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Abstract
Self-avoiding walks and self-avoiding trails, two models of a polymer coil
in dilute solution, have been shown to be governed by the same universality
class. On the other hand, self-avoiding walks interacting via nearest-neighbour
contacts (ISAW) and self-avoiding trails interacting via multiply visited sites
(ISAT) are two models of the coil-globule, or collapse transition of a polymer
in dilute solution. On the square lattice it has been established numerically
that the collapse transition of each model lies in a different universality
class. The models differ in two substantial ways. They differ in the types
of subsets of random walk configurations utilized (site self-avoidance versus
bond self-avoidance) and in the type of attractive interaction. It is therefore of
some interest to consider self-avoiding trails interacting via nearest-neighbour
attraction (INNSAT) in order to ascertain the source of the difference in the
collapse universality class. Using the flatPERM algorithm, we have performed
computer simulations of this model. We present numerical evidence that the
singularity in the free energy of INNSAT at the collapse transition has a similar
exponent to that of the ISAW model rather than the ISAT model. This would
indicate that the type of interaction used in ISAW and ISAT is the source of the
difference in the universality class.

PACS numbers: 05.40.−a, 05.50.+q, 05.10.Ln

(Some figures may appear in colour only in the online journal)

1. Introduction

The collapse transition of a polymer in a dilute solution has been a focus of study in lattice
statistical mechanics for decades [1, 2]. Any lattice model of a collapsing polymer has two
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key ingredients: an excluded volume effect expressing the impenetrability of monomers, and a
short-range attractive force, which mimics the complex monomer–solvent interaction. When
the effects of the excluded volume and the short-range attraction balance each other, the
polymer undergoes a collapse transition which separates two distinct phases: a swollen and a
collapsed phase.

The canonical lattice model of the configurations of a polymer in solution has been the
model of self-avoiding walks (SAW) where a random walk on a lattice is not allowed to
visit a lattice site more than once. SAW display the desired excluded volume effect and are
swollen in size relative to unrestricted random walks at the same length. A common way to
introduce a short-range interaction is to assign a negative energy to each non-consecutive pair
of monomers lying on neighbouring lattice sites, modelling an effective attractive force. This
is the interacting self-avoiding walk (ISAW) model, which is the standard lattice model of
polymer collapse using SAW.

The properties of lattice polymers are also related to those of magnetic systems near their
critical point [3]. More precisely, lattice polymers are related to magnets with O(n) symmetry
in the formal limit of zero components (n → 0). This relation is of great importance, since it
allows the application of the methods of statistical field theory to the study of polymer models,
and the collapse transition can be understood as the tri-critical point of such systems [1, 4, 5].

The study of the critical properties of lattice polymers, and thus of O(n) models when we
let n → 0, in two dimensions has been ongoing over decades theoretically and numerically.
Nienhuis in 1982 [6] was able to compute the critical exponents of free SAW by considering
a model of non-intersecting loops on the hexagonal lattice, and in 1987 Duplantier and
Saleur [7] were able to model the bond interaction introducing vacancies on the same lattice,
obtaining a full set of critical exponents for the polymer collapse transition in the ISAW model.
Their conjectured values for the exponents have been subsequently confirmed numerically by
Prellberg and Owczarek in 1994 [8]. We will refer to (the universality class of) this critical
point as the ‘θ -point’.

Introducing attractive interactions between bonds opens the doors to more complex
possibilities. In the quest for a solvable O(n) model on the square lattice, Blöte and Nienhuis
in 1989 [9] considered a lattice model, which includes energies for site-collisions and straight
segments. For this model five critical branches are exactly known [9–12]. One of these branches
(named ‘branch 0’ in [9]) is similar to the θ -point previously found by Duplantier and Saleur
[7] (for this branch Batchelor [13] obtained the exponents ν = 4/7, γ = 6/7), and two
branches correspond to dense and dilute (SAW) polymers. The two remaining branches are,
respectively, associated with a combination of Ising-like and O(n) critical behaviour and with
a new tri-critical point. This new tri-critical point (with exponents ν = 12/23, γ = 53/46) is
another candidate for describing a collapsing polymer.

