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1. Introduction and model

In the field of quantum information the property of entanglement plays a key role (see [2]
and references therein). It is also of great interest to those studying quantum critical
phenomena [3]–[12] since the scaling behaviour of the entanglement is a sign of criticality.
The entanglement is a property of one part of a quantum system that is divided into
parts. Consider a quantum system C in a pure state which can be considered as a sum of
two parts A and B. The von Neumann entanglement entropy Sq is then defined as

Sq(A) = −Tr(ρA ln ρA) (1.1)

where ρA = TrBρ with ρ being the density matrix of the total system, and with
Sq(A) = Sq(B). Let us consider one-dimensional quantum spin chains of total size n.
If the system is non-critical the entanglement entropy of the ground state will saturate to
a constant. However, if the ground state of an infinite system is critical then the entropy
diverges with the size nA of the subsystem A as

Sq(nA) ∼ γ lnnA + C for n� nA (1.2)

where γ is proportional to the central charge c of the corresponding conformal field
theory [5] and depends on the kinds of boundary conditions that have been imposed.
Here C is a non-universal constant. Furthermore, the finite-size scaling behaviour is
predicted to be

Sq(nA, n) ≈ γ ln[n sin(πnA/n)/π] + C. (1.3)

Note that averaging over nA implies a logarithmic divergence in n.
Alcaraz et al [1] have recently considered the shared information in ground states

which are superpositions of valence bond states. They considered ground states where
the coefficients are all real non-negative and so could be considered as probabilities
of configurations. Hence they considered the shared information in a bipartition of a
classical rather than a quantum system. However, the ground states that they studied can
describe the equilibrium problems of spin 1/2 SU(2) symmetric one-dimensional quantum
chains [4] as well as the probability distribution functions (PDFs) of stationary states of
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Figure 1. An example of a link pattern and the corresponding Dyck path of
length n = 10.

stochastic processes. In particular, they presented four estimators of shared information
and compared them in two models. In both models the configuration spaces were Dyck
paths. These paths were derived from the consideration of an open one-dimensional system
of n sites (n even) where the sites are connected by n/2 nonintersecting links; see figure 1.
The links were seen as Uq(sl(2)) singlets. Importantly, there is a bijection between the
link patterns and Dyck paths.

The differences between the two models are the weightings associated with different
path configurations. One of the two models considered [1] was a directed polymer model
where the Dyck paths are seen as conformations of a polymer and visits of the polymer
to the surface are weighted. This means that the model is a well known model of polymer
adsorption [13, 14]. Also, one of the four estimators of shared information was the valence
bond entanglement entropy [15, 16, 6] which is the average height of the Dyck path at a site
nA for a system of size n. Despite the fact that the adsorption model has been well studied,
the average height for a large system has not been calculated previously as a function of
the weighting parameter, even when averaged over nA. One reason for this is that naively
it requires the solution of a more general model where the area under the polymer is
weighted. While this can be done, one is then required to use q-series asymptotics to
provide the required results. Here we calculate the needed quantities without recourse to
q-series and the solution of the generalized model, by extending the so-called Temperley
method [17, 18]. Usually in the solution of directed polymer models by the Temperley
method [17, 18] a second-order difference equation is obtained; here we derive a set of two
coupled equations that can be solved for the quantity of interest.

The model. The model that we focus on is that of adsorbing Dyck paths at a wall [13, 14].
We define a more general model where the sum of heights of the walk is also weighted,
though we shall set this weight to 1 in our calculations.

