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Abstract. The model of directed compact percolation near a damp wall is
generalized to allow for a bias in the growth of a cluster, either towards or
away from the wall. The percolation probability for clusters beginning with seed
width m, any distance from the wall, is derived exactly by solving the associated
recurrences. It is found that the general biased case near a damp wall leads to a
critical exponent β = 1, in line with the dry biased case, which differs from the
unbiased damp/dry exponent β = 2.
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1. Introduction

Lattice models of percolation have continued to play a central role in our understanding of
the integrability and critical behaviour of statistical mechanical systems [1]–[3]. They also
model a vast array of physical systems [4]–[7]. One of the integrable models of percolation
is that of directed compact percolation. The directed compact percolation model, first
introduced by Domany and Kinzel [8], has been modified in several ways to investigate
this exactly solvable model. Essam [9] generalized the bulk case to allow for a bias in the
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Table 1. The rules of the growth process for directed compact percolation near
a damp wall, with bias.

(a) Pr(C occupied) = 1 (b) Pr(C occupied) = pu (c) Pr(C occupied) = pd

(d) Pr(C occupied) = 0 (e) Pr(C occupied) = pw (f) Pr(C occupied) = 0

growth of clusters, which did not change the critical behaviour of the cluster properties.
Another modification that has been considered in several different cases is the addition of
a wall to restrict the lateral growth of a cluster. A wet wall causes the cluster to remain
attached to the wall, and was shown in [10] to have the same critical behaviour as the bulk
case. This model naturally exhibits a pre-determined biased growth, since the attachment
to the wall means there is a strong bias towards the wall, with the cluster moving towards
the wall with certainty, leaving the probability away from the wall as the only free variable.

The addition of a dry or non-conducting wall, considered in [11]–[14], produced
different critical exponents from the wet and bulk cases. However, it was found in [10]
that when a bias is introduced, either towards or away from the dry wall, the exponents
revert to the bulk/wet values; so it is only the unbiased dry case which exhibits different
critical behaviour. Due to the differences between the wet and dry wall models, it was of
interest to consider a damp wall which interpolates between the two. The unbiased case
of the damp wall model has been considered in [15]–[18], and was found to produce the
same critical behaviour as the unbiased dry wall model. This paper extends the work in
the damp case to consider biased growth, building on the equivalent work which has been
done for a dry wall, and it is found that again it is only the unbiased case which exhibits
different critical behaviour from the bulk, with any bias resulting in the bulk/wet critical
exponents.

Thus we adapt the model of directed compact percolation near a damp wall [15] to
introduce a bias in the growth of clusters, as was done for the dry wall in [10]. The model is
defined on a directed square lattice, the sites of which are the points in the t, x plane with
integer coordinates such that t ≥ 0, x ≥ 1 and t+x is even. The damp wall is represented
by the sites at x = 1, where each wall site is ‘wet’ (occupied) with probability pw and ‘dry’
(unoccupied) with probability qw = 1−pw. We begin with an initial seed of m contiguous
sites at t = 0, the midpoint of which is located y units above the wall. The seed is placed
with certainty, and a cluster is grown from this one column at a time, according to the
rules of directed compact percolation as illustrated in table 1.
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Figure 1. An example cluster, grown from a seed of width m = 2 with
midpoint located y = 4 units from the wall. The probability of this cluster
being grown from the seed can be calculated a column at a time, as
(1)(qupd)(quqd)(qupd)(pupd)(qupw)(pu)(quqw)(qupd)(quqw) = p2

uq
7
up

4
dqdpwq

2
w.