A different model of a collapsing model can be constructed starting from self-avoiding
trails (SATs). A SAT is a lattice walk configuration where the excluded volume is obtained
by preventing the walk from visiting the same bond, rather than the same site, more than
once. This is a slightly weaker restriction, and SAW configurations are a proper subset of SAT
configurations. The interacting version of self-avoiding trails (ISAT), customarily obtained by
giving an energy to multiple visited sites, also presents a collapse transition.

It is known that SAW and SAT share the same statistics in their high-temperature phase,
but theoretical prediction and numerical evidence [14, 15] strongly suggest that the collapse
transition of the ISAT model is in a different universality class to that of ISAW, although there
is no clear understanding of why this would be the case. An interesting possible explanation
of the ISAT collapse has been provided by Foster [16] in terms of the tri-critical point with
exponents ν = 12/23, γ = 53/46 derived from the O(n) model.
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Although they both aim to describe the same physical system, the ISAW and ISAT
models differ in both their geometrical properties and their interaction. Their different critical
behaviour could be due to either one of these two differences.

To investigate this further, we considered a mixed model where trails interact in the same
way as SAW, that is, by a nearest-neighbour interaction. We shall call this hybrid model
interacting nearest neighbour self-avoiding trails, or INNSAT. In the next section we review
the ISAW and ISAT models describing the different behaviour that they have been shown to
demonstrate. In section 3 we formally introduce the model and the quantities of interest. We
then describe our results in section 4 and summarize our conclusions in the final section.

2. ISAW and ISAT

2.1. Interacting self-avoiding walks (ISAW)

Let us recall briefly the definition and main properties of the ISAW model. Consider the
ensemble Sn of SAW of length n, that is, of all lattice paths of n steps that can be formed on the
square lattice such that they never visit the same site more than once. Given a SAW ϕn ∈ Sn,
we define a contact whenever there is a pair of sites that are neighbours on the lattice but not
consecutive on the walk. We associate an energy −εc with each contact. Denoting by mc(ϕn)

the number of contacts in ϕn, the probability of ϕn is given by

eβεcmc(ϕn)

Zn(T )
, (2.1)

and the partition function Zn(T ) is defined in the usual way as

Zn(T ) =
∑

ϕn∈Sn

eβεcmc(ϕn), (2.2)

where β is the inverse temperature 1/kBT (kB is Boltzmann’s constant). We define a Boltzmann
weight (fugacity) ωc = exp(βεc). The finite-length-reduced free energy is

κn(T ) = 1

n
log Zn(T ) (2.3)

and the thermodynamic limit is obtained by taking the limit of large n, i.e.

κ(T ) = lim
n→∞ κn(T ). (2.4)

As mentioned above, it is expected that there is a collapse phase transition at a temperature
Tθ , which is known as the θ -point, characterized by a non-analyticity in κ(T ).

The temperature Tθ also separates regions of different finite-length scaling behaviour for
fixed temperatures. Considering this finite-length scaling, for high temperatures (T > Tθ )
the excluded volume interaction is the dominant effect, and the behaviour is universally the
same as for the non-interacting SAW problem: for large n, the mean squared end-to-end
distance (or equivalently the radius of gyration) R2

n and partition function Zn are expected to
scale as

R2
n ∼ An2ν with ν > 1/2 and (2.5)

Zn ∼ Dμnnγ−1, (2.6)

respectively, where log μ = κ(T ) and the exponents ν and γ are expected to be universal.
In two dimensions it is well established [6] that ν = 3/4 and γ = 43/32 for T > Tθ . The
constants A and D are temperature dependent.
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Fixing the temperature precisely at the θ -point, T = Tθ , Duplantier and Saleur [7] found
ν = 4/7 and γ = 8/7 in two dimensions.