Dyck paths are directed walks on Z
2 starting at (0, 0) and ending on the line y = 0

at (n, 0), which have no vertices with negative y-coordinates, and which have steps in
the (1, 1) and (1,−1) directions. We consider there to be a wall at y = 0. Let us define
coordinates of the sites of the walk to be (i, ri) for i = 0, . . . , n; we then have r0 ≡ 0 and
rn = 0 by construction for Dyck paths. We add an energy for sites of the walk that lie on
the surface (wall) at y = 0 other than at the origin to give the adsorbing polymer model;
see figure 2. An energy −J is added for each such visit. We define a Boltzmann weight
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Figure 2. An example of a Dyck path of length n = 10 given by the values of the
defining variables ri, i = 0, 1, . . . , 10. These give the heights of the sites above the
surface; here we have r0 = 0, r1 = 1, r2 = 2, r3 = 1, r4 = 2, r5 = 3, r6 = 2, r7 =
1, r8 = 0, r9 = 1, r10 = 0. The number of visits to the surface, not counting the
origin, is m = 2, so the Boltzmann weight of this configuration is κ2. The total
height R =

∑10
i=0 ri = 13 for this configuration.

κ = eβJ associated with these visits, where β = 1/kBT , kB is Boltzmann’s constant and
T is the absolute temperature. The partition function of our model is

Ẑn(κ) =
∑

ψn

κm(ψn) (1.4)

where ψn are Dyck path configurations and m(ψn) are the number of visits to the wall by
the Dyck path.

The quantity on which we focus is the average height of the sites of the walk above
the wall, R(n, κ), that is

R(n, κ) ≡
〈∑n

i=0 ri
n

〉

=
1

n

∑
ψn

[
∑n

i=0 ri(ψn)]κ
m(ψn)

Ẑn(κ)
, (1.5)

again where the ψn are Dyck path configurations and the m(ψn) are the numbers of visits
to the wall by the Dyck path. Note that the average height multiplied by the length is
the average area between the path and the surface.

In finding our quantities of interest we will need to consider directed walks that end
at an arbitrary height r above the wall rather than on the wall. We consider walks with
at least one step. Moreover we need to generalize our model to include a weighting for
the sum of the heights of the sites of the walk above the surface; this allows us to find
the average height. Hence we weight each configuration ϕrn of length n ending at height
r with a weight qR where

R =

n∑

i=1

ri. (1.6)

doi:10.1088/1742-5468/2009/12/P12004 4

http://dx.doi.org/10.1088/1742-5468/2009/12/P12004


J.S
tat.M

ech.
(2009)

P
12004

Exact results for a directed polymer model related to quantum entanglement

Figure 3. A schematic diagram of the process of adding one column of height r
to a configuration ending at height s. If r ≥ 1 the s can be r ± 1. If r = 0 then
s = 1 only.

Note that the Dyck paths ψn are the same elements as ϕ0
n.

The partition function for directed walks ending at height r above the wall of length
n weighted as described is

Z(r)
n (κ, q) =

∑

ϕr
n

κm(ϕr
n)qR(ϕr

n), (1.7)

where m(ϕrn) is the number of visits to the wall by the polymer. Hence

Ẑn(κ) = Z(0)
n (κ, 1). (1.8)

Let us define

S(r)
n (κ, q) =

∑

ϕr
n

R(ϕrn)κ
m(ϕr

n)qR(ϕr
n). (1.9)

We note immediately that

S(r)
n (κ, q) = q

dZ
(r)
n (κ, q)

dq
. (1.10)

Hence we have

R(n, κ) =
1

n

S
(0)
n (κ, 1)

Z
(0)
n (κ, 1)

. (1.11)

So we could calculate R(n, κ) by finding Z
(0)
n (κ, q) and differentiating, finally setting q = 1

after differentiating.
We approach the problem in a slightly different manner. We define generating

functions

Gr(z, κ, q) =
∞∑

n=1

Z(r)
n (κ, q)zn (1.12)

and

Hr(z, κ, q) =

∞∑

n=1

S(r)
n (κ, q)zn, (1.13)
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so we have

Hr(z, κ, q) = q
dGr(z, κ, q)

dq
, (1.14)

and set

gr = Gr(z, κ, 1) (1.15)

and

hr = Hr(z, κ, 1). (1.16)