To ensure compactness, the site (t, x) becomes wet with certainty if the sites
(t − 1, x ± 1) are both wet. If only (t − 1, x − 1) is wet then the site (t, x) becomes
wet with probability pu, corresponding to cluster growth in the ‘upward’ direction, and
hence remains dry with probability qu = 1 − pu. Similarly if only (t − 1, x + 1) is wet
then the site (t, x) becomes wet with probability pd, corresponding to cluster growth in
the ‘downward’ direction, and remains dry with probability qd = 1− pd. Where the sites
(t − 1, x ± 1) are both dry, the site (t, x) remains dry with certainty. In this way each
successive column can be determined, and then acts as a seed for the remainder of the
cluster. We can similarly use these rules to calculate the probability that a particular
cluster is grown from a given seed by this growth process, as in the example in figure 1,
or to consider all possible clusters that can be grown from a given seed.

We define the percolation probability Pm,y(pu, pd, pw) to be the probability that a
cluster grown from a given seed, of width m and midpoint y units from a damp wall,
becomes an infinite cluster. Within the range of possible values of the probabilities pu, pd

and pw, there will be some low-density region, where there are only finite clusters, for which
the percolation probability will be zero. Above some critical threshold, determined by these
probabilities, there will be a high-density region where there is a non-zero probability of
a given seed producing an infinite cluster. That is, we have

Pm,y(pu, pd, pw) =

{
0, low-density region;

Pm,y, high-density region;
(1)

where Pm,y > 0.
The behaviour of the percolation probability approaching this critical threshold from

above is given by a simple power law, with critical exponent β. In the bulk [9] and wet
wall [10] cases, it was found that β = 1, whereas the dry wall case [10] was found to have
critical exponent β = 2 in the unbiased case, reverting to β = 1 when a bias towards or
away from the wall was introduced. The specific unbiased damp case considered in [15]

doi:10.1088/1742-5468/2012/11/P11001 4
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was similarly found to have β = 2, which we will confirm for clusters grown from seeds of
any width or distance from the wall.

In this paper we find the percolation probability, and associated critical exponent,
in the biased damp case. Despite the addition of an extra variable, pw, we find that
the percolation probability for the biased case of directed compact percolation near a
damp wall can be found using similar methods to the dry case. By solving the recurrence
relations, we arrive at a general expression for percolation probability near a damp wall
under biased growth, for clusters beginning with a seed of width m with midpoint y units
from the wall:

Pm,y = 1−
(
quqd
pupd

)m

− (pu − qd)(pupw − pd)

(pu − pd)(pd − pwqu)

((
qu
pu

)m

−
(
qd
pd

)m)(qu
pu

)y

, y ≥ m,

(2)

Pm,m−1 = 1− quqw(2pu − 1)

(pu − pd)(pd − pwqu)

(
quqd
pupd

)m−1

− (pu − qd)(pupw − pd)

(pu − pd)(pd − pwqu)

(
qu
pu

)2m−1

, (3)

which has critical exponent β = 1, when pu 6= pd, in line with the bulk, wet and biased
dry wall results. However, the unbiased damp case of pu = pd leads to the different critical
exponent β = 2, generalizing the result found in [15] to general cluster size and position,
as in the unbiased dry case.

2. Calculation

2.1. Recurrences for rt(m, y)

Let rt(m, y) be the probability that a cluster grown from a seed of width m, midpoint
y units from the wall, has exactly t growth stages before terminating. We now set up
recurrences for rt(m, y) by considering the growth of the cluster from one time step to the
next. As this will differ depending on the interaction with the wall, we treat separately
three classifications of seed location: away from the wall, adjacent to the wall or on the
wall.

2.1.1. Away from the wall, y > m. A seed with lowest occupied site a distance d ≥ 2
from the wall will not lead to any interaction with the wall in the following column. This
corresponds to the midpoint of the seed being a distance y > m from the wall, which gives
four possibilities for cluster growth in the following time step, as shown in table 2. When
the cluster’s midpoint, or centre of mass, shifts upwards, this corresponds to the ‘top’ of
the cluster propagating upwards with probability pu and the site adjacent to the bottom
of the cluster remaining unoccupied with probability qd. Similarly shifting downwards
corresponds to an unoccupied ‘up’ site with probability qu, and the cluster propagating
downward with probability pd. When the cluster width increases or decreases, it means
both the ‘up’ and ‘down’ adjacent sites have either become occupied with probability pupd,
causing the width to increase, or remained unoccupied with probability quqd, causing the
width to decrease. We can write this as the recurrence

rt(m, y) = puqdrt−1(m, y + 1) + qupdrt−1(m, y − 1) + pupdrt−1(m+ 1, y)