For low temperatures (T < Tθ ) it is accepted that the partition function is dominated
by configurations that are internally dense, though not necessarily fully dense. The partition
function should then scale differently from that at high temperatures, since a collapsed polymer
should have a well-defined surface (and associated surface free energy) [17]. One expects in
d dimensions large-n asymptotics of the form

R2
n ∼ An2/d (2.7)

and

Zn ∼ Dμnμn(d−1)/d

s nγ ′−1, (2.8)

with μs < 1. The constants A and D are temperature dependent. It is expected that the internal
density smoothly goes to zero as the temperature is raised to the θ -point.

To explore the singularity in the free energy at the collapse point further, it is useful to
consider the (reduced) internal energy and the specific heat, which are defined as

un(T ) = 〈mc〉
n

and cn(T ) =
〈
m2

c

〉 − 〈
mc

〉2
n

, (2.9)

with limits

U (T ) = lim
n→∞ un(T ) and C(T ) = lim

n→∞ cn(T ). (2.10)

When T → Tθ , the singular part of the specific heat behaves as

C(T ) ∼ B |Tθ − T |−α, (2.11)

where α < 1 for a second-order phase transition. If the transition is second order, the singular
part of the thermodynamic limit internal energy behaves as

U (T ) ∼ B |Tθ − T |1−α (2.12)

when T → Tθ , and there is a jump in the internal energy at Tθ if the transition is first order (an
effective value of α = 1).

Tri-critical scaling [18] predicts that around the critical temperature, the finite-length
scaling of the singular part of the specific-heat cn(T ) obeys the following crossover scaling
form:

cn(T ) ∼ nαφ C
(
(T − Tθ )n

φ
)
, (2.13)

when T → Tθ and n → ∞, and that the exponents α and φ are related via

2 − α = 1

φ
. (2.14)

If one considers the peak of the finite-length specific heat it will behave as

cpeak
n ∼ nαφ C

(
xmax), (2.15)

where xmax is the location of the maximum of the function C(x).
The work of Duplantier and Saleur (1987) predicts the exponents for the θ -point collapse

as

φ = φθ = 3/7 (2.16)

and
α = αθ = −1/3. (2.17)
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It is important to observe that this implies that the specific heat does not diverge at the transition
since the exponent

αθφθ = −1/7 ≈ −0.14 (2.18)

is negative. However, the peak values of the third derivative of the free energy with respect to
temperature will diverge with positive exponent

(1 + αθ )φθ = 2/7 ≈ 0.28. (2.19)

2.2. Interacting self-avoiding trails (ISAT)

The model of interacting trails on the square lattice is defined as follows. Consider the
ensemble Tn of SATs of length n, that is, of all lattice paths of n steps that can be formed on the
square lattice such that they never visit the same bond more than once. Given a SAT ψn ∈ Tn,
we associate an energy −εt with each doubly visited site. Denoting by mt (ψn) the number of
doubly visited sites in ψn, the probability of ψn is given by

eβεt mt (ψn)

ZISAT
n (T )

, (2.20)

where we define the Boltzmann weight ωt = exp(βεt ) and the partition function of the ISAT
model is given by

ZISAT
n (T ) =

∑
ψn∈Tn

ω
mt (ψn)
t . (2.21)

Previous work [14, 15] on the square lattice has shown that there is a collapse transition at
a temperature T = Tt with a strongly divergent specific heat, and the exponents have been
estimated as

φit = 0.84(3) and αit = 0.81(3) , (2.22)

arising from a scaling of the peak value of the specific heat diverging with the exponent

φitαit = 0.68(5). (2.23)

This result is a clear difference to the ISAW θ -point described above where the singularity
in the specific heat is convergent. Additionally, at T = Tt the finite-length scaling of the
end-to-end distance was found to be consistent [14] with the form