In this way we have

Z(0)
n (κ, 1) = [zn]g0 (1.17)

and

S(0)
n (κ, 1) = [zn]h0. (1.18)

2. Generating functions

We now introduce the method of Temperley [17] which finds a recursion for Gr by the
consideration of adding a step (or column) onto an existing walk; see figure 3

By such a consideration we find the recurrence

Gr = qrz(Gr−1 +Gr+1) (2.1)

for r ≥ 2, while

G1 = qz + qz(G0 +G2) (2.2)

and

G0 = κzG1. (2.3)

The usual Temperley method then continues by solving these recurrences and boundary
conditions. We point out that these are second-order recurrences that have power function
dependent coefficients; this leads to a q-series solution.

Rather than that, we apply the operator q(d/dq) to the recurrences term by term to
give

Hr = rqrz(Gr−1 + Gr+1) + qrz(Hr−1 +Hr+1) (2.4)

for r ≥ 2, while

H1 = qz + qz(G0 +G2) + qz(H0 +H2) (2.5)

and

H0 = κzH1. (2.6)

By setting q = 1 in the above recurrences we obtain the two coupled systems: firstly,

gr = z(gr−1 + gr+1) (2.7)
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for r ≥ 2, while

g1 = qz + qz(g0 + g2) (2.8)

and

g0 = κzg1; (2.9)

and secondly

hr = rz(gr−1 + gr+1) + z(hr−1 + hr+1)

hr = rgr + z(hr−1 + hr+1)
(2.10)

for r ≥ 2, while

h1 = qz + qz(g0 + g2) + z(h0 + h2) = g1 + z(h0 + h2) (2.11)

and

h0 = κzh1. (2.12)

We now have a set of coupled difference equations—although importantly they are
constant coefficient difference equations. Hence they should be solvable via a generalized
exponential ansatz, which indeed they are.

We first solve the gr system: equations (2.7)–(2.9). We assume the ansatz

gr = A(z, κ)λ(z)r for r ≥ 1

g0 = B(z, κ).
(2.13)

Substituting our ansatz into equation (2.7) implies

λ2 − z−1λ+ 1 = 0. (2.14)

or rather λ + λ−1 = z−1. While there are two solutions to this quadratic, only one
corresponds to a formal power series and we have

λ(z) =
1 −√

1 − 4z2

2z
. (2.15)

On substituting into equation (2.8) one finds

A(z, κ) =
z

λ(z)[1 − κz − zλ(z)]
. (2.16)

Finally on substituting into equation (2.9) one completes the solution for gr by finding

g0 = B = κzA(z, κ)λ(z) (2.17)

and so the generating function for adsorbing Dyck path polymers is the well known result
of

1 +G0(z, κ, 1) =
1 +

√
1 − 4z2

1 − 2κz2 +
√

1 − 4z2
=

2

2 − κ+ κ
√

1 − 4z2
. (2.18)

The first few terms of the series expansion are

1 +G0(z, κ, 1) = 1 + κz2 + (κ + κ2)z4 + (2κ+ 2κ2 + κ3)z6 + (5κ+ 5κ2 + 3κ3 + κ4)z8

+ O(z10) (2.19)
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and at κ = 1 we have

1 +G0(z, 1, 1) = 1 + z2 + 2z4 + 5z6 + 14z8 + 42z10 + 132z12 + O(z14). (2.20)

This solution is well known and can be found in several ways.
Now we turn our attention to the coupled hr system of equations (2.10)–(2.12). We

first combine equations (2.10) and (2.11) as

hr+1 − z−1hr + hr−1 = −rz−1gr (2.21)

for r ≥ 1. As we have already solved for gr, for Aλr, we treat this as an
inhomogeneous difference equation with known right-hand side. Considering the structure
of equation (2.21) we try the ansatz

hr = (ar2 + br + c)λr (2.22)

with the three undetermined coefficients a, b and c but the same λ as is characterized by
equation (2.15). On substitution of equation (2.22) into (2.21) we find

a =
−A

2z(λ− λ−1)
=

A

2
√

1 − 4z2
(2.23)

and

b =
A(λ+ λ−1)

