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Abstract
We present the solution of a linear restricted solid-on-solid (RSOS) model in
a field. Aside from the origins of this model in the context of describing the
phase boundary in a magnet, interest also comes from more recent work on
the steady state of non-equilibrium models of molecular motors. While similar
to a previously solved (non-restricted) SOS model in its physical behaviour,
mathematically the solution is more complex. Involving basic hypergeometric
functions 3φ2, it introduces a new form of solution to the lexicon of directed
lattice path generating functions.

PACS numbers: 02.10.Ox, 05.50.+q, 05.70.Fh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The solid-on-solid (SOS) model arose from the consideration of the boundary between
oppositely magnetized phases in the Ising model [1] at low temperatures and is now considered
to be useful for describing the salient features of a wide variety of interfacial phenomena [2–6].
The configurations involved in the linear (1+1)-dimensional case, modelling the interface in a
two-dimensional magnet, have also been used to model the backbone of a polymer in solution.
The critical phenomena associated with this model describe wetting transitions of the interface
with a wall [2]. For the SOS model, the phase diagram contains a wetting transition at finite
temperature Tw for the zero field and complete wetting occurs taking the limit H → 0 for
T � Tw [7].

The linear SOS model with a magnetic field and wall interaction was solved in [7]. The
restricted solid-on-solid (RSOS) model is a variant of the SOS model where the interface
takes on a restricted subset of configurations as opposed to the full SOS model. Effectively
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it suppresses very large local fluctuations of the interface. This model has been considered
with wall interaction, but not yet with the magnetic field. This is partially because, with wall
interaction only, the SOS and RSOS models are in the same universality class, as demonstrated
by their exact solutions [8–13]. Recently, it has been suggested that the RSOS model in a
field describes the steady state of a non-equilibrium model of a molecular motor [14]. This
observation has motivated us to consider the RSOS model in a field. In doing so, we have
discovered a novel form of generating function for a directed lattice path problem, and a new
method of solution for such problems.

The RSOS model we analyse can be described as follows. Consider a two-dimensional
square lattice in a half plane. For each column i of the surface, a segment of the interface is
placed on the horizontal link at height ri � 0 and successive segments are joined by vertical
segments to form a partially directed interface with no overhangs. The configurations are
given the energy

−βE = −K
∑

i

|ri − ri−1| − H
∑

i

ri + b
∑

i

δri ,0. (1.1)

There are two basic variants of this model which have been discussed in the literature. If there
are no restrictions placed on the differences of successive heights ri, the model is called the
(unrestricted) SOS model, analysed in [7].

On the other hand, constraining the height differences to be bounded by

|�ri | = |ri − ri−1| � 1 (1.2)

gives the restricted SOS (RSOS) model. This has previously only been considered in the case
of the zero field H [8, 9], for several types of external potential [15]. Both variants have been
considered, utilizing a different thermodynamic ensemble, as models for polymers in solution,
since the finite configurations are partially directed self-avoiding walks [8, 16]. In [17], a
RSOS model with H = 0 but a rigidity term dependent on |�ri − �ri−1| has been considered
as a model of semi-flexible polymers such as DNA.

2. The RSOS generating function

We discuss the RSOS model in terms of lattice paths. An RSOS path is a partially directed
self-avoiding path with no steps into the negative x-direction and no successive vertical steps.
To be precise, an RSOS path of width N with heights r0 to rN has horizontal steps at heights
r1, . . . , rN and vertical steps between heights ri−1 and ri for i = 1, . . . , N , but no horizontal
step associated with r0. This means that an RSOS path starts at height r0 with either a horizontal
step (if r1 = r0) or vertical step (if r1 �= r0), but must end at height rN with a horizontal step.
Figure 1 shows an example.

The partition function for the RSOS paths of width N with ends fixed at heights r0 � 0
and rN � 0, respectively, is given by

Z1(r0; r1) =
{

exp(−βE(r0; r1)), |r0 − r1| � 1
0, |r0 − r1| > 1,

(2.1)

and

ZN(r0; rN) =
∑

r1 ,...,rN−1�0

|ri−ri−1|�1

exp(−βE(r0; r1, . . . , rN)), N = 2, 3, . . . , (2.2)

where

−βE(r0; r1, . . . , rN) = −K

N∑
i=1

|ri − ri−1| − H

N∑
i=1

ri + b

N∑
i=1

δri ,0. (2.3)
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Figure 1. A typical RSOS configuration beginning on the surface and finishing on the surface with
a horizontal step: each horizontal step is assigned a weight x, each vertical step a weight y, each
unit of area a weight q and each step that touches the surface an additional weight κ . The width
of the configuration shown here is N = 9, and the heights are r0 = 0, r1 = 1, r2 = r3 = r4 = 2,
r5 = 1, r6 = 0, r7 = r8 = 1 and r9 = 0. The weight of this configuration equals x9y6q10κ2.

