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Abstract
Key aspects of the cluster distribution in the case of directed, compact
percolation near a damp wall are derived as functions of the bulk occupation
probability p and the wall occupation probability pw. The mean length of finite
clusters and mean number of contacts with the wall are derived exactly, and
we find that both results involve elliptic integrals and further multiple sum
functions of two variables. Despite the added complication of these multiple
sum functions, our analysis shows that the critical behaviour is similar to the dry
wall case where these functions do not appear. We derive the critical amplitudes
as a function of pw.

PACS numbers: 05.50.+q, 0.5.70.fh, 64.60.ah

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background

Percolation processes were first examined thoroughly by Broadbent and Hammersley [6],
who coined the term percolation from the physical situation of a fluid percolating through
a medium. The general percolation model can be modified in many ways: one of the most
natural of these is to add a direction or directions in which the fluid may flow through the
medium. The case of directed percolation [7, 8] arises in many different physical situations
[17–19, 22] but this modification alone does not lead to an exactly solvable model. However, if
we also add the condition of compactness, meaning that clusters cannot branch off or contain
holes, then this directed, compact percolation model, introduced by Domany and Kinzel [9],
is an exactly solvable model, and it is this model which we will consider in this paper.
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Directed compact percolation in the bulk was considered by Essam [10], who calculated
the percolation probability, mean size and mean length of clusters in this case, as well as
their associated critical exponents of β = 1, γ = 2 and τ = 1, respectively. An important
modification to the directed compact percolation model, as it is to many statistical mechanical
models, is to add a wall to restrict the growth of the cluster. This was first considered by
Essam and TanlaKishani [14], who considered a wet wall, where the sites on the wall are
always occupied, and calculated the percolation probability, mean cluster size and mean
cluster length. The critical exponents for these properties were found to be β = 1, γ = 2 and
τ = 1, respectively—that is, identical to the exponents for the bulk case.

A dry wall, where the wall sites are never occupied, was first considered by Bidaux
and Privman [2], and the percolation probability was derived exactly by Lin [15]. It was
found that the critical behaviour differed from that of the bulk and wet wall cases, with a
critical exponent of β = 2. The mean cluster size for this case was calculated by Essam and
Guttmann [11]—solving exactly in the low-density region and using differential approximants
for the high-density region—and again it was found that the associated critical exponent,
γ = 1, differed from the bulk and wet wall. Brak and Essam [4] derived the mean cluster
length exactly for the dry wall case, expressing it in terms of elliptic integrals. Of particular
importance was the presence of K(m), the complete elliptic integral of the first kind, as defined
in 17.3.1 of [1],

K(m) =
∫ π

2

0

1√
1 − m sin2 θ

dθ, (1.1)

which can be expressed as the power series,

K(m) = π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2

m2n. (1.2)

The behaviour of the mean size near the critical point was found in [4] to be dominated by the
logarithmic singularity of K(m) near m = 1. As such the critical exponent τ for a dry wall
was effectively zero, which differed from the bulk and wet results of τ = 1. The mean number
of contacts with the wall was defined in the dry wall case [4] to be the mean number of times
a cluster included a site adjacent to the wall. As with the mean length, the mean number of
contacts [4] was able to be expressed in terms of elliptic integrals with a logarithmic singularity
near the critical point.

It was natural to introduce a damp wall model, which interpolates between the wet and
dry walls, with a variable probability pw of occupation of wall sites. This was first considered
in [16]. The percolation probability as a function of both p and pw was calculated for the damp
wall, and its critical behaviour was found to follow that of the dry wall, with critical exponent
β = 2, for all pw < 1. The crossover to the wet wall limit, where β = 1, was demonstrated
explicitly. The percolation probability was calculated using the generating function for a
particular lattice path problem involving two walks. The generating function involves a set of
infinite sums over single walk partition functions and is not directly expressible in terms of
known functions. Intriguingly, however, the percolation probability for the damp wall model
is a rational function of p and pw.

It is of interest to calculate the cluster properties for this generalized damp wall model that
have been calculated in the other cases, both to extend the conclusion that the damp and dry
models share the same critical behaviour and to understand the functions involved. This paper
proceeds to find expressions in the damp wall case for the mean length of finite clusters and
mean number of contacts with the wall. We find that the exponents for each of these properties
in the damp wall case follow the result of the dry wall case and show that in the wet wall limit
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Figure 1. An example of a cluster near a damp wall, with a combination of wet and dry wall sites.
The probability of this cluster growing from a seed of a single site at the origin is p5q5 p2

wq2
w , as

calculated in section 1.2.4. This particular cluster has length 8, with two wall contacts, and its
cluster parameters are given in table 1.

they cross over to the bulk values. We have calculated the critical behaviour explicitly giving
the critical amplitudes as a function of pw.

As might be expected following the dry wall case, we find that both the mean length
and the mean number of contacts in the damp wall case can be expressed in terms of elliptic
integrals, plus additional terms involving double sums, which is in contrast to the rational form
found for the percolation probability.

1.2. Model

The model is defined on a directed square lattice, the sites of which are the points in the t, x
plane with integer coordinates such that t ∈ N ∪ 0, x ∈ Z and t + x is even. The growth rule
is that the site (t, x) becomes wet with certainty if both the sites (t − 1, x ± 1) are wet, and
with probability p if only one of these sites is wet, defining q = 1 − p to be the probability
of remaining dry in this case. Where both of the sites (t − 1, x ± 1) are dry, the site (t, x)

remains dry with certainty, ensuring that a single compact cluster is produced from a seed of
m contiguous sites at t = 0, x � 0, where we often restrict ourselves to the case m = 1 in this
work. The bulk case allows unrestricted growth in the x-direction, whereas in all other cases
considered here we have the introduction of a wall which restricts the growth of the cluster.
The wall is represented by the sites x = −1 and odd t > 0, where the wall sites are wet, or
occupied, with probability pw and dry (unoccupied) with probability qw = 1 − pw.

1.2.1. Cluster parameters. We define a compact cluster of occupied sites, as in figure 1,
which we can measure by the following parameters:

at = the x-coordinate of the highest occupied site in a column at t, (1.3)

bt = the x-coordinate of the lowest occupied site in a column at t, (1.4)

mt = the number of sites at a given value of t : (1.5)

= at − bt

2
+ 1 (1.6)

m:= m0 (1.7)

= the ‘seed’ which begins the cluster, (1.8)

3
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Table 1. Values of cluster parameters for the cluster shown in figure 1.

t 0 1 2 3 4 5 6 7 8
at 0 1 2 1 2 3 2 1 –
bt 0 1 0 −1 0 −1 0 1 –
mt 1 1 2 2 2 3 2 1 0

T = the t-value where the cluster terminates, for finite clusters: (1.9)

�:= T + 1 (1.10)

= the cluster length, defined as the number of occupied columns. (1.11)

See table 1 for the cluster parameters corresponding to the example in figure 1.
For any finite cluster, we will always have aT = bT and mT = 1, as the cluster terminates

with a total of T + 1 occupied columns for t ∈ [0, T ]. By definition, mt = 0 for t > T .

1.2.2. Wall location. Although the location of the wall is a relative measure (if we specify
a seed to start ‘adjacent to the wall’, then changing the x-value of the wall location does not
change the problem), for clarity we will explain the differing wall locations used in work on
directed compact percolation.