2z(λ− λ−1)2
=

A

2(1 − 4z2)
, (2.24)

while c remains arbitrary. We use equation (2.12) to fix c as

c =
κz(a + b)λ

1 − κzλ
. (2.25)

This gives us

h0 = c =
κzAλ

1 − κzλ

[
1

2
√

1 − 4z2
+

1

2(1 − 4z2)

]

(2.26)

and so

H0(z, κ, 1) =
κz2

2(1 − κzλ)(1 − κz − zλ)

[
1√

1 − 4z2
+

1

1 − 4z2

]

, (2.27)

or rather

H0(z, κ, 1) =
κz3

2(1 − κz − zλ)2λ

[
1√

1 − 4z2
+

1

1 − 4z2

]

. (2.28)

Finally one can write

H0(z, κ, 1) =
κz4

(1 − 2κz2 +
√

1 − 4z2)2(1 −√
1 − 4z2)

[
1√

1 − 4z2
+

1

1 − 4z2

]

. (2.29)

The first few terms of the series expansion are

H0(z, κ, 1) = κz2 + (4κ+ 2κ2)z4 + (16κ+ 10κ2 + 3κ3)z6 + (64κ+ 44κ2 + 18κ3 + 4κ4)z8

+ O(z10) (2.30)

and at κ = 1 we have

H0(z, 1, 1) = z2 + 6z4 + 29z6 + 130z8 + 562z10 + 2380z12 + O(z14). (2.31)
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3. Singularity structure

The singularity structure of the generating function G0(z, κ, 1) as a function of z
determines the free energy. The reduced free energy is defined as

f(κ) = − lim
n→∞

1

n
log(Z(0)

n (κ, 1)) (3.1)

and is given by

f(κ) = log zs(κ), (3.2)

where zs(κ) is the closest singularity (on the positive real axis) of the generating function
G0(z, κ, 1) in the variable z to the origin.

The key thermodynamic quantity, M, describing the transition is the average number
of sites of the walk located in the surface per step of the walk

M(κ) = lim
n→∞

〈m

n

〉
= lim

n→∞

∑
ψn
m(ψn)κ

m(ψn)

n
∑

ψn
κm(ψn)

= lim
n→∞

κ

n

d log(Z
(0)
n (κ, 1))

dκ
, (3.3)

which implies

M(κ) = −κd log zs(κ)

dκ
. (3.4)

That is, the variation of zs with κ is directly related to the average occupation of the
surface by the walk.

The singularity structure of G0 has been studied and is relatively simple. There
clearly is a singularity when the argument of the square root terms is zero at 1− 4z2 = 0,
that is, at

z = zd = 1/2. (3.5)

For 0 < κ < 2 this is the closest singularity to the origin, so

zs(κ) = 1/2 (3.6)

for 0 < κ < 2. There is a simple pole in G0 when the denominator factor 1 − 2κz2 +√
1 − 4z2 vanishes; that is, when

κ =
1 +

√
1 − 4z2

2z2
. (3.7)

Note that any value of z contained in the interval [0, 1/2] gives values of κ in [2,∞). Hence
this can be solved for z giving the value

z = za =

√
κ− 1

κ
≤ 1/2 (3.8)

valid for κ ≥ 2. Hence

zs(κ) =

⎧
⎨

⎩

1
2

for κ ≤ 2√
κ− 1

κ
for κ ≥ 2

(3.9)
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and

M(κ) =

⎧
⎨

⎩

0 for κ ≤ 2

κ− 2

2(κ− 1)
for κ ≥ 2.