+ quqdrt−1(m− 1, y), y > m, m > 1, t > 0. (4)

doi:10.1088/1742-5468/2012/11/P11001 5
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Table 2. All possible configurations, and corresponding probabilities, for clusters
beginning distance d ≥ 2 away from the wall, illustrated with a cluster of initial
seed width m = 4.

Possible configurations: (a) (b) (c) (d)

Second column, t = 1

Cluster width: m+ 1 m− 1 m m
Midpoint–wall distance: y y y + 1 y − 1
Probability: pupd quqd puqd qupd

We consider separately the case m = 1, for which one of the configurations will cause the
cluster to terminate, hence we have

rt(1, y) = puqdrt−1(1, y + 1) + qupdrt−1(1, y − 1) + pupdrt−1(2, y), y > 1, t > 0, (5)

where this case can be covered by (4) if we define

rt(0, y) = 0, y > m, t > 0. (6)

We now consider the case t = 0. For r0(m, y) to be non-zero, it must be possible for
the cluster to terminate immediately. Due to the rules of compactness, a cluster with seed
width m > 1 must propagate into the next column, so cannot terminate immediately. So
we have

r0(m, y) = 0, m ≥ 2, y > m. (7)

However, a seed consisting of a single occupied site has some probability of terminating
immediately, if both adjacent sites remain unoccupied. Away from the wall this probability
is determined by the two bulk occupation probabilities pu and pd, so for the cluster to
terminate we have

r0(1, y) = quqd, y > 1. (8)

2.1.2. Adjacent to the wall, y = m. We say that a seed is adjacent to the wall if its lowest
site is immediately above the wall, and as such we must consider the occupancy of a wall
site in the next time step. This corresponds to a seed with midpoint y = m units from the

doi:10.1088/1742-5468/2012/11/P11001 6
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Table 3. The different configurations possible for a cluster beginning adjacent to
the wall, and their probabilities, shown through a sample cluster of initial seed
width m = 4.

Possible configurations: (a) (b) (c) (d)

Second column, t = 1

Cluster width: m+ 1 m− 1 m m
Midpoint–wall distance: m m m+ 1 m− 1
Probability: pupq quqw puqw qupw

wall, and leads to the same four possibilities of physical configurations as in the bulk case,
as seen in table 3. We adjust the probability of each configuration compared to the bulk
case by simply replacing pd with pw in the recurrence in (4), as downward movement of
the cluster will correspond to an occupied wall site. This results in the recurrence adjacent
to the wall:

rt(m,m) = puqwrt−1(m,m+ 1) + qupwrt−1(m,m− 1)

+ pupwrt−1(m+ 1,m) + quqwrt−1(m− 1,m), m > 1, t > 0. (9)

For the case m = 1 we have a similar relationship, omitting only the final term which
would correspond to a terminated cluster. Thus we have

rt(1, 1) = puqwrt−1(1, 2) + qupwrt−1(1, 0) + pupwrt−1(2, 1), t > 0, (10)

which can be united with (9) by the definition

rt(0, 1) = 0. (11)

The case t = 0 corresponds to a cluster terminating immediately, which is only possible
for a seed of width 1, so for all other seeds we have

r0(m,m) = 0, m > 1. (12)

A single site adjacent to the wall will terminate if both the wall site is dry, with probability
qw, and the cluster does not propagate upwards, with probability qu, hence

r0(1, 1) = quqw. (13)

2.1.3. On the wall, y = m − 1. When y = m − 1, the seed includes a site on the wall.
In this case there can be no further downward movement of the cluster in the next time
step, and there are only two possibilities—as shown in table 4. These depend solely on

doi:10.1088/1742-5468/2012/11/P11001 7
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Table 4. The different configurations possible for a cluster beginning on the
wall, and their probabilities, shown through a sample cluster of initial seed width
m = 4.

