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Abstract
We revisit an integrable lattice model of polymer collapse using numerical
simulations. This model was first studied by Blöte and Nienhuis (1989
J. Phys. A: Math. Gen. 22 1415) and it describes polymers with some
attraction, providing thus a model for the polymer collapse transition. At a
particular set of Boltzmann weights the model is integrable and the exponents
ν = 12/23 ≈ 0.522 and γ = 53/46 ≈ 1.152 have been computed via
identification of the scaling dimensions xt = 1/12 and xh = −5/48. We directly
investigate the polymer scaling exponents via Monte Carlo simulations using
the pruned-enriched Rosenbluth method algorithm. By simulating this polymer
model for walks up to length 4096 we find ν = 0.576(6) and γ = 1.045(5),
which are clearly different from the predicted values. Our estimate for the
exponent ν is compatible with the known θ -point value of 4/7 and in agreement
with very recent numerical evaluation by Foster and Pinettes (2012 J. Phys. A:
Math. Theor. 45 505003).

PACS numbers: 05.40.−a, 05.50.+q, 05.10.Ln

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of the critical properties of lattice polymers, and thus of O(n) models when we
let n → 0, in two dimensions has been ongoing over decades theoretically and numerically.
Nienhuis, in 1982 [2], considered a model of non-intersecting loops on the hexagonal lattice
which allowed him to compute the critical exponents for free self-avoiding walks (SAWs)
(ν = 3/4, γ = 43/32), which model dilute polymers, and for dense polymers (ν = 1/2,
γ = 19/16). In 1987 Duplantier and Saleur [3] were able to model bond interactions
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introducing vacancies on the same lattice, obtaining a full set of critical exponents for the
polymer collapse transition in the interacting self-avoiding walk (ISAW) model. This collapse
transition, a tri-critical point, goes under the name of ‘θ -point’ and has critical exponents
ν = 4/7 and γ = 8/7. There was debate at the time over the surface exponents which was
resolved by Vanderzande et al [4] and Stella et al [5] on the hexagonal lattice and on the square
lattice by Foster et al [6].

In the quest for a solvable O(n) model on the square lattice, Blöte and Nienhuis in 1989
[7] considered a lattice model (related to the Izergin–Korepin vertex model) which includes
weights for site-collisions and straight segments (stiffness). For this model five critical branches
are exactly known [7–10]. In one of these branches (named ‘branch 0’ in [7]) straight segments
are completely suppressed and it can be shown that in this case the model maps to the ISAW
model on the Manhattan lattice for which the conjectured exponents are ν = 4/7, γ = 6/7
[11–13]. Two other branches correspond to dense and dilute polymers as obtained by Nienhuis
in [2], and the two remaining branches are, respectively, associated with a combination of Ising-
like and O(n) critical behaviour and with a new tri-critical point. This other tri-critical point,
which we shall refer as the Blöte–Nienhuis (BN)-point, is another candidate for describing a
collapsing polymer and has exponents ν = 12/23 and γ = 53/46 [10]. The configurations
associated with this particular O(n) model, which we shall call vertex-interacting self-avoiding
walks (VISAWs), are forbidden to cross and therefore are a subset of self-avoiding trails (SAT).
The Boltzmann weights corresponding to BN-point are known exactly and can be expressed
as algebraic numbers.

Foster and Pinettes [14] have studied the semi-flexible VISAW at this special BN-point,
and have also studied the VISAW model without stiffness, using the corner transfer matrix
renormalization group method. Some agreement and some discrepancy with the scaling
dimensions proposed [7–10] was found in [14] and a first order nature to the transition was
conjectured. Very recently Foster and Pinettes [1] have used transfer matrices and the density
matrix renormalization group method (DMRG) to consider the bulk and surface exponents of
these models. They have found values of the exponent ν much closer to 4/7 than 12/23. In
this paper we study by means of Monte Carlo simulation the semi-flexible VISAW polymer
model precisely at the BN-point. We find estimates for the exponents, and hence the scaling
dimensions, that are in harmony with those found by Foster and Pinettes [1] and at variance
with those predicted by Warnaar et al [10].

2. Semi-flexible VISAW

The semi-flexible VISAW model can be defined as follows. SATs, or simply trails, are lattice
paths that can be formed such that they never visit the same bond more than once. Such paths
can generally visit the same site of the lattice either by a collision, where the trail touches itself,
or via a crossing, where two straight segments of the path cross over one another. Consider the
subset of bond-avoiding lattice paths (trails) on the square lattice, Vn, where no crossings are
allowed. Given such a restricted trail ψn ∈ Vn, we associate an energy −εt every time the path
visits the same site more than once, which it can only do by colliding with itself; see figure 1.
Additionally, we define a straight segment of the trail by two consecutive parallel edges, and
we associate an energy −εs to each straight segment of the trail, modelling the stiffness of the
polymer chain.