Our earlier work on the damp model in [16] had a wall located at x = 1, simply for
convenience so that the walks associated with the cluster remained in the region x � 0.
However, in this paper we choose to situate the wall at x = −1, in line with the location of the
wet wall considered in [14] and the dry wall considered in [15], [11] and [4]. This makes it
easier to see that the extremes of the damp wall case map to the wet and dry wall models, by
simply setting the wall occupancy probability to be pw = 1 and pw = 0, respectively.

1.2.3. Inclusion of wall sites. Note that in previous work on the wet wall case [14], the sites
on the wall, at x = −1, were not considered to be part of the cluster since this would produce
an infinite cluster each time, as all wall sites are wet with certainty. However, the damp wall
model lends itself more naturally to including wall sites in the cluster, as these will vary
between wet and dry and will affect the probability of a given cluster, so the cluster parameters
in section 1.2.1 have been defined to include wall sites. These parameters could be altered to
reflect the wet wall definition from [14] by defining at � 0 and bt � 0, thus considering the
cluster to be formed by occupied sites which do not lie on the wall.

In the dry wall case, it would never be possible for wall sites to form part of the cluster, as
they are all dry with certainty. This will remain true for the dry wall extreme of the damp wall
model, despite the definition allowing for wall sites to form part of the cluster, because the
dry wall extreme (setting pw = 0) will result in all wall sites being dry and hence not forming
part of clusters, as required.

1.2.4. Probability of a cluster. Each cluster will have a particular probability of forming from
a given seed, based on the rules of the directed compact growth model. Given a particular
cluster, we can calculate the probability of it having formed by noting its cluster length, �, the
number of wet sites at x = −1 (on the wall) v1 and the number of wet sites at x = 0 (next to
the wall) v2. The probability of such a configuration ϕ�,v1,v2 ∈ 	�,v1,v2 is [16]

π(ϕ�,v1,v2 ) = (pq)�−1q2

(
pw

pq

)v1
(

qw

q

)v2−v1

, (1.12)
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where (pq)�−1 corresponds to weighting with pq for each growth stage after the seed and q2

corresponds to the probability of the cluster terminating—these two factors are equivalent to
the probability of a cluster in the bulk, which is then adjusted to account for interactions with
the damp wall. The factor of

( pw

pq

)v1 corresponds to adjusting for the v1 wet wall sites. For
each of these, we include the wall occupancy probability pw rather than the bulk occupancy
probability p, and remove a factor of q since the adjacent site below the wall cannot become
occupied. The factor of (

qw

q )v2−v1 corresponds to adjusting for interactions with dry wall sites,
counted by the (v2 − v1) wet sites at x = 0 with no adjacent wet wall site. For these sites, we
include the probability of a dry wall site qw rather than the bulk probability q.

So applying (1.12) to the particular example of a cluster in figure 1, which has � = 8,
v1 = 2 and v2 = 4, we have

π(ϕ8,2,4) = (pq)7q2

(
pw

pq

)2 (
qw

q

)2

(1.13)

= p5q5 p2
wq2

w. (1.14)

1.3. Properties of interest

We define the properties we will consider in this paper with respect to a general cluster, using
the cluster parameters introduced in section 1.2.1.

1.3.1. Percolation probability. In general, for any directed percolation model, the percolation
probability P is defined as the probability that a cluster grown from a given seed never
terminates, and hence Q = 1 − P is the probability of a finite cluster. In terms of the cluster
parameters, we can define

P = Pr
(

lim
t→∞ mt > 0

)
. (1.15)

In our particular model of directed compact percolation near a damp wall, P is a function of
the bulk occupancy probability p and the wall occupancy probability pw, so we denote the
percolation probability by P(p, pw). We can calculate the probability of a finite cluster by
summing over individual cluster probabilities, and so we have Q(p, pw), as given in [16],

Q(p, pw) =
(

q

p

) ∞∑
�=1

∑
v1,v2

c�,v1,v2

(
pw

pqw

)v1
(

qw

q

)v2

(pq)�, (1.16)

where c�,v1,v2 = |	�,v1,v2 |.
We expect P(p, pw) to be zero below some value of p = pc, which we call the percolation

threshold, or critical probability. Approaching the curve from the P(p, pw) > 0 side, P(p, pw)

vanishes with critical exponent β. That is, as p → pc,

P(p, pw) ∼ |p − pc|β. (1.17)

We note that the critical point has been found to occur at the same point, pc = 1
2 , for all cases

considered in this paper—that is, in the bulk [10], wet wall [14], dry wall [15] and damp wall
[16] cases of directed compact percolation.

1.3.2. Mean cluster length. The length of the cluster is defined generally to be the number
of sites in the shortest path from seed to terminal point, so we define the mean length L to be

L = 〈�〉, (1.18)

where � = T + 1 is the number of occupied columns in a given cluster.
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For the directed compact percolation model, we can define L(p, pw) in terms of the cluster
probabilities and lengths, as

L(p, pw) =
∑∞

�=1

∑
v1,v2

� c�,v1,v2

( pw

pqw

)v1
( qw

q

)v2
(pq)�∑∞

�=1

∑
v1,v2

c�,v1,v2

( pw

pqw

)v1
( qw

q

)v2
(pq)�

, (1.19)

where the denominator is equal to Q(p, pw), as L(p, pw) is the normalized mean length, and
we can define the unnormalized mean length to be

L̄(p, pw) = L(p, pw)Q(p, pw). (1.20)

We note that for p < pc, Q(p, pw) = 1 and thus L(p, pw) = L̄(p, pw) for the low-density
region.

The associated critical exponent for the mean length, τ , tells us how the mean length
behaves near the phase transition at pc = 1

2 . We have, as p → pc,

L(p, pw) ∼ |p − pc|−τ . (1.21)

1.3.3. Mean number of wall contacts. We will define a ‘wall contact’ to mean that the cluster
includes a site on the wall, and as such will be equivalent to counting the number of wet wall
sites in a cluster, or the number of occupied sites at x = −1. In terms of cluster parameters,
this corresponds to each time bt = −1. So we can define the mean number of wall contacts to
be

N =
〈 T∑

t=1

δbt ,−1

〉
. (1.22)

Note that for the dry wall model considered in [4], a contact with the wall was defined as
a site in the cluster being adjacent to the wall, i.e. at x = 0, as this was the smallest x-value
that could contain an occupied site in the dry wall case. To account for both definitions, and
to be able to count the times the cluster is at any value of x, we define generally Nx, which is
the mean number of times the cluster includes a site at a given x-value:

Nx =
〈 T∑

t=1

at∑
c=bt

δc,x

〉
. (1.23)

For the directed compact percolation model in the damp wall case, we define N(p, pw)

as

N(p, pw) := N−1(p, pw) = 〈v1〉, (1.24)

where we recall that v1 is the number of wet sites on the damp wall. Naturally if we apply this
definition of a wall contact to the dry wall case, we expect our result to be equal to zero, since
there will be no contacts with the wall. We can define

N0(p, pw) = 〈v2〉, (1.25)

which counts the mean number of sites adjacent to the damp wall and agrees with the definition
given in [4] for the dry wall case. However, in the damp wall model, it is preferable to define
wall contacts as wet sites at x = −1, since wall sites will vary between wet and dry and we
wish to include the wall sites as part of the cluster, as discussed in section 1.2.3. So we will not
proceed with the calculation of N0(p, pw), but the notation will be helpful in our comparison
with the dry wall model.
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We define ψ to be the critical exponent for the mean number of wall contacts, such that
as p → pc, we have

N(p, pw) ∼ |p − pc|−ψ. (1.26)

As with mean length, we will work with the unnormalized mean number of contacts, which
we define to be

N̄(p, pw) = N(p, pw)Q(p, pw) (1.27)

again noting that N̄(p, pw) = N(p, pw) for the low-density region.