R2
n(T ) ∼ An(ln n)2 (2.24)

as n → ∞. Again, this is quite different to the exponent ν = 4/7 for the ISAW.
Another important difference is that it has been recently observed [19, 20] that the low

temperature phase is maximally dense on the triangular and square lattices. On the square
lattice this implies that if one considers the proportion of the sites on the trail that are at lattice
sites which are not doubly occupied via

pn = n − 2〈mt〉
n

, (2.25)

then it is expected that

pn → 0 as n → ∞. (2.26)
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Figure 1. An example of INNSAT configuration with mc = 6, that is, there are six nearest-
neighbour contacts illustrated via zigzag (red) lines. The trail can visit a site of the lattice twice
by ‘touching’ and by ‘crossing’ itself. The number of doubly visited sites is mt = 2. Note that
there is no contact between the second and the seventh visited site of the walk, even though these
are non-consecutive nearest-neighbour sites, as both sites are visited consecutively by a different
segment of the trail.

3. The INNSAT model

We define our interacting model of trails (INNSAT) as follows. Consider the set of bond-
avoiding paths Tn as defined in the previous section. When two sites are adjacent on the lattice
but not consecutive along the walk, so as not to be joined by any step of the walk, we again
refer to this pair of sites as a nearest-neighbour contact and we give it a weight ωc = eβεc ,
analogously to the ISAW model. In figure 1 a trail of length n = 21 with mc = 6 contacts is
illustrated.

Denoting by mc(ψn) the number of contacts in ψn, the probability of ψn is given by
eβεcmc(ψn)

Znt
n (T )

, (3.1)

where the partition function is

Znt
n (T ) =

∑
ψn∈Tn

ωmc(ψn)
c . (3.2)

The intensive reduced internal energy and specific heat are as for ISAW:

un(T ) = 〈mc〉
n

and cn(T ) =
〈
m2

c

〉 − 〈
mc

〉2
n

. (3.3)

We shall also consider the proportion of the sites on the trail that are at lattice sites which are
not doubly occupied via

pn = n − 2〈mt〉
n

, (3.4)

where mt is the number of doubly visited sites as defined above.
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We shall see there is a collapse transition at a single temperature, Tp, equivalently, fugacity
ω

p
c . If the INNSAT model behaves in the same way as the ISAW model, we would not expect

the specific heat to diverge at this collapse point, so we also need to introduce a quantity tn
proportional to the third derivative of the free energy as

tn = 〈m3
c〉 − 3〈mc〉〈m2

c〉 + 2〈mc〉3

n
. (3.5)

This quantity should have a singular part that behaves as

tn(T ) ∼ n(α+1)φ T
(
(T − Tp)n

φ
)
, (3.6)

around the collapse point, i.e. as T → Tp and n → ∞. Hence, the peaks of this quantity tn
will scale with the exponent (α + 1)φ.

4. Numerical results

We have first simulated the INNSAT model using the flatPERM algorithm [21] up to the length
n = 1000. With Sn 
 2.7 × 106 iterations, we collected 2.6 × 1010 samples at the maximum
length. Following [21], we also measured the number of samples adjusted by the number of
their independent growth steps, obtaining Seff

n 
 1.6 × 108 ‘effective samples’.
FlatPERM outputs an estimate Wn,mc of the total weight of the walks of length n at fixed

values of mc. From the total weight one can access physical quantities over a broad range of
temperatures through a simple weighted average, e.g.

〈O〉n(ω) =
∑

mc
On,mcω

mcWn,mc∑
mc

ωmcWn,mc

. (4.1)

We have begun by analysing the scaling of the specific heat by calculating the location
of its peak ω

p
n = arg maxωcn(ω) and thereby evaluating cp

n = cn(ω
p
n ). We have also found the

two peaks of tn(T ) as a function of temperature: the peak values we denote as t p,±
n .