For each configuration ψn ∈ Vn we count the number m(ψn) of doubly-visited sites
and s(ψn) of straight segments; see figure 1. Hence we associate with each configuration a
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τ

p

Figure 1. An example of a semi-flexible VISAW configuration with three (m = 3) collisions
associated with a Boltzmann weight τ and five (s = 5) straight segments, each associated with a
Boltzmann weight p.

Boltzmann weight τm(ψn ) ps(ψn ) where τ = exp(βεt ), p = exp(βεs), and β is the inverse
temperature 1/kBT . The partition function of the model is given by

Zn(τ, p) =
∑

ψn∈Vn

τm(ψn) ps(ψn ). (2.1)

The finite-length reduced free energy is

κn(T ) = 1

n
log Zn (2.2)

and the thermodynamic limit is obtained by taking the limit of large n, i.e.,

κ(T ) = lim
n→∞ κn(T ). (2.3)

It is expected that there is a collapse phase transition at a temperature Tc characterized by a
non-analyticity in κ(T ). Equivalently, one can think of varying τ at fixed p so that there is a
collapse at some value of τ = τc(p).

The probability of a configuration ψn is then

p(ψn; τ, p) = τm(ψn) ps(ψn )

Zn(τ, p)
, (2.4)

and the average of any quantity Q over the ensemble set of path Vn is given generically by

〈Q〉n(τ, p) =
∑

ψn∈Vn

Q(ψn) p(ψn; τ, p). (2.5)

In this paper we are interested in the following quantities. We calculate three measures of
the size of the polymer,

〈
R2

e

〉
n,

〈
R2

m

〉
n and

〈
R2

g

〉
n, defined as follows. We specify any n-step path

ψn on a lattice by a sequence r0, r1, . . . , rn of vector positions of the vertices of that path.
Firstly, we are interested in the average-square end-to-end distance〈

R2
e

〉
n = 〈rn · rn〉, (2.6)

secondly, the ensemble average of the mean-square distance of a monomer from the endpoints〈
R2

m

〉
n = 1

n + 1

n∑
i=0

〈ri · ri〉, (2.7)

and defining the average centre-of-mass as〈
R2

c

〉
n

= 1

(n + 1)2

n∑
i=0

n∑
j=0

〈ri · r j〉, (2.8)

we, thirdly, are interested in the average radius-of-gyration〈
R2

g

〉
n = 〈

R2
m

〉
n − 〈

R2
c

〉
n. (2.9)

In the above formulae we use r0 ≡ 0.
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2.1. Scaling

The partition function at, and above, the collapse temperature is believed to scale as

Zn ∼ Dμnnγ−1 (2.10)

where μ is known as the connective ‘constant’ and is related to the thermodynamic free
energy via

μ = eκ(T ). (2.11)

The constant D is also temperature dependent but γ is expected to be universal, depending
only on the temperature in as much as its value is above, or at, the collapse temperature. In
two dimensions it is well established [2] that for T > Tc (equivalently τ < τc(p)) we have
γ = 43/32.

The collapse transition can also be characterized via a change in the scaling of the size of
the polymer with temperature. The three measures of the size of the polymer defined above
are expected to scale as

R2
n ∼ CRn2ν, (2.12)

where the amplitude CR is non-universal and temperature dependent, while ν is expected to
be universal, depending only on the temperature in as much as its value is above, at, or below,
the collapse point. In two dimensions it is also established [2] that ν = 3/4 for T > Tc.

Duplantier and Saleur [3] identified a tri-critical point, known as the θ -point, which is
expected to describe the collapse of a polymer in two dimensions. This point has thermal and
magnetic scaling dimensions xt = 1/4, xh = 0 and consequently polymer exponents ν = 4/7
and γ = 8/7. On the other hand, Warnaar et al [10] predicted ν = 12/23 and γ = 53/46 for
the semi-flexible VISAW model at its collapse point.

2.2. Amplitudes

One can also usefully define the finite-length amplitude ratios

An =
〈
R2

g

〉
n〈

R2
e

〉
n

and Bn =
〈
R2

m

〉
n〈

R2
e

〉
n

, (2.13)

since these approach universal values [15]

An → A∞ = CRg

CRe

and Bn → B∞ = CRm

CRe

(2.14)

in the limit n → ∞. For collapsing polymers, the limiting values should depend only on
dimension and whether the temperature is above or at the collapse transition point.