2. Previously considered cases

We review the results found previously for percolation in the bulk, near a wet wall and near a
dry wall. These results will be compared to calculations for the damp wall model.

2.1. Bulk case

This is the case of directed compact percolation which is unrestricted, i.e. in the absence of
any walls. As such the properties calculated do not depend on the wall occupation probability
pw, but only on the bulk occupancy probability p.

2.1.1. Percolation probability (bulk case). The percolation probability for a cluster in the
bulk case grown from a seed of width m was found in [10] to be

Pbulk
m (p) =

⎧⎪⎪⎨
⎪⎪⎩

0 p <
1

2

1 −
(

1 − p

p

)2m

p � 1

2

(2.1)

with critical exponent βbulk = 1.

2.1.2. Mean cluster length (bulk case). Essam [10] showed the normalized mean cluster
length for the bulk problem to be the same both above and below the percolation threshold pc,
and expressed simply as

Lbulk
m (p) = m

|1 − 2p| , (2.2)

with critical exponent τ bulk = 1.

2.2. Wet wall

We introduce a wall at x = −1 and restrict the cluster to only those sites x � 0. Note that, in
line with previous work on the wet wall [14], the results presented below do not consider sites
on the wall to form part of the cluster in the wet wall case, as discussed in section 1.2.3.

We require that all sites on the wall be wet with certainty, equivalent to setting the wall
occupancy probability pw = 1, which results in our wet wall case. This, along with the rules
for compactness, has the effect of causing the cluster to remain attached to the wall.

7
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2.2.1. Percolation probability (wet wall). The percolation probability in the wet wall case
for a cluster grown from a seed of a single site adjacent to the wall was found in [14] to be

Pwet(p) =

⎧⎪⎪⎨
⎪⎪⎩

0 p <
1

2

1 −
(

1 − p

p

)
p � 1

2
,

(2.3)

with critical exponent βwet = 1.

2.2.2. Mean cluster length (wet wall). The average cluster length in the wet wall case was
found, for a seed of width 1 adjacent to the wall, by Essam and TanlaKishani [14] to be

Lwet(p) = 1

|2p − 1| . (2.4)

We note that the mean length of finite clusters for a wet wall is identical to that of the bulk
case, with exponent τwet = 1.

2.3. Dry wall

The dry wall is the case where all sites on the wall, at x = −1, remain dry with certainty—with
the effect that the clusters are not constrained to remain attached to the wall.

2.3.1. Comparing the general damp case to a dry wall. The general damp wall can be made
into a dry wall in one of two ways: the natural way is to set pw = 0, in which case the wall at
x = −1 will be forced to be dry and the seed at the origin will start one step from the wall,
only able to propagate upwards, away from the wall, in the first growth step.

Alternatively we can set pw = p, allowing the wall sites to be filled with the bulk
occupancy probability. In this way, the wall sites at x = −1 can be considered to be part of
the bulk, as they are filled with the same probability, and we can consider the position of the
wall to have ‘shifted’ down by one unit, to x = −2. We note that all sites at x = −2 will
be unoccupied with certainty; thus, we have a dry wall at x = −2. Also, with the seed at the
origin and the wall location shifted down one unit, we have the modification that the seed is
starting two steps from the wall rather than adjacent to it.

This second mapping to a dry wall is convenient in reconciling the difference in definition
for mean number of contacts discussed in section 1.3.3, which we will explore in section 2.3.4.

We will investigate both scenarios in our comparison of the damp wall model to the dry
wall extreme for all properties calculated in this paper, and we expect that it should be possible
to obtain the same dry wall result from both situations.

2.3.2. Percolation probability (dry wall). The percolation probability in the dry wall case,
for a cluster grown from a seed of width 1 adjacent to the wall, was found in [15] to be

Pdry(p) =

⎧⎪⎪⎨
⎪⎪⎩

0 p <
1

2
(2p − 1)2

p3
p � 1

2
,

(2.5)

with critical exponent βdry = 2. Note that this differs from the exponent for the percolation
probability found in the bulk and the wet wall cases βbulk = βwet = 1.

8
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2.3.3. Mean cluster length (dry wall). In [4], an exact expression for the unnormalized mean
length is obtained in the dry case:

L̄dry(p) = θ (p − pc)
q(3 − 2p)

p3
+ L∗(p), (2.6)

where θ (p − pc) is the unit step function, which is zero for values of p below pc = 1
2 , and

L∗(p) = q2

p

∞∑
r=0

[(2r + 2)Cr+1(pq)r+1 + (2r + 1)Cr(pq)r]
∞∑

s=r+1

Cs(pq)s. (2.7)

Also in [4], Zeilberger’s algorithm [21] was used to express this in terms of the elliptic integrals
K(m) and E(m):

L∗(p) = 1

8p3

(
−5 + 4z + 6

√
1 − 4z − 8E(16z2)

π
+ 2(3 − 4z)(1 + 4z)K(16z2)

π

)
, (2.8)

where z = p(1 − p). Note that the square root evaluates to |1 − 2p|.
We note that despite the dry wall percolation probability being a simple rational function,

elliptic integrals are required to express the mean cluster length in the dry wall case. The
asymptotic form as p → 1/2 in the dry case, conjectured in [11] and confirmed in [4], is

L̄dry(p) ∼= B log |2p − 1| + C±, (2.9)

where B = − 8
π

and C± = 4 log 8−8
π

∓ 4. This implies that, effectively, τ dry = 0, and again this
is different to the exponent found in the bulk and wet wall cases.

2.3.4. Mean number of occupied sites at or near the wall (dry wall). In the dry wall case,
unlike the wet wall, the cluster is not constrained to remain adjacent to the wall and may move
away or towards the wall, so we are interested in the cluster’s interaction with the wall. As
discussed in section 1.3.3, the definition of wall contact differs between this paper and [4],
due to the different requirements of the damp wall model. Based on our definition, we can say
that the mean number of contacts in the dry case is

Ndry := N−1(p, 0) = 0.

However, the expression calculated in [4] is equal to the mean number of times the cluster is
adjacent to the wall, at x = 0, so we denote this by N0, corresponding to the mean number of
occupied sites at x = 0 for the dry wall case pw = 0:

Ndry
0 := N0(p, 0).

The unnormalized value for this in the dry wall case was found in [4] to be

N̄dry(p) = θ (p − pc)
q(1 − 2q3)

p4
− q

p
Q(p) + N∗(p), (2.10)

where

N∗(p) = (1 − p)3(1 − 2p)

p

∞∑
r=0

(Cr(pq)r + Cr+1(pq)r+1)

∞∑
s=r+1

(s − r)Cs(pq)s−1. (2.11)

As with the mean length expression, Brak and Essam [4] used Zeilberger’s algorithm [21] to
express N∗(p) in terms of elliptic integrals:

N∗(p) = (1 − 2p)

8p4

(
1 − 4z − 2(1 − 2z)

√
1 − 4z + 4z(1 + 2z)√

1 − 4z

+ 8E(16z2)

π
− 2(3 − 4z)(1 + 4z)K(16z2)

π

)
, (2.12)
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Figure 2. A visual representation of the damp wall parameters, with bulk occupancy p on the
horizontal axis and wall occupancy pw on the vertical axis.

where z = p(1 − p) and
√

1 − 4z = |1 − 2p|. The asymptotic form near pc = 1
2 , also found

in [4], is

N̄dry(p) ∼= 2 + 16

π
(1 − 2p) log |2p − 1|. (2.13)

These calculations from [4], despite using a different definition of wall contact, will still
be helpful as a comparison for the dry wall case. As discussed in section 2.3.1, if we set
pw = p in the damp wall case, this corresponds to the dry wall case with a shifted wall
location, effectively at x = −2. As such, counting the sites at x = −1 becomes equivalent to
counting sites adjacent to a dry wall. So we expect that

N−1(p, p) ∼ N0(p, 0) (2.14)

although we note that the different seed location relative to the wall will cause some minor
difference between the two, but they should display the same critical behaviour.