Here, we shall consider paths with both ends attached to the surface, i.e. we shall focus on the
partition function

ZN = ZN(0; 0). (2.4)

We define

y = exp(−K), q = exp(−H) and κ = exp(b), (2.5)

so y is a temperature-like, q a magnetic field-like and κ a binding energy-like variable, and
write

ZN = ZN(y, q, κ). (2.6)

The free energy is then

−βf (y, q, κ) = lim
N→∞

1

N
log ZN(y, q, κ). (2.7)

Define the generalized (grand canonical) partition function, or simply generating function, as

G(x, y, q, κ) = 1 +
∞∑

N=1

xNZN(y, q, κ). (2.8)

Thus, the radius of convergence xc(y, q, κ) of G(x, y, q, κ) with respect to the series expansion
in x can be identified as exp(βf (y, q, κ)); hence,

f (y, q, κ) = kT log xc(y, q, κ). (2.9)

It is convenient to consider G as a combinatorial generating function for RSOS paths,
where x, y, q and κ are counting variables for appropriate properties of those paths. Interpreted
in such a way, x and y are the weights of horizontal and vertical steps, respectively, q is the
weight for each unit of area enclosed by the RSOS path and the x-axis and κ is an additional
weight for each step that touches the surface. For example, the weight of the configuration in
figure 1 is x9y6q10κ2.

We find easily the first few terms of G as a series expansion in x,

G(x, y, q, κ) = 1 + κx + (κ2 + κy2q)x2 + · · · , (2.10)

where the constant term corresponds to a zero-step path starting and ending at height zero with
weight one.
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= + +

G(x, κ) = + +1 κxG(x, κ) κx2y2qG(qx, 1)G(x, κ)

Figure 2. The diagrammatic form of the functional equations for RSOS paths, indicating the
combinatorial decomposition of RSOS paths.

3. Functional equation and exact solution

The key to the solution is a combinatorial decomposition of RSOS paths which leads to a
functional equation for the generating function G. This decomposition occurs with respect to
the left-most horizontal step touching the surface at height zero and is shown diagrammatically
in figure 2.

We distinguish three cases.

(a) The RSOS path has zero width, and there is no horizontal step at height zero. The
contribution to the generating function is 1.

(b) The RSOS path starts with a horizontal step, which therefore is at height zero. The
rest of this path is again a RSOS path. The contribution to the generating function is
κxG(x, y, q, κ).

(c) The RSOS path starts with a vertical step. Then, there will be a left-most horizontal
step at height zero, and removing this step cuts the path into two pieces. The left path
starts with a vertical and horizontal step, followed by an RSOS path starting and ending
at height one and not touching the surface, followed by a vertical step to height zero.
The right path is again a RSOS path. The contribution to the generating function is
yxqG(qx, y, q, 1)yκxG(x, y, q, κ).

Put together, this decomposition leads to a functional equation for the generating function

G(x, y, q, κ) = 1 + κxG(x, y, q, κ) + κx2y2qG(qx, y, q, 1)G(x, y, q, κ). (3.1)

For q = 1, the solution is a simple algebraic function

G(x, y, 1, κ) =
(

1 − κx − κ

2
(1 − x −

√
(1 − x)2 − 4x2y2)

)−1

. (3.2)

We note that a similar result for the determinant of the corresponding transfer matrix appears
in a previous work [18], while the analysis of the model appears earlier [8, 9].

For general values of q, a formal iteration of (3.1) leads to a continued fraction expansion

G(x, y, q, κ) = 1

1 − κx − κqx2y2

1 − qx − q3x2y2

1 − q2x − q5x2y2

1 − q3x − q7x2y2

1 − q4x − · · ·

.

(3.3)

However, there is a non-trivial method to solve the functional equation for G in terms of power
series. Our main result is an expression for G involving q-series. In the next section, we shall
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derive the following expression:

G(x, y, q, 1)= α(λqx; q)∞φ
[
λqx, q λ

1− λ
; q, q

]
+ ((1− λ)qx; q)∞φ

[
(1− λ)qx, q 1− λ

λ
; q, q

]
α(λx; q)∞φ

[
λx, q λ

1− λ
; q, q

]
+ ((1 − λ)x; q)∞φ

[
(1 − λ)x, q 1−λ

λ
; q, q

]
(3.4)

with

α = φ
[
0, q 1−λ

λ
; q, q

] − (1 − λ)φ
[
0, q 1−λ

λ
; q, q2

]
λφ

[
0, q λ

1−λ
; q, q2

] − φ
[
0, q λ

1−λ
; q, q

] (3.5)

and

y2 = λ(1 − λ). (3.6)

