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Abstract
Area-weighted Dyck-paths are a two-dimensional model for vesicles attached
to a wall. We model the mechanical response of a vesicle to a pulling force
by extending this model. We obtain an exact solution using two different
approaches, leading to a q-deformation of an algebraic functional equation,
and a q-deformation of a linear functional equation with a catalytic variable,
respectively. While the non-deformed linear functional equation is solved by
substitution of special values of the catalytic variable (the so-called kernel
method), the q-deformed case is solved by iterative substitution of the catalytic
variable. Our model shows a non-trivial phase transition when a pulling force is
applied. As soon as the area is weighted with non-unity weight, this transition
vanishes.

PACS numbers: 02.10.Ox, 05.50.+q, 05.70.Fh

(Some figures may appear in colour only in the online journal)

1. Introduction

With the growing experimental ability to probe the behaviour of a single polymer under the
influence of a stretching force [13, 12], there has been an effort by theoretical work to explore
models that cover the possible scenarios encountered. For example, various directed path
models of a polymer with one end, or both ends, grafted to a surface and being pulled at the
end or in the middle, with the addition of an attractive contact interaction with the surface, have
been studied in two and three dimensions [22, 23, 6, 1, 15]. Numerical work on self-avoiding
walks models has also confirmed and expanded upon the predictions of these directed models
[16, 17, 20, 21]. In the continuum limit, this problem is related to the area under a Brownian
curve [19].
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Figure 1. An area-weighted Dyck path with 18 steps and area of size 11, which is being pulled
away from the surface at its right-most peak with force f . The height h of the right-most peak in
this example is 4.

Another type of model, that of a lattice polygon that has been weighted by its length and
area, can rather be used to model biological vesicles [18, 2–5, 9, 24]. For example, the effect
of a restricted geometry such as a slit has recently been analysed [25]. Here, it is also natural
to consider the effect of a pulling force of the surface of the vesicle.

Pulling membrane-anchored microspheres using optical traps is a technique commonly
used in experimental settings [28]. When preparing the sample, microspheres can bind
anywhere on the membrane, and due to small anisotropies in the experimental setup perfect
vertical pulling is difficult to achieve.

Hence, we study a simple directed model of a two-dimensional vesicle that is being
pulled away from a wall. The anisotropy is modelled by a pulling force with a small horizontal
component, which leads to the force acting on the right-most peak of the vesicle. Only the
vertical component of the force contributes to the configurational energy of the vesicle.

The model is of interest physically as well as mathematically. It illustrates the solution
of functional equations with catalytic variables under a q-deformation, when the solution gets
expressed in terms of q-series rather than in terms of algebraic functions.

2. The model

Dyck paths are directed walks on Z
2 starting at (0, 0) and ending on the line y = 0, which

have no vertices with negative y-coordinates, and which have steps in the (1, 1) (up-step) and
(1,−1) (down-step) directions [29]. Given a Dyck path π , we define the length n(π ) to be
half the number of its steps, and the area m(π ) to be the sum of the starting heights of all
up-steps in the path. This is sometimes also called the rank function of a Dyck path [8, 27],
and is equivalent to the number of diamond plaquettes under the Dyck path. We further define
the height h(π ) of the right-most peak as the length of the final descent of the Dyck path, i.e.
the maximal number of the last consecutive down-steps. An example of a Dyck path is given
in figure 1.

Let G be the set of Dyck paths, and define the generating function

G(t, q, λ) =
∑
π∈G

tn(π )qm(π )λh(π ). (2.1)

The generating function for area-weighted Dyck paths [10, 7] has previously been studied.
Dyck paths weighted by height of the right-most peak are related to Ballot paths, which have
been previously studied as a model of pulled polymers [22]. Here we extend these works by
combining and extending these models.
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Figure 2. A schematic decomposition leading to equation (3.1). A non-zero Dyck path decomposes
uniquely into a Dyck path, followed by another Dyck path which is bracketed by up and down
steps.

The key to obtaining a solution of this model is a combinatorial construction of Dyck
paths which leads to a functional equation for the generating function G. We shall present two
different constructions leading to two structurally different functional equations.