It is clear that the specific heat peak is growing rather weakly as the length increases. As
the specific heat might converge, we obtain finite size estimates of the specific heat exponent
by considering

log2

[
cp

n − cp
n/2

cp
n/2 − cp

n/4

]
(4.2)

which should converge to αφ as n → ∞. Assuming corrections to scaling of n−3/7 as for
ISAW, we find

αntφnt = −0.15(5), (4.3)

as shown on the left-hand side of figure 2. This is consistent with a value of −1/7 ≈ −0.14
for the θ -point universality class.

Furthermore, when we analyse tn, which is proportional to the third derivative of the free
energy, we find further consistent values of exponents. This derivative has two peaks t p,±

n ,
and we obtain finite size estimates of the specific heat exponent from each of the peaks by
considering

log2

[
t p,±
n

t p,±
n/2

]
(4.4)

which should converge to (1+α)φ as n → ∞. From the plot on the right-hand side of figure 2
we estimate

(αnt + 1)φnt = 0.26(5). (4.5)
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2
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cp n

−
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/
2
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−
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/
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)]
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n−3/7
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0.40
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0.55

0.60

0.65

lo
g

2
(t

p
,±

n
/t

p
,±

n
/
2
)

positive peak
negative peak

Figure 2. Left: a plot of (4.2) designed to estimate the exponent αφ from the specific heat. Right:
a plot of (4.4) designed to estimate the exponent (1 + α)φ from the derivative of the specific heat.
The upper (green) points are values from the negative peak of tn while the lower (blue) points are
from the positive peak of tn.

There is still considerable curvature in the right-hand plot which would indicate a slightly
larger value when higher order corrections to scaling are taken in account. Once again we
conclude that the θ value of 2/7 ≈ 0.28 is consistent with our data.

We therefore conjecture that

φnt = φθ �= φit and αnt = αθ �= αit . (4.6)

Using the locations of the peaks of the specific heat and its derivative and assuming
finite-size correction of the order of n−3/7, we have estimated the location of the collapse point
as indicated in figure 3. The magnitude of the difference between the three peak positions at
finite length indicates the large corrections to scaling present in this problem at length 1000.
We estimate

ωp = 1.78(1). (4.7)

We next analysed the scaling of the end-to-end distance of the polymer. To obtain an
estimate for the exponent ν we considered a finite-size effective exponent

νest
n (ω) = 1

2
log2

[ 〈R2〉n(ω)

〈R2〉n/2(ω)

]
. (4.8)

Using the data obtained from our flatPERM simulations, we plotted this quantity against
temperature for various values of the length n, as shown in figure 4. We find that the graphs
for different values of n intersect around a particular value of the temperature. The location
of this intersection point is a good estimator of the infinite-length critical temperature ωp and
of the exponent ν at the transition. We find a region of crossing points in ω between 1.78 and
1.80 with corresponding estimates of ν between 0.57 and 0.55. While the obtained exponent
estimate range is a little below the θ point value of 4/7 ≈ 0.571, we expect that our estimate
is affected by strong corrections to scaling. For comparison, we simulated the ISAW model
and performed an identical analysis, shown in figure 5. The ISAW estimate of ν ≈ 0.56 at the
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Figure 3. A plot of the locations of the two peaks of tn(T ) and of cn(T ) against n−3/7. Extrapolation
for n → ∞ provides an estimate for the thermodynamic transition temperature ωp. The upper
(green) curve is the location of negative t p,−

n peak, the lower (red) curve is the location of positive
t p,+
n peak while the middle (blue) curve is the location of the peak cp