For free SAWs (which should include the VISAW model at high temperatures) it was
predicted [16, 17] that

λA∞ − 2B∞ + 1
2 = 0. (2.15)

In the derivation [16] of this invariant the factor multiplying A∞ was given by

λ = 2 + yt

yh
, (2.16)

where yt = 4/3 and yh = 91/48 are the thermal and magnetic renormalization group
eigenvalues, respectively, of the dilute O(0) model. These eigenvalues are related to the
conformal scaling dimensions via y = 2 − x. Hence

λ(xt, xh) = 2 + 2 − xt

2 − xh
. (2.17)
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The identity (2.15) implies that one can estimate this function of the scaling dimensions as

λ(xt, xh) = 4B∞ − 1

2A∞
, (2.18)

from estimates of A∞ and B∞. This was done for various collapse models in [18]. Hence, if
we have a conjectured value of one of the scaling dimensions we can estimate the other from
an estimate of λ.

3. Integrable Blöte–Nienhuis Point

The special multi-critical point of the O(n) model that maps to the semi-flexible VISAW and
allows for the calculation of the scaling dimensions via the Bethe Ansatz is given by special
values of the parameters in the grand canonical partition function

G(K; τ, p) =
∞∑

n=0

KnZn(τ, p). (3.1)

The location of this point is reported exactly in [7]

w = K2
bnτbn = {2 − [1 − 2 sin(θ/2)][1 + 2 sin(θ/2)]2}−1

Kbn = −4w sin(θ/2) cos(π/4 − θ/4)

pbnKbn = w[1 + 2 sin(θ/2)]

θ = −π/4 (branch 3 in [7]).

Alternatively, this can be expressed in explicit algebraic numbers or evaluated numerically as
Kbn = 0.446 933 . . ., pbn = 0.275 899 . . ., and τbn = 2.630 986 . . ..

From the value of Kbn we can give the conjectured value of the connective constant μ

(2.11) in the canonical model (2.1) at fixed Boltzmann weights (τ, p) = (τbn, pbn) as

μ(τbn, pbn) = 1

Kbn
=

(√
2

2
+

√
2

2

√
2 −

√
2 +

√
2 −

√
2

) √
2 −

√
2 −

√
2

= 2.237 469 94 . . . . (3.2)

The set of scaling dimensions evaluated in [10] at this (multi-)critical point are

x� = �2

16
− 1

6
for � ∈ N. (3.3)

The thermal xt and magnetic xh scaling dimensions were identified [10] as

xh = x1 = − 5
48 = −0.104 16 . . . and xt = x2 = 1

12 = 0.083 33 . . . . (3.4)

It can be seen that these scaling dimensions are not those of unweighted SAWs; this is
compatible with the hypothesis that they are those of a collapse multi-critical point.

The exponents ν and γ were then calculated [10] in the standard way as

ν = 1

2 − xt
= 12

23
= 0.521 74 . . . (3.5)

γ = 2ν(1 − xh) = 53

46
= 1.152 17 . . . . (3.6)
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g(

R
2 n)

log(n)

Estimates of ν
Re: ν = 0.577

ν = 0.576
Rg: ν = 0.576

ν = 0.575
Rm: ν = 0.575

ν = 0.574

Figure 2. A double-logarithmic plot of three different measures R2
n of the polymer size, the mean-

square end-to-end distance 〈R2
e〉n (top), the square of the radius of gyration 〈R2

g〉n (bottom), and
the mean-square distance of a monomer to its end points 〈R2

m〉n (middle) versus the length n of the
path. The data from different simulations up to lengths 1024 (blue circles), 2048 (green triangles),
and 4096 (red line) clearly overlap. The exponent estimates for ν shown are derived from fitting
straight lines through lengths 1024 to 2048 and 2048 to 4096, respectively.

4. Simulation results

We simulated the model (2.1) at the fixed values of p = pbn and τ = τbn using the
pruned-enriched Rosenbluth method (PERM) [19]. This method is based on the traditional
Rosenbluth and Rosenbluth sampling method where biased samples of polymer configurations
are generated along with a weight factor such that the weighted average over all polymer
configurations will converge towards the correct Boltzmann average. PERM improves the
efficiency of this algorithm by making multiple copies of partially grown chains that have a
large statistical weight (enriching) and discarding configurations with small statistical weight
(pruning). We ran three simulations with maximal length Nmax = 1024, 2048 and 4096,
growing S � 107 independent walks each and collecting from 8.7 × 107 to 1.5 × 108 samples
at each maximal length. The number of samples adjusted by the number of their independent
growth steps is between 2.1 × 105 and 4.8 × 105 ‘effective samples’.