2.4. Damp wall: phase diagram and percolation probability

2.4.1. Phase diagram. A phase diagram for the model of directed compact percolation near
a damp wall is given in figure 2. Most significantly, we note that the location of the critical
point at p = 1

2 does not change on varying pw.
We see that the extremes pw = 1 and pw = 0 correspond to the wet and dry wall cases,

respectively. However, as discussed in section 2.3.1, pw = p also becomes equivalent to the
dry wall case with the location of the wall effectively shifted to x = −2.

2.4.2. Percolation probability. In the case of a damp wall, the percolation probability was
solved in [16] by mapping the clusters to pairs of directed walks and found to be

P(p, pw) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − 2p)2

p2(p − pw + ppw)
p >

1

2

0 p � 1

2
,

(2.15)

with critical exponent βdamp = 2, except in the wet wall limit pw = 1 where β = 1. We will
explore this mapping to walks and the associated generating function found in [16], and use
similar methods to find expressions for the other properties of interest in the damp case.

10
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x

t

κ1 κ1

κ2 κ2

Figure 3. Mapping the cluster to pairs of directed walks. The probability of this cluster forming
is p5q5 p2

wq2
w . The weighting of the associated damp vesicle is κ2

1 κ2
2 z9 and the weighting of the

corresponding pair of non-intersecting walks (where we truncate the first and last steps of the
walks which make up the vesicle) is g(z, κ1, κ2) = κ2

1 κ2
2 z7. We note the relationship between

the weighting and the cluster probability, i.e. q2g
(

pq,
pw

pq ,
qw

q

)
= q2

(
pw

pq

)2( qw

q

)2
(pq)7 =

p5q5 p2
wq2

w .

3. Damp wall: generating function

We review the mapping to pairs of directed walks used for the damp wall case in [16] and
express the properties of interest in terms of the generating function for directed walks. We
then go on to rearrange this generating function to a form which will be more convenient to
calculate the properties needed.

3.1. Mapping to pairs of directed walks

For clusters of seed width m = 1, which were the focus of the work in [16], we can uniquely
map each cluster to a staircase polygon, or vesicle, that encloses the cluster. We define two
walks to begin at (−1, a0) and (−1, b0), and terminate at (T + 1, aT ) and (T + 1, bT ). Noting
that aT = bT , and that for m = 1 we also have a0 = b0, this has the effect of enclosing the
cluster in a vesicle, which will be a staircase polygon. We weight the vesicle with parameters
that we will later relate to the percolation problem.

We add a weighting of zt to a vesicle with perimeter 2t—that is, weighting according to
its half-perimeter. We also add two different weightings, or fugacities, for wall interaction: we
add a factor of κ1 for each step from x = −1 to x = −2 and a factor of κ2 for each step from
x = −1 to x = 0. See figure 3 for an example of the mapping for an individual cluster, with
corresponding probability and weighted walks.

As in [16], we denote by dt ′,u1,u2 the number of staircase polygons of half-perimeter t ′,
with u1 steps from x = −1 to x = −2 and u2 steps from x = −1 to x = 0. So we can express
the generating function for these damp vesicles as

Gdv(z; κ1, κ2) =
∑
t ′=2

∑
u1,u2

dt ′,u1,u2κ
u1
1 κ

u2
2 zt ′ . (3.1)

In fact it is convenient for us to truncate the vesicle at each end—resulting in pairs
of strictly avoiding walks, starting and ending one step apart. The length of each such walk
corresponds to the number of time steps in the corresponding cluster. However, we do not wish
to lose the weighting of κ1 or κ2 that might be present on one of these truncated steps. So we
simply define the generating function we are interested in relating to the percolation problem,

11
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G(z; κ1, κ2), to be the damp vesicle generating function with two factors of z removed:

G(z; κ1, κ2) = 1

z2
Gdv(z; κ1, κ2). (3.2)

An expression for this generating function was found in [16], and we will go on to express
this in a more convenient form in section 3.5.

3.2. Percolation probability in terms of G(z; κ1, κ2)

We note that if we can relate the weighted walks to the percolation problem, then the generating
function for these walks will lead us to the sum of the probabilities of all finite clusters grown
from a seed of width 1 adjacent to the wall. This is equivalent to Q(p, pw), and hence will
lead to an expression for P(p, pw) which is the probability of an infinite cluster being grown
from the seed.

In relating the weighted walks to the percolation problem, we note that a step weighted
with κ1 is equivalent to a wet wall site in the cluster, and κ2 is equivalent to a dry wall site.
With this in mind, we find the values of z, κ1 and κ2 corresponding to the percolation problem
to be

z = pq, κ1 = pw

pq
, κ2 = qw

q
. (3.3)

We can hence express Q(p, pw) in terms of the generating function,

Q(p, pw) = q2G

(
pq,

pw

pq
,

qw

q

)
. (3.4)

We note that the extra factor of q2 is to account for the probability of a cluster terminating.
Hence, we have the following relationship between the percolation probability and the
generating function:

P(p, pw) = 1 − q2G

(
pq,

pw

pq
,

qw

q

)
(3.5)

=

⎧⎪⎪⎨
⎪⎪⎩

(1 − 2p)2

p2(p − pw + ppw)
p >

1

2

0 p � 1

2
.

(3.6)

This result, found in [16], leads us to investigate other properties of the percolation cluster and
how we can relate them to the generating function for directed walks.

3.3. Mean length in terms of G(z; κ1κ2)

We recall the definition of the cluster length as the number of particles in the shortest path from
the seed to the terminal point, including the seed. The generating function gives a weighting of
z for each ‘time step’ in a cluster’s growth, not including the seed. As a result, a cluster with t
time steps (and hence length t + 1) will gain a weighting of zt . By differentiating zG(z; κ1, κ2)

by z we effectively multiply that coefficient of zt by t + 1. To find the unnormalized mean
length we than evaluate at the values corresponding to the percolation problem—remembering
that we must also adjust by a factor of q2 to bring the walk model in line with the percolation
problem.

So the unnormalized mean cluster length (noting that above pc the average is taken only
over finite clusters) is given by

L̄(p, pw) = (1 − p)2 d

dz
(zG(z; κ1, κ2)) (3.7)

evaluated at z = p(1 − p), κ1 = pw

p(1−p)
, κ2 = 1−pw

1−p .

