlying models ignore either shared or surface contacts respectively. We are not aware of
a similar decomposition in the literature. Thus, we consider our approach an extension of the
traditional obstinate kernel method.

Our decomposition for G(a, c; z) highlighted that the dominant singularity structure of
the generating function and thus phases of the system for the full model are strongly influenced
by the two simpler variants. Specifically, we found free, adsorbed and zipped phases which
correspond to the dominant singularity behaviours of G(a, 1; z) and G(1, c; z); while the full
model further introduces an additional adsorbed-zipped phase that arises from the smallest
positive pole in our expression for G(a, c; z) in terms of two simpler generating functions.
We found that all four phases coincide when a = 2, c = 4/3, with G(2, 4/3; 1/4) = 3
where the radius of convergence of the generating function when a = 2, c = 4/3 is z = 1/4.
We have described the phase regions of each of the phases: we have established the exact
region of the free phase, while the adsorbed to adsorbed-zipped boundary located at α(a)

and zipped to adsorbed-zipped boundary located at γ (c) were estimated and bounds on the
location of these boundaries established. Low-temperature approximation arguments were
employed to show that α(a) ∼ √

5 − 1 as a → ∞, while γ (c) ∼ 2 as c → ∞. We showed
that all observed phase transitions (including across the α(a) and γ (c) boundaries) were
second-order.
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Appendix. G(1, c): differential equation and recurrence

A.1. G(1, c): linear recurrence

The following is the explicit linear homogeneous recurrence (77) satisfied by the even
coefficients Zn ≡ Zn(1, c) of the generating function G(1, c; z). Note that Zn = 0 for n
odd as we are counting paired walks that begin and end on the surface.

16c8(−6 + 7c)(−4 + n)(−2 + n)n(1 + n)(3 + n)Zn

− c6(−2 + n)n(−67 776 + 144 672c − 91 872c2 + 14 784c3

− 42 560n + 90 032cn − 57 168c2n + 9688c3n

− 8768n2 + 19 552cn2 − 13 980c2n2 + 3206c3n2

− 704n3 + 1872cn3 − 1734c2n3 + 567c3n3)Zn+2

+ (−1 + c)c4n(6 + n)(−33 344 − 45 888c + 180 384c2

− 114 880c3 + 12 992c4 + 16 640n − 127 216cn

+ 212 920c2n − 118 628c3n + 16 464c4n + 8768n2 − 43 392cn2

+ 63 900c2n2 − 34 388c3n2 + 5194c4n2 + 1024n3

− 4304cn3 + 5852c2n3 − 3049c3n3 + 483c4n3)Zn+4

− (−1 + c)2c2(6 + n)(8 + n)(43 200 − 136 800c + 79 200c2

+ 64 800c3 − 50 400c4 + 19 520n − 62 320cn

+ 27 288c2n + 50 464c3n − 35 668c4n + 1176c5n + 576n2

− 4512cn2 + 156c2n2 + 10 542c3n2 − 6970c4n2 + 364c5n2

−320n3 + 496cn3 − 480c2n3 + 701c3n3 − 414c4n3 + 28c5n3)Zn+6

− (−1 + c)3(6 + n)(8 + n)(10 + n)

× (3360 − 3360c − 480c2 − 480c3 − 720c4 + 1440c5 + 1152n

− 1152cn − 732c2n + 522c3n − 194c4n + 304c5n + 96n2

− 96cn2 − 84c2n2 + 75c3n2 − 15c4n2 + 16c5n2)Zn+8

+ 2(−1 + c)4(−3 + 2c2)(6 + n)(8 + n)(10 + n)2(12 + n)Zn+10 = 0. (A.1)

A.2. G(1, c): leading coefficient of the differential equation

The following is the leading polynomial coefficient of the linear homogeneous differential
equation (55) satisfied by the generating function G(1, c; z).

z5(−1 + 4z)(1 + 4z)(1 − c + 2cz − 2c2z + c2z2)2(1 − c − 2cz + 2c2z + c2z2)2

× (−560 + 4480c − 15 820c2 + 32 340c3 − 42 140c4 + 36 260c5
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− 20 580c6 + 7420c7 − 1540c8 + 140c9 − 4200z2 + 40 040cz2

− 160 114c2z2 + 345 440c3z2 − 414 018c4z2

+ 207 596c5z2 + 128 868c6z2 − 296 520c7z2 + 229 292c8z2 − 96 072c9z2

+ 21 934c10z2 − 2328c11z2 + 94c12z2 − 12c13z2 + 8400cz4

− 61 260c2z4 + 155 932c3z4 − 81 895c4z4 − 389 563c5z4 + 913 048c6z4

− 798 289c7z4 + 106 647c8z4 + 385 054c9z4 − 355 360c10z4 + 144 267c11z4

− 31 086c12z4 + 5151c13z4 − 1214c14z4 + 168c15z4 − 3528c2z6

+ 25 892c3z6 − 65 610c4z6 + 113 279c5z6 − 452 377c6z6 + 1604 730c7z6

− 3132 720c8z6 + 3491 487c9z6 − 2261 166c10z6 + 815 117c11z6

− 153 244c12z6 + 25 566c13z6 − 7909c14z6 + 105c15z6 + 378c16z6 − 952c4z8

+ 23 928c5z8 − 326 754c6z8 + 1729 550c7z8 − 4451 154c8z8 + 6199 103c9z8

− 4695 975c10z8 + 1694 292c11z8 − 128 480c12z8 − 26 317c13z8 − 15 393c14z8

− 6636c15z8 + 4788c16z8 − 15 056c6z10 + 390 272c7z10 − 2033 138c8z10

+ 4222 649c9z10 − 3643 316c10z10 + 306 799c11z10 + 1382 539c12z10

− 613 766c13z10 + 9191c14z10 − 36 666c15z10 + 30 492c16z10

− 177 136c8z12 + 805 704c9z12 − 922 558c10z12 − 631 258c11z12

+ 1751 964c12z12 − 764 416c13z12 − 88 058c14z12 − 68 742c15z12

+ 94 500c16z12 + 11 928c10z14 − 153 124c11z14 + 393 492c12z14

− 207 968c13z14 − 142 020c14z14 + 6132c15z14 + 91 728c16z14

+ 5544c12z16 − 8976c13z16 − 14 916c14z16 + 14 784c15z16)2. (A.2)
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