3. q-deformed algebraic functional equation

To obtain the first functional equation, we decompose Dyck paths by considering the right-
most up-step starting at height zero. This leads to a decomposition of a Dyck path in terms
of two smaller Dyck paths. More precisely, except for the zero-step path, this decomposes a
Dyck path uniquely into a Dyck path, followed by another Dyck path which is bracketed by
up and down steps, as indicated in figure 2.

This naturally leads to a functional equation which is quadratic in the generating functions,

G(t, q, λ) = 1 + λtG(t, q, 1)G(qt, q, λ). (3.1)

Note that in the product λtG(t, q, 1)G(qt, q, λ) the left Dyck path no longer contributes to the
height of the right-most peak, leading to the factor G(t, q, 1), and the bracketing of the right
Dyck path by up and down steps increases the area proportional to the length of the path, as
well as increases height and length by 1, leading to the factor λtG(qt, q, λ).

3.1. The case q = 1

The functional equation (3.1) reads now

G(t, 1, λ) = 1 + λtG(t, 1, 1)G(t, 1, λ), (3.2)

which after substitution of λ = 1 can be readily solved to give

G(t, 1, 1) = 1 − √
1 − 4t

2t
= 2

1 + √
1 − 4t

, (3.3)

which is the well-known generating function for Catalan numbers. Substitution of this result
back into equation (3.2) gives

G(t, 1, λ) = 2

2 − λ + λ
√

1 − 4t
. (3.4)

For comparison with the result in equation (3.11), note that a series expansion in λ gives

G(t, 1, λ) =
∞∑

l=0

λlt lG(t, 1, 1)l . (3.5)
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Figure 3. The term l = 3 in the sum of (3.11) corresponds to the concatenation of three Dyck paths
separated by single up-steps, followed by a hook formed of one up-step and three down-steps.

3.2. The case q �= 1

Substituting λ = 1 into the functional equation (3.1) gives

G(t, q, 1) = 1 + tG(t, q, 1)G(qt, q, 1). (3.6)

The Ansatz

G(t, q, 1) = H(qt, q)

H(t, q)
(3.7)

gives a linear functional equation for H(t, q),

H(qt, q) = H(t, q) + tH(q2t, q). (3.8)

Inserting H(t, q) = ∑∞
n=0 cn(q)tn into (3.8) gives a recurrence qncn(q) = cn(q) +

q2(n−1)cn−1(q) for the coefficients, which can be readily solved by iteration. Specializing
to c0(q) = 1, we find

H(t, q) =
∞∑

k=0

(−t)kqk(k−1)

(q; q)k
, (3.9)

where we have used the q-product notation

(t; q)k =
k−1∏
j=0

(1 − tq j). (3.10)

Here H(t, q) = 0φ1(−; 0; q,−t) is a basic hypergeometric series [11] also referred to as the
q-Airy function [14].

Once G(t, q, 1) is known and substituted back into equation (3.1), we can solve for
G(t, q, λ) by iteration and obtain

G(t, q, λ) =
∞∑

l=0

λlt lq( l
2)

H(qlt, q)

H(t, q)
. (3.11)

This iteration makes sense in a ring of formal power series. Alternatively, one can argue that
the iteration converges for |q| < 1.

We note that this solution also admits a direct combinatorial interpretation. The lth term
in the sum of (3.11) corresponds to the concatenation of l Dyck paths separated by single
up-steps, followed by a final hook formed by one up-step and l down-steps. The generating
function for a Dyck path starting at height l is given by G(qlt, q, 1), and the final descent of
length l increases the area by

( l
2

)
, leading to an overall weight of

G(t, q, 1)tG(qt, q, 1)t · . . . · G(qlt, q, 1)tλlq( l
2) = λlt lq( l

2)
H(qlt, q)

H(t, q)
. (3.12)

Figure 3 indicates this for the case l = 3.
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Figure 4. A schematic construction leading to equation (4.1). Inserting an up-step followed
immediately by a down-step in the right-most descent creates a new Dyck path with a new hook
(left). When adding hooks of all possible lengths, one needs to correct for overhangs produced by
hooks that are too long (right).