Possible configurations: (a) (b)

Second column, t = 1

Cluster width: m− 1 m
Midpoint–wall distance: m− 1 m
Probability: qu pu

the occupation of a single site adjacent to the seed in the ‘up’ direction. So we have the
recurrence

rt(m,m− 1) = purt−1(m,m) + qurt−1(m− 1,m− 1), m ≥ 1, t > 0. (14)

Again we consider separately the m = 1 case, which eliminates one of the possible
configurations with the result

rt(1, 0) = purt−1(1, 1), t > 0, (15)

which can be covered by (14) if we make the definition

rt(0, 0) = 0. (16)

The case t = 0 corresponds to a cluster terminating immediately, which is not possible for
clusters with seed width m > 1, so we have

r0(m,m− 1) = 0, m > 1. (17)

We note that a single site on the wall can only propagate upwards, and will hence terminate
with probability qu, giving

r0(1, 0) = qu. (18)

2.2. Solving for Q(m, y)

We define Q(m, y) to be the probability that a finite cluster is grown from a seed of width
m and midpoint y units from the wall. This can be expressed as the sum of all finite
clusters of length t grown from that seed, so we can define

Q(m, y) =
∞∑

t=0

rt(m, y), m > 0, y ≥ m− 1, (19)

doi:10.1088/1742-5468/2012/11/P11001 8
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noting that we have omitted the trivial case of m = 0 from our definition. Although we
have defined rt(0, y), this was for convenience—so that the more general recurrence would
hold for the m = 1 case for each seed classification—and did not come from a physical
interpretation. We note that Q(m, y) will be of the form

Q(m, y) =

{
1, low-density region;

Qm,y, high-density/percolating region.
(20)

Thus, in finding the expression in the high-density region, Qm,y, we will also discover the
percolating region for the biased damp case. We will then be able to find an expression
for the percolation probability in the biased damp case, which in the high-density region
is equal to

Pm,y = 1−Qm,y. (21)

2.2.1. Recurrences for Qm,y. We can obtain recurrences for Qm,y by summing those found
for rt(m, y) over t ≥ 1 and adjusting for the t = 0 term where necessary to obtain the form
in (19). Away from the wall, that is y > m, we obtain a general recurrence for Qm,y by
summing (4) for t ≥ 1. We treat the m = 1 case separately, as this is the only recurrence
which will lead to a non-zero t = 0 term as given in (8). The resultant recurrences for
Qm,y in the bulk are

Qm,y = puqdQm,y+1 + qupdQm,y−1 + pupdQm+1,y + quqdQm−1,y, m > 1, y > m,

(22)

Q1,y = puqdQ1,y+1 + qupdQ1,y−1 + pupdQ2,y + quqd, y > 1. (23)

Adjacent to the wall, corresponding to y = m, we sum (9) for t ≥ 1, adjusting for the t = 0
term in the m = 1 case as given by (13). The resultant recurrences for Qm,y adjacent to
the wall are

Qm,m = puqwQm,m+1 + qupwQm,m−1 + pupwQm+1,m + quqwQm−1,m, m > 1, (24)

Q1,1 = puqwQ1,2 + qupwQ1,0 + pupwQ2,1 + quqw. (25)

On the wall, for y = m − 1, we sum (14) and adjust for r0(1, 1) as given by (18). The
resultant recurrences for Qm,y on the wall are

Qm,m−1 = puQm,m + quQm−1,m−1, m > 1, (26)

Q1,0 = puQ1,1 + qu. (27)

We will now solve the six recurrences in (22)–(27) to find Qm,y.