In figure 2 we plot on a double-logarithmic scale the three different measures R2
n of the

polymer size. From various fits we consistently find estimates of ν near 4/7 rather than 12/23.
Our best estimate is

ν = 0.576(6). (4.1)

This leads to an estimate of the thermal scaling dimension as

xt = 0.26(2). (4.2)

To obtain an estimate of γ we looked at the scaling of the canonical partition function
(2.10). We first measured μ by a simple linear fit obtaining 2.2375(1), and observing that our
value matches the value obtained from the BN-model, we then assumed μ = μbn. We hence
plotted, in figure 3, on a double-logarithmic scale the normalized partition function Zn/μ

n
bn

versus the length n of the path.

6



J. Phys. A: Math. Theor. 46 (2013) 265003 A Bedini et al

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

lo
g(

Z
n)

 -
n 

lo
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n = 4096
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Figure 3. A double-logarithmic plot of the normalized partition function Zn/μ
n versus the length

n of the path. The difference between data from different simulations up to lengths 1024, 2048, and
4096 indicate the accuracy achieved. The exponent estimate for γ shown is derived from fitting
straight lines through lengths 256 to 1024 to data from the best-converged simulation.

This allows us to estimate γ from straight line fits which we give as

γ = 1.045(5). (4.3)

Interestingly, this value is different from both the θ -point value of 8/7 = 1.142 28 . . . and
the BN-point 53/46 = 1.1521 . . .. Using γ = 2ν(1 − xh) and our estimates of γ and ν in
equations (4.3) and (4.1) gives us the estimate

xh = 0.093(13). (4.4)

We point out that this estimate is positive while the conjectured value above in equation (3.4)
is not.

To obtain an independent estimate of xh we attempted to estimate the universal
quantity λ described above. In figure 4 we plot the finite-size amplitude ratio combination
λn = (4Bn − 1)/(2An) versus n−4/7, which is the natural scale given the results above for the
size measures. We find an estimate of this universal value as

λ = 2.93(3). (4.5)

Unfortunately, the error estimate here is relatively larger than that estimated from the partition
function analysis and we estimated xh = 0.12(4), which encompasses our more precise
estimate in (4.4).

For the sake of completeness we have also found estimates of the universal amplitude
ratios A and B by fitting against a correction of n−4/7, which provide consistent straight fit
extrapolations

A = 0.1534(10) and B = 0.475(5). (4.6)

These values of A and B are different from the values for any of the three collapse models
considered in [18].
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Figure 4. A plot of the finite-size amplitude ratio combination λn versus n−4/7, together with a
straight-line fit. The difference between data from different simulations up to lengths 1024, 2048,
and 4096 indicate the accuracy achieved. The extrapolated value for λ shown is derived from fitting
straight lines through lengths 256 to 1024 to data from the best-converged simulation.

5. Conclusions

We have simulated the special point, known as the BN (Blöte–Nienhuis) point, of the semi-
flexible VISAW model of polymer collapse, which is associated with an integrable branch of
the O(n) loop model [7]. The exponent estimates we find, ν = 0.576(6) and γ = 1.045(5),
are not in accord with those previously found from the O(n) loop model. Our estimate of ν is
compatible with the value accepted for the θ -point, which is 4/7 = 0.5714 . . ., and in good
agreement with the results of Foster and Pinettes [1] who have used transfer matrices and
DMRG. However, our estimate of γ is not comparable to any known value. We have found
estimates of γ via two different methods: one method we used involved the direct estimation
of the exponent from the partition function, and the other used results from conformal field
theory and universal amplitude ratios of different size measures of the polymer; our estimates
from these two methods broadly agree.

Our results seem to suggest that the BN point is θ like, at least with respect to its size
scaling exponent with ν = 4/7. This may seem at odds with our recent claim [20] that the
VISAWs, which do not weight straight segments and have p = 1 in the notation of this
paper, have a collapse transition in the same universality class as the interacting self-avoiding
trails (ISAT) [21]. This was based, however, upon analysis of the specific heat. Of course, the
two claims are not in direct contradiction but they lie uncomfortably together. In particular,
it leaves open the question whether the conclusion that the ISAT universality class extends
down to, and importantly includes, the VISAW line, where the weight for crossings segments
(τx in [20]) vanishes. On the other hand, if both claims are true, there must be a change
of universality class on varying p. It should be emphasized however that an estimate of the
exponent ν for collapsing VISAWs is not available at the moment, since the lack of knowledge
of the exact location of the transition for p = 1 makes obtaining good estimates a significantly
harder task.
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Clearly, something subtle is occurring in this system if our numerical analysis is accurate.
Of course, large corrections to scaling may be at work here. In any case, further theoretical
work is needed to tease out this issue.
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