12
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3.4. Mean number of wall contacts in terms of G(z; κ1, κ2)

The number of wall contacts is defined to be the number of sites on the wall which are
included in the cluster, which corresponds to the number of wet wall sites in the cluster. As
the generating function G(z; κ1, κ2) gives a weighting of κ1 for each wet wall site, we can
define the unnormalized mean number of contacts with the wall as

N̄(p) = (1 − p)2κ1
∂

∂κ1
(G(z; κ1, κ2))|z=p(1−p), κ1= pw

p(1−p)
, κ2= 1−pw

1−p .
(3.8)

3.5. Re-expressing the generating function

Before we use the generating function to find the above properties of interest, we
first manipulate it into a more convenient form. In [16], the variables c and d were
introduced by

κ1 = (1 + c)(1 + d) and κ2 = 1 − cd (3.9)

in terms of which we further define

ωc = c

(1 + c)2
and ωd = d

(1 + d)2
. (3.10)

We take the generating function found in [16], G(z; κ1, κ2), and split its terms up according to
the presence of partition functions with respect to c, d or neither, so it is of the form

G(z; κ1, κ2) = �0(z) + �c(z) − �d(z), (3.11)

where

�0(z) = −A2(z)ωc(c − d)κ2 (3.12)

�c(z) = A1
ωc

z

∞∑
r=1

Cr[Z2r−2(c)z2r−1 + Z2r(c)z2r]

− A2(z)ωc

∞∑
r=1

Cr[Z2r+2(c)z2r + Z2r−2(c)z2r−2] (3.13)

�d(z) = A1
ωc

z

∞∑
r=1

Cr[Z2r−2(d)z2r−1 + Z2r(d)z2r]

− A2(z)ωc

∞∑
r=1

Cr[Z2r+2(d)z2r + Z2r−2(d)z2r−2], (3.14)

where we have defined for convenience of expression

A1 = 1

(c − d)ωc
(3.15)

A2(z) = cd

ωcκ
2
1 (c − d)(z2 − ωcωd )

. (3.16)

Also note that Z2r(d) is a sum over Dyck paths of length 2r weighted with a factor κ = 1 + d
for each contact with the axis (the contact polynomial, denoted ẐS

2r in [5]). It was shown in
equations (3.19) and (3.23) of [5] that

Z2r(d) = (1 + d)

r∑
m=0

B2r,2mdm, (3.17)
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where Bt,h is the Ballot number, as defined in [3],

Bt,h = (h + 1)t!(
1
2 (t + h) + 1

)
!
(

1
2 (t − h)

)
!
. (3.18)

The expression in (3.17) is also valid for Z2r(c), but in the subsequent application to
percolation theory an expansion in terms of ωc will be more useful. We note that Z2r(c)

satisfies the recurrence relation, found in [3],

ωcZ2r(c) = −Cr−1 + Z2r−2(c), (3.19)

which allows us to re-express �c(z) and �d(z) as follows:

�c(z) =
(

1 + ωc

z

) [
A1

ωc

z
− A2(z)

(
1 − ωc

z

)] ∞∑
r=1

CrZ2r(c)z2r

+ ωc

z2
(A1 + A2(z))

∞∑
r=1

CrCr−1 + A2(z)
∞∑

r=1

C2
r z2r (3.20)

�d(z) =
(

1 + ωd

z

) [
A1

ωc

z
− A2(z)

(
ωc

ωd
− ωc

z

)] ∞∑
r=1

CrZ2r(d)z2r

+ ωc

z2
(A1 + A2(z))

∞∑
r=1

CrCr−1 + A2(z)
ωc

ωd

∞∑
r=1

C2
r z2r. (3.21)

So we note that the terms involving CrCr−1 will cancel in �c(z) − �d(z),

�c(z) − �d(z) =
(

1 + ωc

z

) [
A1

ωc

z
− A2(z)

(
1 − ωc

z

)] ∞∑
r=1

CrZ2r(c)z2r

−
(

1 + ωd

z

) [
A1

ωc

z
− A2(z)

(
ωc

ωd
− ωc

z

)] ∞∑
r=1

CrZ2r(d)z2r

+ A2(z)

(
1 − ωc

ωd

) ∞∑
r=1

C2
r z2r. (3.22)

This manipulation has been done to make the following calculations simpler, and also to assist
in making contact with previously studied cases.

4. Mean cluster length

We recall that the cluster length is the number of particles in the shortest path from the seed to
the terminal point, including the seed, and the unnormalized mean cluster length is given by

L̄(p, pw) = (1 − p)2 d

dz
(zG(z; κ1, κ2))z=pq, κ1= pw

pq , κ2= qw
q
. (4.1)

Recalling from equation (3.4) that Q(p, pw), the probability of a finite cluster given in [16],
is simply related to the generating function at the percolation values, we can hence write the
mean length as

L̄(p, pw) = Q(p, pw) + p(1 − p)3 d

dz
G(z; κ1, κ2)

∣∣∣∣
z=p(1−p)

. (4.2)
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4.1. Calculating the mean cluster length

We proceed with the calculation using the rearranged generating function found in section 3.5.
In this and the following percolation calculations, c and d are functions of p and pw given by

c = p

q
and d = pw − p

p
. (4.3)

Using (3.9), this is in agreement with the values of κ1 and κ2 in (3.3). Further using (3.10)
gives

ωc = pq and ωd = p(pw − p)

p2
w

. (4.4)

Using (3.11) and (4.2), we can write the mean length of finite clusters as

L̄(p, pw) = Q(p, pw) + p(1 − p)3(�′
0(ωc) + �′

c(ωc) − �′
d(ωc)). (4.5)

Differentiating (3.12) with respect to z, and evaluating at the percolation values, gives

�′
0(ωc) = −A′

2(ωc)ωc(c − d)κ2 = 2c(1 + d)2A2 = 2(1 + c)4d(1 + d)2

(c − d)2(1 − cd)
, (4.6)

where we define

A2 := A2(ωc). (4.7)

Differentiating (3.22) gives a much more complicated expression, but if we then substitute
z = ωc and use the relationships

A2(ωc) = A1ωd

ωc − ωd
, A′

2(ωc) = − 2

ωc − ωd
A2 and

A2

ωd
= A1 + A2

ωc
, (4.8)

we have

�′
c(ωc) − �′

d(ωc) = 4A1

ωc

∞∑
r=1

rCrZ2r(c)ω2r
c − 2A1

ωc

∞∑
r=1

rC2
r ω

2r
c − 3A1 + 2A2

ωc

∞∑
r=1

CrZ2r(c)ω2r
c

+ A1 + A2

ωc

[
2

∞∑
r=1

C2
r ω

2r
c −

(
1 + ωd

ωc

) ∞∑
r=1

CrZ2r(d)ω2r
c

]
. (4.9)

In order to make contact with the dry wall limit analysed in [4], we write the partition
function in the form

Z2r(c) = ω−r
c

(
1 + c −

r−1∑
s=0

Csω
s
c

)
(4.10)

= ω−r
c

(
(c − c∗) +

∞∑
s=r

Csω
s
c

)
, (4.11)

where

c∗(z) =
∞∑

r=1

Crz
r = 1 − 2z − √

1 − 4z

2z
(4.12)

c∗ := c∗(ωc) =
⎧⎨
⎩

c for c � 1
1

c
for c > 1.

(4.13)
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4.2. Result for the mean length of compact clusters

After extensive manipulations described in [12], the final result is

L̄(p, pw) = AL(p, pw)

∞∑
r=1

C2
r (pq)2r + BL(p, pw)

∞∑
r=1

CrZ2r(d)(pq)2r

+ DL(p, pw)L∗(p) + EL(p, pw), (4.14)

where we recall L∗(p) from the mean length in the dry wall case, given in section 2.3.3 in
terms of elliptic integrals, and

AL(p, pw) = p2
w(1 − p)3

(1 − pw)(p − pw + ppw)2
(4.15)

BL(p, pw) = − (1 − p)2(p2
w(1 − p) + pw − p)

(1 − pw)(p − pw + ppw)2
(4.16)

DL(p, pw) = p

p − pw + ppw

(4.17)

EL(p, pw) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(pw(1 − pw) − p + p2 p2
w)

(1 − pw)(p − pw + ppw)2
for p � 1

2

− q2
(
1 − pw − (2 − 3pw)(1 + pw)q + (

1 − 5p2
w

)
q2 + p2

wq3
)

(1 − pw)(1 − q)2(1 − (1 + pw)q)2 for p > 1
2 .