Finally, we note that the limit q → 1 can be obtained as follows. As

G(t, 1, 1) = lim
q→1

G(t, q, 1) = lim
q→1

H(qt, q)

H(t, q)
, (3.13)

we deduce that for fixed value of k,

G(t, 1, 1) = lim
q→1

H(qk+1t, q)

H(qkt, q)
(3.14)

and thus

lim
q→1

H(qlt, q)

H(q, t)
= G(t, 1, 1)l . (3.15)

Therefore equation (3.11) reduces to the result in equation (3.5) as q → 1.

4. q-deformed linear functional equation

To obtain the second functional equation, we consider how Dyck path configurations get
changed by the insertion of a small pattern.

The right-most descent, together with the preceding up-step forms a hook. Inserting an
up-step followed immediately by a down-step in the right-most descent creates a new Dyck
path with a new hook. If the descent has length h, there are h + 1 possibilities of insertion.

The consequence of this insertion is the addition of a column to the Dyck path as indicated
on the left-hand-side of figure 4.

The functional equation corresponding to this construction is given by

G(t, q, λ) = 1 + λt

1 − qλ
G(t, q, 1) − qλ2t

1 − qλ
G(t, q, qλ). (4.1)

The term λt
1−qλ

G(t, q, 1) corresponds to the addition of a column of arbitrary height to the Dyck

path. The ensuing overcounting is compensated for by subtraction of the term qλ2t
1−qλ

G(t, q, qλ),
which corresponds to the removal of the columns that produce invalid configurations, as
indicated on the right-hand-side of figure 4.

Alternatively, the terms on the right-hand side of (4.1) can be understood by considering

G(t, q, λ) =
∞∑

h=0

λhGh(t, q), (4.2)

where Gh(t, q) are partial generating functions for fixed height h. The only Dyck path with
a hook of height h = 0 is a zero-step path. A Dyck path with a hook of height h � 1 can
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only have been constructed from a Dyck path with a hook of height at least h − 1. By the
construction, its area increases by an amount h − 1, and we thus find that for h � 1

Gh(t, q) = qh−1
∞∑

k=h−1

Gk(t, q). (4.3)

Summing over the partial generating functions leads to the functional equation (4.1).

4.1. The case q = 1

The functional equation (4.1) now reads

G(t, 1, λ) = 1 + λt

1 − λ
G(t, 1, 1) − λ2t

1 − λ
G(t, 1, λ). (4.4)

Here, substitution of λ = 1 is no longer useful, and one solves the functional equation using
the kernel method [26]. Writing equation (4.1) as

K(t, λ)G(t, 1, λ) = 1 + λt

1 − λ
G(t, 1, 1), (4.5)

where the kernel K(t, λ) is given as

K(t, λ) = 1 + λ2t

1 − λ
, (4.6)

we observe that the left-hand side of equation (4.5) vanishes if λ = λ0 is chosen such that
K(t, λ0) vanishes (provided G(t, 1, λ0) does not diverge). This then implies that

G(t, 1, 1) = λ0 − 1

λ0t
, (4.7)

and substituting this result back into equation (4.5) leads to an expression for G(t, 1, λ). The
appropriate root of the kernel is given by

λ0 = 1 − √
1 − 4t

2t
. (4.8)

Using this value, we recover the expressions (3.3) for G(t, 1, 1) and (3.4) for G(t, 1, λ) given
above.

4.2. The case q �= 1

If q �= 1, we can solve the functional equation (4.1) by iterative substitution. Substituting λqk

for λ in (4.1), we find

G(t, q, qkλ) = 1 + qkλt

1 − qk+1λ
G(t, q, 1) − q2k+1λ2t

1 − qk+1λ
G(t, q, qk+1λ). (4.9)

We can therefore express G(t, q, qkλ) in terms of G(t, q, qk+1λ) and use this to iterate. As a
result, we find

G(t, q, λ) =
∞∑

k=0

(−λ2t)kqk2

(qλ; q)k

(
1 + qkλt

1 − qk+1λ
G(t, q, 1)

)
. (4.10)

Defining

I(t, q, y) =
∞∑

k=0

(−t)kqk(k−1)

(y; q)k
, (4.11)

this simplifies to
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Figure 5. A plot of the radius of convergence tc(λ) ≡ tc(λ, 1) in the polymer length variable t
of the generating function when q = 1 as a function of the force variable λ. Note that there is a
change of behaviour at λ = 2 with constant tc(λ) = 1/4 for λ � 2.