2.2.2. Form of solution. We search for separable solutions of the general recurrence in
(22), defining Qm,y to be of the form

Qm,y = M(m)Y (y). (28)

We substitute this into (22), separating the terms to obtain

M(m)− pupdM(m+ 1)− quqdM(m− 1)

M(m)
=
puqdY (y + 1) + qupdY (y − 1)

Y (y)
, (29)

doi:10.1088/1742-5468/2012/11/P11001 9
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where we have assumed M(m) 6= 0, Y (y) 6= 0—noting that either of these would lead to
Qm,y = 0, which does not satisfy the boundary conditions.

We allow both sides of (29) to be equal to a separation variable s, and rearrange to
get the recurrences

pupdM(m+ 1) + (s− 1)M(m) + quqdM(m− 1) = 0, (30)

puqdY (y + 1)− sY (y) + qupdY (y − 1) = 0. (31)

Following the work done on the biased dry wall case in [10], we choose s = puqd + qupd,
and assume an exponential form for M(m) and Y (y). When substituted into (30) and
(31), this leads to the solutions

M(m) = 1 or

(
quqd
pupd

)m

and Y (y) = 1 or

(
qupd

puqd

)y

, (32)

which are not sufficient alone to satisfy all conditions on Qm,y. Guided by the work of [10]
and [12] we now choose s = pupd + quqd, which leads to further exponential solutions of
the form

M(m) =

(
qu
pu

)m

or

(
qd
pd

)m

and Y (y) =

(
qu
pu

)y

or

(
pd

qd

)y

.

(33)

We note that all forms of solution found thus far have been identical to those in the
dry wall case. This is expected as at this stage we are seeking a form of solution which
satisfies the general recurrence away from the wall, which corresponds to directed compact
percolation in the bulk.

We now discard the solutions from (32) to (33) which are unbounded as y increases
in the high-density region, in addition to the constant term, as we know that the result
must tend to the bulk as y increases. That is

lim
y→∞

Qm,y =

(
quqd
pupd

)m

. (34)

Combining the remaining terms from (32) to (33), we have a trial form of solution
for the probability of a finite cluster being grown in the case of biased directed compact
percolation near a damp wall

Qm,y =


A1

(
quqd
pupd

)m

+B1

(
qu
pu

)m+y

+ C1

(
qd
pd

)m(qu
pu

)y

, y ≥ m;

A2

(
quqd
pupd

)m

+B2

(
qu
pu

)2m

+ C2, y = m− 1.

(35)

We note that this form will satisfy (22), by construction, and now seek to find the
coefficients such that it will satisfy all other constraints on Qm,y. Substituting (35)
into equations (23)–(27) and solving the resultant simultaneous equations, we find the
coefficients to be

A1 = 1 (36)

B1 =
(1− qd − qu)(qd − qu − (1− qu)qw)

(qd − qu)(1− qd − qu + quqw)
(37)

doi:10.1088/1742-5468/2012/11/P11001 10
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C1 = −(1− qd − qu)(qd − qu − (1− qu)qw)

(qd − qu)(1− qd − qu + quqw)
(38)

A2 =
qw(1− qd)(1− qu)(1− 2qu)

qd(qd − qu)(1− qd − qu + quqw)
(39)

B2 =
(1− qu)(1− qd − qu)(qd − qu − (1− qu)qw)

qu(qd − qu)(1− qd − qu + quqw)
(40)

C2 = 0. (41)

So, using these coefficients in (35), we have an expression for the probability of a finite
cluster being grown from a given seed.

3. Results

3.1. Result with bias

Using (21), we calculate the percolation probability for a cluster grown, according to
biased directed compact percolation, from a seed of width m, with midpoint y units from
a damp wall, to be

Pm,y = 1−
(
quqd
pupd

)m

− (pu − qd)(pupw − pd)

(pu − pd)(pd − pwqu)

((
qu
pu

)m

−
(
qd
pd

)m)(qu
pu

)y

, y ≥ m,

(42)

Pm,m−1 = 1− quqw(2pu − 1)

(pu − pd)(pd − pwqu)

(
quqd
pupd

)m−1

− (pu − qd)(pupw − pd)

(pu − pd)(pd − pwqu)

(
qu
pu

)2m−1

, (43)

where this result holds for the high-density region, and elsewhere the percolation
probability is zero.