(3.10)

This reflects the existence of an adsorption phase transition [19] which has been
well characterized [13, 14]. This adsorption transition can be described as follows: for
high temperatures (small κ) the average number of sites m of the walk in the surface is
bounded (M = 0) while at low temperatures (large κ) the average number of sites of the
walk in the surface is proportional to the length n of the walk (M > 0).

For completeness and comparison, and noting they have not appeared explicitly in
the literature, we calculate

m̂(n, κ) =
〈m

n

〉
(3.11)

via

Vn(κ) =
∑

ψn

m(ψn)κ
m(ψn) = nm̂(n, κ)Z(0)

n (κ, 1). (3.12)

We use the generating function

M(z, κ) =
∑

n

Vn(κ)z
n =

∑

n

(
∑

ψn

m(ψn)κ
m(ψn)

)

zn = κ
dG0(z, κ, 1)

dκ
(3.13)

to evaluate Vn. Hence we have

M(z, κ) =
2κz(1 +

√
1 − 4z2)

(1 − 2κz2 +
√

1 − 4z2)2
. (3.14)

The first few terms of the series expansion are

M(z, κ) = κz2 + (κ + 2κ2)z4 + (2κ+ 4κ2 + 3κ3)z6 + (5κ+ 10κ2 + 9κ3 + 4κ4)z8

+ O(z10) (3.15)

and at κ = 1 we have

M(z, 1) = z2 + 3z4 + 9z6 + 28z8 + 90z10 + 297z12 + O(z14). (3.16)

4. Asymptotic evaluations

The generating function H0 clearly has the same singularities as both G0 and M since
the same denominator factors exist in each and the same algebraic terms exist in each.
Let us first note that each of the generating functions for Dyck paths is a power series
in z2 since all Dyck paths are of even length. Singularities at z = zs > 0 are duplicated
at z = −zs, with similar asymptotics in z near those points. For κ < 2 one can expand
around the singularity at z = zd = 1/2 to find

G0(z, κ, 1) =
κ

2 − κ
− 4κ

(2 − κ)2

√
zd − z + O((zd − z)), (4.1)
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M(z, κ) =
2κ

(2 − κ)2
− 4κ(2 + κ)

(2 − κ)3

√
zd − z + O((zd − z)) (4.2)

and

H0(z, κ, 1) =
κ

4(2 − κ)2

(
1

zd − z

)

+ O

(
1√
zd − z

)

, (4.3)

for z → z−d .
For κ = 2 one can expand around the singularity at zd = 1/2 to find

G0(z, 2, 1) =
1

2
√
zd − z

− 1 + O((zd − z)), (4.4)

M(z, 2) =
1

4(zd − z)
+ O

(
1√
zd − z

)

(4.5)

and

H0(z, 2, 1) =
1

32(zd − z)2
+ O

(
1

(zd − z)

)

, (4.6)

for z → z−d .
For κ > 2 one can expand around the singularity at za =

√
κ− 1/κ to find

G0(z, κ, 1) =
κ− 2

2κ
√
κ− 1

(
1

za − z

)

+ O(1), (4.7)

M(z, κ) =
(κ− 2)2

4(κ− 1)κ2

(
1

(za − z)2

)

+ O

(
1

(zd − z)

)

(4.8)

and

H0(z, κ, 1) =
1

4κ

(
1

(za − z)2

)

+ O

(
1

(zd − z)

)

, (4.9)

for z → z−a .
The duplicate singularities at z = −zs imply that the partition functions are zero

when n is odd. They also imply that at even n the asymptotic values of the partition
functions as n becomes large are double what they would be if calculated by considering
only z = zs > 0.