(4.18)

4.3. Analysis of result

We see from (4.14) that the mean length has been grouped into four terms, each with rational
coefficients. We consider each of these terms to analyse the result for mean length.

We note that the term with coefficient AL(p, pw) can be expressed in terms of elliptic
integrals, using a result from [20]

∞∑
r=1

C2
r (pq)2r =

[
E(16p2q2)

π p2q2
− (1 − 16p2q2)K(16p2q2)

2π p2q2
− 1

4p2q2
− 1

]
, (4.19)

noting that the coefficient of K(16p2q2) in (4.19) goes to zero as p → 1
2 , so this term does not

contribute to the dominant critical behaviour near pc = 1
2 .

We now analyse the term in (4.14) with coefficient BL(p, pw), making the definition

ar = CrZ2r(d)(pq)2r. (4.20)

We can use the results from [5] for the single walk partition function Z2r(d), along with the
asymptotic form of the Catalan numbers, to write

ar ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
4r

r3/2
√

π

) (
2r

r3/2

)
(pq)2r for d < 1(

4r

r3/2
√

π

) (
2r

r1/2

)
(pq)2r for d = 1(

4r

r3/2
√

π

) (
d + 1√

d

)r

(pq)2r for d > 1,

(4.21)

where we recall that d = pw−p
p .
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We can now simply use the ratio test to prove that
∑

ar converges regardless of
p ∈ [0, 1], pw ∈ [0, 1). For d � 1, that is, pw � 2p, we have∣∣∣∣ar+1

ar

∣∣∣∣ ∼ 8(pq)2 � 1/2 (4.22)

for p � 1, since pq � 1/4, and so the sum converges. Note that since pw < 1, we have
pw � 2p automatically when p > 1/2. For d > 1, that is, (pw − p) > p,∣∣∣∣ar+1

ar

∣∣∣∣ ∼ 4p2q2 pw√
p(pw − p)

< 4ppwq2 < 4pq2 < 1, (4.23)

so once again the sum converges. Thus, despite not being simply expressed, the term with
coefficient BL(p, pw) always converges—including near p = 1

2 . As a result, it does not
contribute to the divergent critical behaviour near p = 1

2 of the mean length, which we see via
the term with coefficient DL(p, pw).

Looking at the term with coefficient DL(p, pw), we recall that L∗(p) comes from the mean
length expression in the dry wall case [4] and can be expressed in terms of elliptic integrals as
in equation (2.8). The logarithmic divergence of this term will dominate the critical behaviour
of L̄(p, pw), as we note that the final term is simply EL(p, pw), a rational function in p and
pw. So the damp wall result can be expressed in terms of elliptic integrals and is of a similar
form to the dry wall case, as we would expect, although it also involves additional terms (the
double sum with coefficient BL(p, pw)) which have not been simply expressed.

4.3.1. Asymptotic behaviour. The behaviour near the critical point p = 1
2 is dominated by

the elliptic integral K(16p2q2) from the L∗(p) term, and we have

L̄(p, pw) ∼= B log |2p − 1| + C, (4.24)

where

B = −8

π(1 − pw)
(4.25)

C = 1

(1 − pw)

[
4(3 log 2 − 2

π
∓ 4

]
+ 8p2

w

π(1 − pw)3
+ C∗(pw)

+ 1

(1 − pw)3

⎧⎪⎨
⎪⎩

pw + 2p2
w − p3

w for p <
1

2

8 − 17pw + 6p2
w + p3

w for p >
1

2
,

(4.26)

where

C∗(pw) = − p2
w + 2pw − 1

2(1 − pw)3

∞∑
r=1

CrZ2r(2pw − 1)

(
1

4

)2r

. (4.27)

So we can see that the damp wall case exhibits similar critical behaviour to the dry wall case.
We will explore the relationship between the damp wall and dry wall further in section 4.4.

4.3.2. Expansion. Expanding (4.14) in powers of p and q gives series which agree with those
obtained by applying (3.7) to the expression for the generating function found in [16], equation
(4.69), both yielding the following expansions:

L̄(p, pw) = 1 + pw + (
1 + pw + 2p2

w

)
p + (

2 + pw + 5p3
w

)
p2

+ (
3 + 3pw + 3p2

w − 7p3
w + 14p4

w

)
p3

+ (
6 + 3pw + 2p2

w + 21p3
w − 42p4

w + 42p5
w

)
p4

+ (
9 + 11pw + 9p2

w − 37p3
w + 138p4

w − 198p5
w + 132p6

w

)
p5 + · · · (4.28)
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L̄(1 − q, pw) = (1 − pw)q + (
5 − 3p2

w

)
q2 + (

13 + 5pw − 5p2
w − 5p3

w

)
q3

+ (
26 + 18pw − p2

w − 14p3
w − 7p4

w

)
q4

+ (
46 + 44pw + 17p2

w − 19p3
w − 27p4

w − 9p5
w

)
q5 + · · · . (4.29)

4.3.3. Behaviour of the mean length near the curve q = 1/(1 + pw) in the low-density region.
The amplitudes A1 and A2 are divergent at q = 1/(1 + pw), a point in the low-density region
q � 1

2 . This appears to lead to a divergence in the mean length below the critical probability,
which is impossible on physical grounds. As discussed in [12], this apparent divergence must
be cancelled out by other factors in these terms.

4.4. Comparison to the mean length of a dry wall

We compare the mean length result we have found for the damp wall model to the previously
found result for the dry wall case. We consider each of the two mappings to the dry wall,
pw = 0 and pw = p, as introduced in section 2.3.1.

4.4.1. The case pw = 0.

When pw = 0,

d = −1, AL = 0, Z2r(d) = 0, DL(p, 0) = 1 (4.30)

and

EL(p, 0) =

⎧⎪⎪⎨
⎪⎪⎩

0 for p <
1

2
q(1 + 2q)

(1 − q)3
for p >

1

2
;

(4.31)

thus,

L̄(p, 0) = L∗(p) +
⎧⎨
⎩

0 for p < pc

q(1 + 2q)

(1 − q)3
for p > pc

(4.32)

= L̄dry(p) (4.33)

as expected. So we see that for pw = 0, the damp wall expression describes the dry wall case.

4.4.2. The case pw = p.

When pw = p,

d = 0, AL(p, p) = −BL(p, p) = −q2

p2
and Z2r(d) = Cr, (4.34)

so the first two terms of (4.14) cancel. Further DL(p, p) = 1/p and

EL(p, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1

p
for p < 1/2

q2(3 + q)

(1 − q)4
for p > 1/2;

(4.35)
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thus,

L̄(p, p) = L∗(p)

p
+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1

p
for p < pc

q2(q + 3)

(1 − q)4
for p > pc

(4.36)

= Ldry(p) − Qdry(p)

p
. (4.37)

This relation is expected since with pw = p the dry wall problem has source at (0, 1) instead
of the usual (0, 0). The clusters are therefore one unit shorter and there is one less factor of p.

So we see we are able to equally derive the dry wall result from the damp wall by
setting pw = p, although the shift in wall location means that the relationship is not as clear
immediately as in the pw = 0 case.