3.2. Result without bias

We can consider the unbiased case by setting pu = pd = p in (42) and (43). We rearrange,
factoring out apparent singularities, to get an expression for the percolation probability
in the unbiased case,

Pm,y(p, p, pw) =


1−

(
q

p

)2m

− qw(1− 2q)m

q(1− 2q + qqw)

(
q

p

)m+y

, y ≥ m,

1−
(
q

p

)2m−1

− qw(1− 2q)(m− p)
q(1− 2q + qqw)

(
q

p

)2m−1

, y = m− 1,

(44)

which holds for p > 1
2
, the percolating region for the unbiased case as found in [15]. This

result can also be verified by solving the recurrence relations in the unbiased case [19].

4. Analysis

4.1. Percolating region

The percolating region corresponds to the region where Pm,y > 0. Setting the expressions
in (42) equal to zero, we rearrange with the assumption that it must hold for all m, y.
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Figure 2. The percolation probability for a cluster beginning on the wall with
seed width 3, where the wall occupation probability has been set to pw = 0.8 so
that the dependence on pu and pd can be seen.

This means that the transition point should be independent of seed width or distance
from the wall. We find that Pm,y = 0 when either pu = 1

2
or pu + pd = 1, regardless of pw.

The positive Pm,y region is to the right of these lines, as shown in figure 4, identical to the
high-density region in the dry wall case. We also see very clearly the percolating region
in the graph of percolation probability given in figure 2. Similarly, the percolating region
in the unbiased case is p > 1

2
, as can be seen in figure 3. This corresponds to the section

of the biased percolating region where pu = pd.
Hence in the biased damp case we have a critical curve consisting of two line segments

intersecting at the crossover point pu = 1
2
, pd = 1

2
. On this critical curve there is a phase

transition, between clusters of only finite sizes being grown from a seed and the possibility
of an infinite cluster. To analyse the critical behaviour we consider separately the three
‘sections’ of the critical curve: for pd >

1
2
, where the phase transition occurs on the line

pu = 1
2
; for pd <

1
2
, where the phase transition occurs on the line pd + pu = 1; and pd ≈ 1

2
,

where the phase transition occurs at the crossover point.

4.2. Asymptotic form, pd > 1
2

In the region pd >
1
2
, the phase transition occurs at the line pu = 1

2
. Using Mathematica,

we take the series expansion of the expression in (42) in pu about 1
2

with the result

Pm,y
∼= f(pd, pw,m, y)(2pu − 1), y ≥ m, (45)

Pm,m−1
∼= g(pd, pw,m)(2pu − 1), (46)

where

f(pd, pw,m, y) = 2

(
m+m

(
qd
pd

)m

+

(
1−

(
qd
pd

)m) 2pdqw(y − 1) + pwy − 4pdqdy

(2pd − 1)(2pd + qw − 1)

)
,

(47)
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Figure 3. The percolation probability for a cluster beginning with a seed of
a single site adjacent to the wall, in the unbiased case of directed compact
percolation near a damp wall. The line at p = 1

2 denotes the transition from
the low-density to the high-density region.

Figure 4. The critical curve for biased directed compact percolation near a damp
wall, for any pw. This replicates the results near a dry wall shown in [10].

g(pd, pw,m) = 4m+
2(1− 4p3

d − 4p2
d(qw − 2)− qw − pd(5pw + qw (qd/pd)m))

(1− 3pd + 2p2
d)(2pd + qw − 1)

. (48)

So we see that the critical exponent

βbias = 1, for pd >
1
2
. (49)
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The physical interpretation of the behaviour in this region is that of a push towards the
surface, because the downward probability is greater than half. Thus it is not surprising
that the critical exponent in this region is the same as the wet wall critical exponent. We
hence call this section of the critical curve the wet-like transition, as shown in figure 4.