n of the specific heat.
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Figure 4. Estimates of the exponent ν for INNSAT from finite-size estimates (4.8) as a function
of temperature (left) and a zoom (right) on the crossing region. There are crossing points in the
region of ω between 1.78 and 1.80 giving corresponding estimates of ν between 0.57 and 0.55.
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Figure 5. Estimates of the exponent ν for ISAW from finite-size estimates (4.8) as a function of
temperature (left) and a zoom (right) on the crossing region. The crossing point is at ω ≈ 1.96 and
ν ≈ 0.56. While the estimate for ν at the crossing point is closer to the value of 4/7 than the one
obtained for INNSAT, the difference provides evidence for the presence of fairly strong corrections
to scaling.
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Figure 6. Estimate of the exponent ν from finite-size estimates (4.8) obtained from a thermal
simulation at ω = 1.78 up to the length n = 8192. This estimate is sensitive to the estimate of the
critical fugacity. A lower critical estimate would lead to a higher exponent estimate.
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

n−1/2

0.70

0.75

0.80

0.85
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0.95

1.00

p n

ω = 1.2
ω = 1.8
ω = 2.4

Figure 7. Plots of pn, the proportion of steps visiting the same site once, at a high temperature,
upper (blue) curve, and a low temperature, lower (green) curve against n−1/2. The scale n−1/2

chosen is the natural low temperature scale. In both cases the asymptotic thermodynamic value is
well away from zero. Errors are shown but are not visible at this scale.

collapse transition, while being closer to 4/7, also indicates the presence of strong corrections
to scaling.

Hence, we ran a thermal simulation at the estimated critical fugacity of 1.78 up to
n = 8192. With S = 5× 106 iterations, we obtained Sn 
 1.8× 107 samples at the maximum
length (corresponding to Seff

n 
 1.2 × 105 ‘effective samples’). Figure 6 shows a log–log plot
of the radius with respect to the size of the walk along with a linear best fit with slope 0.575. Of
course, using ω = 1.77 or ω = 1.79 gives estimates of ν that differ by 0.01 so the sensitivity
to the location of the critical point dominates the error of our estimate.

Correspondingly, if we assume that the INNSAT is in the ISAW universality class we can
use the value of ν = 4/7 to better estimate the critical fugacity in the INNSAT model as

ωp = 1.783(5). (4.9)

4.1. Low-temperature phase

There is strong evidence that the low-temperature phase of the ISAW model is a globular phase
that is not fully dense, while for interacting trails the low-temperature phase is maximally
dense. As discussed above, the trail fills the lattice asymptotically in a maximally dense phase,
and the portion of steps not involved with doubly-visited sites should tend to zero as n → ∞.
Following the analysis in [19] we measured the proportion pn of steps visiting the same site
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twice, and we plotted pn against n−1/2 at two different temperatures respectively above and
below the critical temperature, as shown in figure 7. We find that in both low-temperature and
high-temperature phases only a small portion of the visited sites is visited again. The quantity
pn stays close to 1 and, in particular, does not tend to zero in either region. This phenomenon
can be understood by noting that the nearest-neighbour interaction makes it energetically
favourable for the walk to bounce away from an already visited site rather than to visit it again.

This result implies that the low temperature phase is not fully dense, just as for the ISAW
low temperature phase. This provides a consistent picture that the collapse transition in the
INNSAT model is between high and low temperature phases similar to the ISAW, making the
conclusion that the thermodynamic transition between them is similar to the θ -point a natural
one.

5. Conclusions

We have considered a lattice model of polymer collapse in two dimensions which uses the
interaction type, nearest-neighbour contacts, of the canonical lattice model (ISAW) but the
configuration space of an alternative model (ISAT), being bond-avoiding walks, also known
as self-avoiding trails. We find that the critical behaviour of the free energy, and its derivatives
of our model (INNSAT) seem to align with the θ -point universality class of the ISAW model
rather than with that of the ISAT model, which has a rather strongly divergent specific heat
not seen in either the ISAW or INNSAT models. The end-to-end distance scaling is broadly
consistent with this conclusion, though estimates tend to be a little low. However, using the
assumption that the INNSAT and ISAW models lie in the same universality class leads to a
precise estimate of the critical fugacity as 1.783(5). Given the different universality classes
for ISAT and INNSAT it may also be of interest to consider a model based upon self-avoiding
trail configurations with both types of interactions.
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