5. Mean number of wall contacts

We now consider the problem of finding the mean number of wall contacts, defined as the
number of times the cluster makes contact with the wall. We expect the evaluation of this to
yield a similar form of solution to the mean length, as the dry wall case for this property also
involves elliptic integrals and the calculation proceeds in a similar way to the mean length
calculation.

5.1. Calculating mean number of wall contacts

We recall that the generating function G(z; κ1, κ2) gives a weighting of κ1 for each wet wall
site, and so we can define the unnormalized mean number of contacts with the wall as

N̄(p) = (1 − p)2κ1
∂

∂κ1
(G(z; κ1, κ2))

∣∣∣∣
z=p(1−p), κ1= pw

p(1−p)
, κ2= 1−pw

1−p

. (5.1)

We recall the expression for G(z; κ1, κ2) given in (3.11), (3.12) and (3.22) and first attempt
to re-express all variables in terms of κ1 and κ2. We note the relationships

c + d = κ1 + κ2 − 2 (5.2)

cd = 1 − κ2 (5.3)

ωcωd = 1 − κ2

κ2
1

. (5.4)

We can re-express �0 from (3.12) explicitly in terms of z, κ1 and κ2 only,

�0(κ1) = −κ2(1 − κ2)

κ2
1 z2 + κ2 − 1

. (5.5)

Similarly we will express �c − �d from (3.22) in terms of z, κ1 and κ2, but as it is a
cumbersome expression to work with, we will express its terms separately, defining

�c(κ1) − �d(κ1) = α(κ1)β(κ1) + γ (κ1)δ(κ1) + �3(κ1), (5.6)

where (noting that c, d, ωc and ωd are functions of κ1 and κ2)

α(κ1) =
(

1 + ωc

z

) [
cκ2

1 z − (1 − κ2)(1 + c)2

c(c − d)(κ2
1 z2 + κ2 − 1)

]
(5.7)
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β(κ1) =
∞∑

r=1

CrZ2r(c)z2r (5.8)

γ (κ1) = −
(

1 + ωd

z

) [
dκ2

1 z − (1 − κ2)(1 + d)2

d(c − d)(κ2
1 z2 + κ2 − 1)

]
(5.9)

δ(κ1) =
∞∑

r=1

CrZ2r(d)z2r (5.10)

�3(κ1) = −κ2

κ2
1 z2 + κ2 − 1

∞∑
r=1

C2
r z2r. (5.11)

We have suppressed the dependence on κ2 and z which are to be held constant when taking
the κ1 derivative, denoted by ′, below.

5.1.1. Calculating (∂/∂κ1)κ2,z. Recalling the relationships given in (3.9) and (3.10), we can
calculate the partial derivatives with respect to κ1 as(

∂c

∂κ1

)
κ2

= c

c − d

(
∂d

∂κ1

)
κ2

= d

d − c
(5.12)

(
∂ωc

∂κ1

)
κ2

= c(1 − c)

(1 + c)3(c − d)

(
∂ωd

∂κ1

)
κ2

= d(1 − d)

(1 + d)3(d − c)
. (5.13)

Differentiating (5.5) gives

�′
0(κ1) = 2κ1κ2z2(1 − κ2)

(κ2
1 z2 + κ2 − 1)2

. (5.14)

Evaluating this at the percolation values, we have

�′
0

(
pw

pq

)
= 2ppw(1 − p)(pw − p)

(1 − pw)(p − pw + ppw)2
. (5.15)

The derivative of (5.6) gives

�′
c(κ1) − �′

d(κ1) = α(κ1)β
′(κ1) + α′(κ1)β(κ1) + γ (κ1)δ

′(κ1) + γ ′(κ1)δ(κ1) + �′
3(κ1),

(5.16)

where we are interested in the value of this at κ1 = pw

pq . We can calculate expressions for each
term in (5.16), with the following results:

α

(
pw

pq

)
= 2

p − pw + ppw

(5.17)

α′
(

pw

pq

)
= p(1 − p)(1 − 2p)

(p − pw + ppw)2
− 2ppw(1 − p)2(2p − pw)

(1 − pw)(p − pw + ppw)3
(5.18)

β

(
pw

pq

)
= 1

1 − p

∞∑
r=1

Cru
r −

∞∑
r=1

Cru
r

r−1∑
s=0

Csu
s, where u = p(1 − p), (5.19)
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β ′
(

pw

pq

)
= p2

p − pw + ppw

[ ∞∑
r=1

Cru
r − (1 − p)(1 − 2p)

d

du

( ∞∑
r=1

Cru
r

)

− (1 − p)2(1 − 2p)

∞∑
r=1

r−1∑
s=0

(s − r)CrCsu
r+s−1

]
(5.20)

γ

(
pw

pq

)
= 0 (5.21)

γ ′
(

pw

pq

)
= p(1 − p)(1 − 2p)(pw − p + p2

w(1 − p))

(1 − pw)(p − pw + ppw)3
(5.22)

δ

(
pw

pq

)
=

∞∑
r=1

CrZ2r

(
pw − p

p

)
(pq)2r (5.23)

�′
3(κ1) = 2ppw(1 − p)2

(1 − pw)(p − pw + ppw)2

∞∑
r=1

C2
r (pq)2r. (5.24)

It can be noted that δ′(κ1) is finite, and so the γ (κ1)δ
′(κ1) term goes to zero, since γ (κ1) = 0.

5.1.2. Simplifying the expressions. We now simplify some of the terms given in section 5.1.1,
so that we will be able to express the mean number of contacts in a simpler form, in terms
of known functions. We can show by manipulation (splitting the sum up into two parts and
reversing the order of integration on one sum) that

2
∞∑

r=1

r−1∑
s=0

CrCsu
s+r =

( ∞∑
r=1

Cru
r

)2

+ 2
∞∑

r=1

Cru
r −

∞∑
r=1

C2
r u2r. (5.25)

We have now expressed this double summation in terms of single sums, all of which can be
re-expressed further by known relationships. We recall from (4.19) that the final term in (5.25)
can be expressed in terms of elliptic integrals. Also we have from [4] that

∞∑
r=1

Cr(pq)r =

⎧⎪⎪⎨
⎪⎪⎩

p

1 − p
p <

1

2
1 − p

p
p >

1

2
.

(5.26)

We use similar methods of manipulation as in (5.25) to obtain the relationship

2
∞∑

r=1

r−1∑
s=0

(s−r)CrCsu
r+s−1 = −p

q3(1 − 2p)
N∗(p)+

∞∑
s=1

s∑
r=1

CrCsu
s+r−1 −

∞∑
s=1

sCsu
s−1, (5.27)

where we recall N∗(p) from equation (2.11), thus making contact with the dry wall expression
for mean number of contacts. We note that the double sum in (5.27) can be re-expressed in
terms of known functions using (5.25), and that

∞∑
s=1

sCsu
s−1 = d

du

( ∞∑
s=1

Csu
s

)
. (5.28)
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So we have

∞∑
s=1

sCs(pq)s−1 =

⎧⎪⎪⎨
⎪⎪⎩

1

(1 − 2p)(1 − p)2
, p <

1

2
1

p2(2p − 1)
, p >

1

2
,

(5.29)

and in this way we have expressed simply all terms which have arisen that differ from those
encountered in the mean length calculation, so we will be able to similarly group coefficients.