4.3. Asymptotic form, pd < 1
2

In the region pd <
1
2
, the phase transition occurs at the line pu+pd = 1. Using Mathematica,

we take the series expansion of the expression in (42) in pu about 1− pd with the result

Pm,y
∼= h(pd, pw,m, y)(pu + pd − 1), (50)

Pm,m−1
∼= j(pd, pw,m)(pu + pd − 1), (51)

where

h(pd, pw,m, y) =
m

pdqd
−
((

qd
pd

)m−y

−
(
pd

qd

)m+y
)
qd(1 + pw)− 1

qwpd(2pd − 1)
, (52)

j(pd, pw,m) =
m

pdqd
+

1

pdqw
−
(
pd

qd

)2m [ qd
p2

dqw
+

q2
d

p2
d(2pd − 1)

]
+

1− pd − p2
d

qdpd(2pd − 1)
. (53)

So we see that the critical exponent

βbias = 1, for pd <
1
2
. (54)

The physical interpretation of this region is of a push away from the surface. For pd <
1
2
,

there is decreased growth in the direction towards the wall. Along the line pu = 1 − pd

we have that as pd decreases, pu increases—meaning that there is a definite preference for
growth away from the wall. We hence call this section of the critical curve the bulk-like
transition, as shown in figure 4.

4.4. Asymptotic form, pd ≈ 1
2

To find the critical exponent at the crossover point, where pu = 1
2

and pd = 1
2
, we consider

approaching the point from a distance r along a line at angle θ to the pu axis. We can
hence express the coordinates of the point along these lines in terms of r and θ as

pu = 1
2

+ r cos θ, pd = 1
2

+ r sin θ. (55)

We substitute this into the expression for the percolation probability in (42), and expand
about r = 0, to find the asymptotic behaviour as r → 0,

Pm,y
∼=

16

qw
m(pw + qwy)r2 cos θ(cos θ + sin θ), y ≥ m, (56)

Pm,m−1
∼=

8

qw
(2m2qw + (1− 2qw)(2m− 1))r2 cos θ(cos θ + sin θ). (57)

This shows that the exponent

βdamp = 2 (58)

along any such line approaching pu = 1
2
, pd = 1

2
, as was found in the case of a bias near a

dry wall in [10]. However, at any other point on the critical curve, only one of the factors
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Figure 5. The percolation probability for varying pw, with all other variables
fixed.

(2pu − 1) or (pu + pd − 1) is equal to zero. This means that everywhere except at the
crossover point we have β = 1, as found in the pd >

1
2

and pd <
1
2

regions, which is the
critical exponent in the bulk and wet wall cases.

4.5. Effect of varying each of the variables

We can consider the effect of varying each of the variables present in our general solution
for the percolation probability in (42) and (43), that is each of pu, pd, pw, m and y.
The effect of varying pu or pd can be seen in figure 2, and it is these variables which
determine the percolating region as shown in figure 4. The critical behaviour also changes
depending on the relative relationship of pu and pd. Any bias away from the wall tends
to the bulk case, and any bias towards the wall tends to the wet wall case; these results
mimic the findings of biased growth near a dry wall [10]. The critical exponent, when a
bias is present, is equal to the bulk/wet value of 1; however, in the unbiased damp case
the critical exponent is equal to 2. So the unbiased case of directed compact percolation
near a damp wall is a special case, as any bias either towards or away from the wall leads
us back to the bulk critical exponent.