G(t, q, λ) = I(qλ2t, q, qλ) − 1

λ
[I(λ2t, q, qλ) − 1]G(t, q, 1). (4.12)

Note that I(t, q, y) = 1φ2(q; 0, y; q,−t) is also expressible as a basic hypergeometric function.
Moreover, it a deformation of H(t, q), in that I(t, q, q) = H(t, q).

Substituting λ = 1 in equation (4.12) gives now immediately

G(t, q, 1) = H(qt, q)

H(t, q)
, (4.13)

a result already obtained from the q-algebraic functional equation (3.6) above. Substituting
this result back into equation (4.12) leads to the main result of this section, namely

G(t, q, λ) = I(qλ2t, q, qλ) − 1

λ
[I(λ2t, q, qλ) − 1]

H(qt, q)

H(t, q)
. (4.14)

Note the rather different structure of the equivalent solutions (3.11) and (4.14). The former is in
terms of an infinite sum, which however readily allows for extraction of the partial generating
function for fixed height h. The latter is more compact as it is written in terms of a finite number
of special functions. We note that the equivalence of both solutions implies the identity

∞∑
l=0

λlt lq( l
2)H(qlt, q) = I(qλ2t, q, qλ)H(t, q) − 1

λ

[
I(λ2t, q, qλ) − 1

]
H(qt, q). (4.15)

5. Analysis of behaviour

Let us begin by considering the case of q = 1, that is no extra area weighting or, equivalently,
osmotic pressure. The first important point to make is that previous models of pulling on the
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Figure 6. A plot of the radius of convergence tc(λ, q) in the polymer length variable t of the
generating function for general q as a function of the force variable λ. Note that tc(λ, q) is
independent of q for q < 1 and hence that there is a jump of tc(λ, q) as q approaches one from
below.

end of a polymer without any other interaction with a surface give the result that as soon as
a force is applied the end of the polymer changes its scaling behaviour from random-walk
scaling

〈h〉 ∼ n1/2 (5.1)

for f = 0 (λ = 1) to ballistic scaling

〈h〉 ∼ n (5.2)

for f > 0 (λ > 1). This is reflected in the fact that the radius of convergence of the associated
generating function is constant for λ � 1 and decreases continuously for λ > 1. As a model of
pulling on a vesicle attached to a surface, our model has the feature that the pulling occurs on
the final ‘peak’, the location of which along the surface can change with the pulling itself. As
such, there is a non-trivial critical point as a function of λ in our model, with a critical value

λ = λc ≡ 2. (5.3)

A plot of the radius of convergence of the generating function (3.4) is shown in figure 5.
Note that the reduced free energy κ(λ, q) of the surface is simply related to the radius of

convergence tc(λ, q) in the usual way via

κ(λ, q) = − log tc(λ, q). (5.4)

For q < 1 the generating function (3.11) can be seen to be convergent except where
H(t, q) = 0. Crucially this is independent of λ! This implies that for q < 1 there is no phase
transition as a function of λ, since κ(λ, q) is independent of λ for q < 1. Physically this means
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that the osmotic pressure always dominates the pulling force for q < 1: 〈h〉 will be bounded
for all λ.

Interestingly, if one considers the limit q → 1 for λ > 2 one is left with the problem
that the free energy ‘jumps’ at q = 1 as indicated in figure 6. The resolution of this apparent
problem is that for q > 1 one needs to consider the free energy per unit area rather than the
free energy per unit length of the surface. The limiting free energy per unit area is a continuous
function of q and λ for all λ, being equal to zero for q � 1.

6. Conclusion

We have provided the exact solution of a simple model of a vesicle attached to a surface subject
to a pulling force on the vesicle. We have used two methods of solution which illuminate the
generalization of the well-known ‘kernel’ method for the solution of linear functional equations
using a ‘catalytic’ variable and result in a non-trivial identity. The solution is expressed in
terms of well-studied q-series and can be analysed simply. Our model has a non-trivial phase
transition when no osmotic pressure is applied.
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