Here, φ is given in terms of the basic hypergeometric function 3φ2 as

φ[s, t; q, z] = 3φ2

(
0, 0, 0
s, t

; q, z

)
=

∞∑
n=0

zn

(s; q)n(t; q)n(q; q)n
(3.7)

and

(t; q)n =
n−1∏
k=0

(1 − tqk) (3.8)

is the standard q-product. From equation (3.1), we have the full solution as

G(x, y, q, κ) = 1

1 − κx − κx2y2qG(qx, y, q, 1)
. (3.9)

4. Solving the functional equation

Using a linearization Ansatz [19], standard for a q-deformed algebraic equation such as
equation (3.1), we substitute

G(x, y, q, 1) = H(qx, y, q)

H(x, y, q)
(4.1)

into equation (3.1) with κ = 1 and find that H(x, y, q) must satisfy the linear q-functional
equation

H(x, y, q) + (x − 1)H(qx, y, q) + qx2y2H(q2x, y, q) = 0. (4.2)

We then try to solve this linear functional equation using a series in x,

H(x, y, q) =
∞∑

n=0

cn(y, q)xn. (4.3)

This unfortunately leads to a non-trivial three-term recurrence for the coefficients

(1 − qn+2)cn+2(y, q) + qn+1cn+1(y, q) + y2q2n+1cn(y, q) = 0 (4.4)

for n � 0 with initial condition c0(y, q) + (1 − q)c1(y, q) = 0. This is different from the
two-term recurrences obtained when considering the models in [19] which can be solved by
direct iteration.

Inspired by the structure of basic hypergeometric functions, which we know form the
basis for a solution in the SOS model [7], we transform the coefficients as

cn(y, q) = (−1)nqn(n−1)/2

(q; q)n
dn(y, q). (4.5)
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This leads to a recurrence

dn+2(y, q) − dn+1(y, q) + y2dn(y, q) = y2qn+1dn(y, q) (4.6)

for n � 0 with initial condition d1(y, q) = d0(y, q). While this is still a three-term recurrence,
only one of the terms has a non-constant coefficient.

The left-hand side of equation (4.6) is a homogeneous difference equation with constant
coefficients and characteristic polynomial

P(λ) = λ2 − λ + y2. (4.7)

If the right-hand side of equation (4.6) were zero, the solution would be given as dn =
Aλn

1 + Bλn
2 where λi are the roots of P(λ) = 0. To solve this recurrence, we use the Ansatz

[8]

dn(y, q) = λn

∞∑
m=0

em(y, q, λ)qnm. (4.8)

Inserting this Ansatz into equation (4.6), we find

P(λ)e0(y, q, λ) +
∞∑

m=1

qmn
[
P(λqm)em(y, q, λ) − y2qem−1(y, q, λ)

] = 0. (4.9)

Necessarily P(λ) = 0, and normalizing by letting e0(y, q, λ) = 1, we find by iteration

em(y, q, λ) = qm

(λ2q/y2; q)m(q; q)m
. (4.10)

The full solution to the recurrence equation (4.6) is a linear combination of (4.8) over both
values of λ satisfying P(λ) = 0. If P(λ) = 0, then also P(y2/λ) = 0, and we can write

dn(y, q) = Aλn

∞∑
m=0

em(y, q, λ)qnm + B(y2/λ)n
∞∑

m=0

em(y, q, y2/λ)qnm, (4.11)

where λ is an arbitrarily chosen solution of λ(1 − λ) = y2. Using the initial condition
d0(y, q) = d1(y, q), we can solve for the ratio α = A/B. We can somewhat simplify our
expressions by noting that the dependence between λ and y implies that we can replace y2 by
λ(1 − λ). Noting that the functions involved are 2φ1 basic hypergeometric series, we have

α =
2φ1

(
0,0

q 1−λ
λ

; q, q
)

− (1 − λ)2φ1

(
0,0

q 1−λ
λ

; q, q2
)

λ2φ1

(
0,0

q λ
1−λ

; q, q2
)

− 2φ1

(
0,0

q λ
1−λ

;q, q
) (4.12)

where

2φ1

(
0, 0
s

; q, z

)
=

∞∑
n=0

zn

(s; q)n(q; q)n
= 3φ2

(
0, 0, 0

0, s
; q, z

)
. (4.13)

Substituting the expression for dn given in (4.11) back into H using equations (4.5) and (4.3),
we find that

H(x, y, q) = α

∞∑
m,n=0

qn(n−1)/2(−λx)nqnm+m

(qλ/(1 − λ); q)m(q; q)m(q; q)n

+
∞∑

m,n=0

qn(n−1)/2(−(1 − λ)x)nqnm+m

(q(1 − λ)/λ; q)m(q; q)m(q; q)n
. (4.14)
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The summation over n can be done explicitly using Euler’s formula [20]