Varying the wall occupation probability pw also affects the percolation probability, as
seen in figure 5, although it does not change the percolating region. In the unbiased
case pu = pd, the critical exponent differs depending on whether pw < 1 (damp/dry
exponent β = 2) or pw = 1 (wet/bulk exponent β = 1). Increasing the seed width, m,
for clusters a fixed distance from the wall, leads to a strong increase in the percolation
probability, as shown in figure 6. This follows naturally from the rules of directed compact
percolation, since a cluster with a large seed width is much less likely to terminate than
one with a small seed width. The distance from the wall, measured by y, also affects
the percolation probability, although the effect becomes more subtle as the distance from
the wall increases. A cluster beginning on the wall or adjacent to the wall is naturally
more constrained in its growth than a cluster which begins away from the wall, since the
sites below the wall are unable to be occupied. As a result, clusters beginning nearer the
wall are less likely to grow into infinite clusters in the high-density region, and we note
accordingly in figure 7 that the percolation probability in the high-density region is lowest
for clusters beginning on the wall, and increases as we move away from the wall.
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Figure 6. The percolation probability for varying m, for clusters beginning
adjacent to the wall (y = m), with all other variables fixed.

Figure 7. The percolation probability for varying y, with all other variables fixed.

5. Conclusions and special cases

We have found an exact general expression for the percolation probability for directed
compact percolation near a damp wall, with general seed width at any distance from
the wall and allowing for bias. This formulation allows all previously studied cases to be
obtained as special cases.

5.1. Special cases

5.1.1. Bulk comparison. In the case of a cluster beginning away from the wall, we can
take the limit y → ∞ to find an expression for the percolation probability in the bulk
limit,

lim
y→∞

Pm,y = 1−
(
quqd
pupd

)m

, (59)

which reproduces the expression for the biased bulk case found in [9].

5.1.2. Wet wall comparison We can use our general expression to derive the wet wall
result also, by setting pw = pd = 1. In this way our expression in (42) reduces nicely to
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the wet wall expression,

Pm,y|pw=pd=1 = 1−
(
qu
pu

)2m−1

, (60)

which reproduces the expression for the wet wall case found in [10].

5.1.3. Dry wall comparison. The result for directed compact percolation near a dry wall,
using biased growth, can be obtained from (42) simply by setting pw = pd. This replaces
the wall with a row of sites which are occupied based on the bulk downward probability,
and the row below becomes the effective dry wall. Setting pw = pd in (42), we have

Pm,y(pu, pd, pd) = 1−
(
quqd
pupd

)m

− pu − qd
qu − qd

[(
qu
pu

)m

−
(
qd
pd

)m](qu
pu

)y+1

, (61)

which agrees with the expression for the biased dry wall case found in [10]. We can similarly
apply the expression in (44) to the unbiased dry wall case, by setting pw = p, with the
result

Pm,y(p, p, p) = 1−
(
q

p

)2m

− m(2p− 1)

p2

(
q

p

)m+y

, (62)

which rederives the percolation probability in the unbiased dry wall case found in [10].

5.1.4. Damp wall comparison. The result in (44) generalizes the result of the specific
unbiased case considered in [15], of a seed of width one beginning adjacent to a damp
wall, and we can see

P1,1(p, p, pw) =


(1− 2q)2

(1− q)2(1− 2q + qqw)
, p >

1

2
;

0, p ≤ 1

2
.

(63)

which is the same as the result found in [15] using a mapping to pairs of weighted directed
walks.

So the expression for percolation probability in (42) has as special cases all previously
studied cases of directed compact percolation on a square lattice: that is, in the bulk, near
a wet wall, near a dry wall and near a damp wall, in both the biased and unbiased cases.

5.2. Conclusion

We have analysed our full expression pointing out behaviour in terms of each variable and
providing scaling analysis near the percolation transition which depends on the variable,
including the special crossover point where the system changes from bulk-like behaviour
to ‘wet-wall’-like behaviour. The exponents in these two cases are the same and it is the
crossover point where the system is unbiased that is special. We conclude that whether
the wall is dry or damp does not effect the gross behaviour of the percolating system.
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[2] Stauffer D and Aharony A, 1991 Introduction to Percolation Theory 2nd edn (London: Taylor and Francis)
[3] Smirnov S and Werner W, Critical exponents for two-dimensional percolation, 2001 Math. Res. Lett. 8 729

(arXiv:math/0109120v2)
[4] Cardy J L and Grassberger P, Epidemic models and percolation, 1985 J. Phys. A: Math. Gen. 18 L267
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