5.2. Result for the mean number of wall contacts

We combine (3.8), (5.15) and (5.16) to obtain the (unnormalized) mean number of wall
contacts:

N̄(p, pw) = AN (p, pw)

∞∑
r=1

C2
r (pq)2r + BN (p, pw)

∞∑
r=1

CrZ2r(d)(pq)2r

+ DN (p, pw)N∗(p) + EN (p, pw), (5.30)

where

AN (p, pw) = − p3
w(1 − p)3(1 − 2p)

(1 − pw)(p − pw + ppw)3
(5.31)

BN (p, pw) = pw(1 − p)2(1 − 2p)(pw − p + p2
w(1 − p))

(1 − pw)(p − pw + ppw)3
(5.32)

DN (p, pw) = pw p2

(p − pw + ppw)2
(5.33)

EN (p, pw)

=
⎧⎨
⎩

pw(1−p)(2p3 p2
w−2p3

w+ppw(1+3pw+4p2
w)−p2(1+2pw+4p2

w+2p3
w))

(1−pw)(p−pw+ppw)3 , p < 1
2

(1−p)2 pw(pw(1−2pw )−p(1+3pw−9p2
w)+p2(5−5pw−7p2

w−2p3
w)−p3(1−2pw−4p2

w−2p3
w)−2p4 p2

w)

p2(1−pw )(p−pw+ppw)3 , p > 1
2 .

(5.34)

Refer to figure 4 for a graph of the mean number of contacts when pw = 0.4.

5.3. Analysis of results

5.3.1. Asympotics behaviour. As in the case of mean length, the only term which is not
expressed in terms of standard functions is the sum containing Z2r(d)—but this does not
contribute to the behaviour near the critical point, which is dominated by the N∗(p) term, with
constant contribution from EN (p, pw).

From [4], we have the asymptotic form of N∗(p),

N∗(p) ∼= ±3 + 16

π
(1 − 2p) log |1 − 2p|, (5.35)

where the positive and negative correspond to approaching the critical point from above and
below, respectively.

Hence, we have the asymptotic form for the mean number of contacts, as p → 1
2 ,

N̄(p, pw) ∼= A(pw) + B(pw)(1 − 2p) log |1 − 2p|, (5.36)
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Figure 4. This is a graph of N̄(p, 0.4), plotted by expanding the sums in (5.30) up to r = 100.

where

A(pw) = 2pw

1 − pw

(5.37)

B(pw) = 16pw

π(1 − pw)2
(5.38)

and so we note that the asymptotic form is similar to the dry wall case.

5.3.2. Expansion. Expanding (5.30) in powers of p gives the low-density expansion, for
which the first five terms are

N̄(p, pw) = pw + 2p2
w p + pw

(
1 − 2pw + 5p2

w

)
p2 + 2p2

w

(
3 − 6pw + 7p2

w

)
p3

+ pw

(
3 − 10pw + 37p2

w − 56p3
w + 42p4

w

)
p4 + O(p5), (5.39)

and in powers of q we have the high-density expansion,

N̄(1 − q, pw) = pw(3 − 2pw)q2 − 4pw(−2 + p2
w)q3 + pw

(
13 + 12pw − 8pw

2 − 6pw
3
)
q4

+ 2pw

(
8 + 18pw + pw

2 − 10pw
3 − 4pw

4)q5

+ pw

(
14 + 70pw + 47pw

2 − 28pw
3 − 36pw

4 − 10pw
5
)
q6 + O(q7). (5.40)

5.4. Dry wall comparison

5.4.1. The case pw = p. As previously noted, the pw = p case corresponds to a similar
situation to the dry wall case considered in [4], with the seed shifted up by one unit. Evaluating
the coefficients in section 5.2 gives

BN (p, p) = −AN (p, p) = (1 − p)2(1 − 2p)

p3
, DN (p, p) = 1

p
(5.41)

and

EN (p, p) =

⎧⎪⎪⎨
⎪⎪⎩

− 1

p2
for p <

1

2
q2(1 + 2q)

(1 − q)4
for p >

1

2
.

(5.42)
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Figure 5. This is a graph of the dry wall case, N̄(p, p), plotted by expanding the sums in (5.30) up
to r = 100.

Also when p = pw, we have d = 0 and Z2r(0) = Cr so that the first two terms in (5.30)
cancel which leads to

N̄(p, p) = 1

p
N∗(p) + EN (p, p) = N̄dry

0 (p) − Qdry(p)

p
. (5.43)

Refer to figure 5 for a graph of the mean number of contacts in this dry wall comparison.

5.4.2. The case pw = 0. In the case pw = 0, there are no cluster contacts with the wall.
Nevertheless if we remove the first pw factor, which is always present, the formula will count
the mean number of wet sites in the x = 0 row, adjacent to the wall. Thus, for p < 1

2 ,

AN (p, pw)

pw

∣∣∣∣
pw=0

= 0 (5.44)

BN (p, pw)

pw

∣∣∣∣
pw=0

= − p(1 − p)2(1 − 2p)

p3
(5.45)

DN (p, pw)

pw

∣∣∣∣
pw=0

= 1 (5.46)

EN (p, pw)

pw

∣∣∣∣
pw=0

= −1 − p

p
. (5.47)

Also when pw = 0, d = −1 and Z2r(d) = 0 so, by comparison with (2.10),

N̄(p, pw)

pw

∣∣∣∣
pw=0

= N∗(p) − 1 − p

p
= N̄dry(p). (5.48)

So we have derived the dry wall result for the mean number of contacts, using our damp
wall expression, in both the pw = p and pw = 0 cases.

6. Conclusion

We have derived an exact expression for both the mean length and mean number of contacts
with the wall in the model of directed, compact percolation near a damp wall. From each
we can see how the limiting case of the dry wall arises. Our results show that the critical
behaviour for a damp wall for each of these properties mimics that of the dry wall situation but
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Table 2. Summary of critical exponents for each case of directed compact percolation.

Exponent for Bulk Wet Dry Damp

β percolation probability 1 1 2 2
τ mean length 1 1 log log
ψ mean wall contacts – – log log

differs from that for a wet wall and in the bulk. We provide a summary of critical exponents in
table 2.

We note that the generating function for the pairs of walks related to our problem is
D-finite though not elementary or even algebraic. We have used this generating function to
obtain expressions for our cluster properties. Previously [16], we found that surprisingly the
percolation probability was a rational function of the two parameters of the model. However,
we find, in contrast, that the mean length and mean number of contacts give expressions
involving elliptic integrals and more complicated functions. Further to this we note that the
functions involved in the damp wall case, although involving elliptic integrals similar to the dry
wall case, are in a more complicated form. Naturally, there is the inclusion of the additional
variable pw which leads to more cumbersome coefficients, but in addition to this we note
the presence of extra terms in the calculation of both the mean length and mean number of
contacts, of the form of double sums which apparently cannot be expressed or evaluated into
simpler expressions.

Our expressions show that the dry wall case is quite naturally expressed from the damp
wall by setting pw = 0, but we can in fact also reach the dry wall problem by setting pw = p,
thus shifting the location of the wall. We note that our expressions for properties calculated
in this paper have a singular limit for the wet wall case, pw = 1, due to the damp wall
definition including sites on the wall, which was not previously the case for the wet wall
considered in [14].

7. Future work

It would be interesting future work on directed compact percolation near a wall to calculate the
mean size of clusters near a damp wall. The mean size and mean length are not simply related,
and we will not be able to use similar methods to solve for the mean size. To use a generating
function method, we would require an area generating function for weighted vesicles, rather
than simply G(z; κ1, κ2) which is a perimeter generating function.

We have begun to investigate mean size by exploring the recurrence relations and
associated functional equations, with work to be published at a future time [13]. From
preliminary results, it is not clear at this stage whether the solution for the mean size generating
function is even D-finite, and it can be seen that the form of solution differs considerably from
the previously studied cases.
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