(t; q)∞ =
∞∑

n=0

qn(n−1)/2(−t)n

(q; q)n
. (4.15)

We find that

H(x, y, q) = α

∞∑
m=0

(λxqm; q)∞qm

(qλ/(1 − λ); q)m(q; q)m
+

∞∑
m=0

((1 − λ)xqm; q)∞qm

(q(1 − λ)/λ; q)m(q; q)m
(4.16)

which after pulling out a q-product factor from each sum can be identified with

H(x, y, q) = α(λx; q)∞3φ2

(
0, 0, 0

λx, qλ/(1 − λ)
; q, q

)

+ ((1 − λ)x; q)∞3φ2

(
0, 0, 0

(1 − λ)x, q(1 − λ)/λ
; q, q

)
. (4.17)

Substituting into the linearization Ansatz (4.1) gives us the solution written in equation (3.4).

5. Comparison of SOS and RSOS model solutions

The unrestricted SOS model was solved in [7] by a different technique, namely the Temperley
method. For the sake of comparison, it is worthwhile reproducing the solution of the SOS
model via the functional equation technique presented above for the restricted SOS model.
This highlights a fundamental difference in the difficulty of solving the two models.

In analogy to the functional equation (3.1), the SOS model generating function
S(x, y, q, κ) satisfies

S(x, y, q, κ) = 1 + κ

(
x(1 − y2) − y2

q

)
S(x, y, q, κ) + κ

y2

q
S(qx, y, q, 1)S(x, y, q, κ),

(5.1)

where the variables have identical meaning.
Setting κ = 1 and substituting the linearization Ansatz S(x, y, q, 1) = T (qx, y, q)/

T (x, y, q) analogous to the one used above in equation (4.1) yields

T (x, y, q) +

(
x(1 − y2) − 1 − y2

q

)
T (qx, y, q) +

y2

q
T (q2x, y, q) = 0. (5.2)

While superficially this may seem very similar to the linear functional equation (4.2) for H,
it is important to recognize that the method of solution is to substitute a series in the variable
x into the functional equation. Equation (5.2) above contains only linear factors in x, while
the functional equation (4.2) contains factors that are quadratic in x. This has the effect that
the resulting recurrence for the coefficients of the series expansion of T in x is a two-term
recurrence, while we found a three-term recurrence in the case of the RSOS model. The two-
term recurrence leads to an immediate solution by iteration, while the three-term recurrence
(4.4) requires the extra work detailed in the previous section. One readily finds

T (x, y, q) =
∞∑

n=0

(−1)nqn(n−1)/2[x(1 − y2)]n

(y2; q)n(q; q)n
= 1φ1

(
0
y2; q, x(1 − y2)

)
, (5.3)

which leads to an expression equivalent to equation (45) in [7]. The resulting expression
for T should be compared with the much more complicated expression for H given in
equations (4.17) and (4.12).
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6. Discussion and conclusion

Let us conclude with an overview of the critical behaviour of the model. The RSOS model
studied here behaves qualitatively the same as the unrestricted model [7]. The generating
function for q = 1 (zero field) has two singularities as a function of x. One is a square-root
singularity at

x = xs(y) = 1

2y + 1
(6.1)

and the other is a simple pole at x = xp(y, κ) when the denominator of equation (3.2) is zero.
For small κ , the square root is the closest singularity to the origin and the interface is unbound
from the wall [9] while for larger κ the pole is closer and it can be shown [9] that the interface
is bound to the surface. Hence, for the zero field there is a critical wetting transition [9] at

κ = 1 + 2y

1 + y
. (6.2)

If the field H is positive so that q < 1, the generating function has only one type of singularity,
which is a simple pole of the denominator of equation (3.9): no transition occurs on varying
κ or y. Here, we use the fact that our q series are convergent when q < 1 using the ratio test:
noting that φ[s, t; q, z] and (t; q)∞ are convergent for q, z < 1. Physically, this corresponds
to the interface being bound to the wall. For small κ , as the field is decreased to zero a
complete wetting transition occurs with the interface unbinding from the wall.

In this paper, we have presented a solution to the linear RSOS model in a field. We have
expressed the solution in terms of basic hypergeometric functions at values of their arguments
which are not powers of the counting variable in a combinatorial problem. We know of one
other case where this occurs in a different manner [21].

We note that there is a bijection between RSOS paths and Motzkin paths. Hence, it
would be interesting to consider other lattice path problems with a similar structure such as
k-coloured Motzkin paths [22].

It will also be interesting to see if this solution will produce insights into non-equilibrium
models of molecular motors.
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