Using Darboux’s lemma (see chapter 5 of [20]) and elementary Taylor series one finds
for 0 < κ < 2 and n even as n→ ∞ that

Z(0)
n (κ, 1) = [zn]G0(z, κ, 1) =

[
2κ

(2 − κ)2

√
2

π

]

2nn−3/2(1 + O(n−1/2)), (4.10)

Vn(κ) = [zn]M(z, κ) =

[
2κ(2 + κ)

(2 − κ)3

√
2

π

]

2nn−3/2(1 + O(n−1/2)) (4.11)

doi:10.1088/1742-5468/2009/12/P12004 11

http://dx.doi.org/10.1088/1742-5468/2009/12/P12004


J.S
tat.M

ech.
(2009)

P
12004

Exact results for a directed polymer model related to quantum entanglement

and

S(0)
n (κ, 1) = [zn]H0(z, κ, 1) =

[
κ

(2 − κ)2

]

2n(1 + O(n−1/2)), (4.12)

while for κ = 2 and n even we have that

Z(0)
n (2, 1) = [zn]G0(z, 2, 1) =

√
2

π
2nn−1/2(1 + O(n−1/2)), (4.13)

Vn(2) = [zn]M(z, 2) = 2n(1 + O(n−1/2)) (4.14)

and

S(0)
n (2, 1) = [zn]H0(z, 2, 1) = 1

4
2nn(1 + O(n−1/2)). (4.15)

Finally for κ > 2 and n even we have that

Z(0)
n (κ, 1) = [zn]G0(z, κ, 1) =

[
(κ− 2)

(κ− 1)

](
κ√
κ− 1

)n
(1 + O(n−1)), (4.16)

Vn(κ) = [zn]M(z, κ) =

[
(κ− 2)2

2(κ− 1)2

](
κ√
κ− 1

)n
n(1 + O(n−1)) (4.17)

and

S(0)
n (κ, 1) = [zn]H0(z, κ, 1) =

[
κ

2(κ− 1)

](
κ√
κ− 1

)n
n(1 + O(n−1)). (4.18)

The results for the partition function scaling in equations (4.10), (4.13) and (4.16) have
appeared previously [21].

These lead immediately to our final results.

5. Results and conclusions

Our final results are that for κ < 2 and n even, the average height, R(n, κ), is

R(n, κ) =

√
π

8
n1/2 + O(1), (5.1)

while for κ = 2 and n even

R(n, κ) =

√
π

32
n1/2 + O(1). (5.2)

For κ > 2 and n even we have

R(n, κ) =
κ

2(κ− 2)
+ O(n−1). (5.3)

That is, R(n, κ)/n1/2 takes on a constant value for κ < 2 and jumps discontinuously
to a smaller constant when κ becomes 2. It is unexpected that the average height for
κ < 2 does not depend on κ.
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For completeness we also give that for κ < 2 and n even, the average number of visits
to the surface, m̂(n, κ), is

m̂(n, κ) =
2 + κ

2 − κ
+ O(n−1/2), (5.4)

while for κ = 2 and n even

m̂(n, 2) =

√
π

2
n1/2 + O(1). (5.5)

Finally,

m̂(n, κ) =
κ− 2

2(κ− 1)
n+ O(1) (5.6)

for κ > 2 and n even. Note that, as opposed to the average height, the average number
of visits does vary with κ for all κ, including for κ < 2.

We have calculated the asymptotics of the average height of Dyck paths from a wall
as a function of the wall potential parametrized by the Boltzmann weight κ. The average
height is simply related to the average area between the polymer and the wall. We
have approached the calculation via generating functions that require us to extend the
Temperley method to coupled systems of difference equations. A motivation has been
current work on entanglement in far from equilibrium stationary states. We can see from
our current calculation that neither for κ < 2 nor at the critical point, at κ = 2, does the
valence bond entanglement entropy develop logarithmic corrections as would be predicted
by the theoretical prediction in equation (1.3). However, other measures of entanglement
such as ‘mutual information’ and ‘boundary Shannon entropy’ [1] do display logarithmic
behaviours it seems for this model. This difference is our main conclusion from the
calculation with regard to entanglement estimators.
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