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Abstract

A percolation probability for directed, compact percolation near a damp wall,
which interpolates between the previously examined cases, is derived exactly.
We find that the critical exponent β = 2 in common with the dry wall, rather
than the value previously found in the wet wall and bulk cases. The solution is
found via a mapping to a particular model of directed walks. We evaluate the
exact generating function for this walk model which is also related to the ASEP
model of traffic flow. We compare the underlying mathematical structure of
the various cases previously considered and this one by reviewing the common
framework of solution via the mapping to different directed walk models.

PACS numbers: 05.50.+q, 05.70.fh, 64.60.ah

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Percolation is a key problem in statistical mechanics, and there are many practical applications
for percolation theory—including the modelling of the spread of epidemics [7] and forest
fires [19], of metal–insulator transition [1] and of the flow of sand [17]. Percolation
displays a fundamental critical phenomenon and deep recent progress [9] has been made to
mathematically expound its behaviour in two dimensions. The basic model has been modified
in many ways both to model different systems and in the search for integrable systems. While
for self-avoiding walks the introduction of directness leads to various solvable models its
imposition alone on percolation does not lead to any such solvable cases. However, by adding
the further condition of ‘compactness’ a solvable lattice model ensues [8]. Domany and Kinzel
[8] introduced directed, compact percolation and found exact expressions for the percolation
probability, the cluster length distribution and the associated critical exponents in the bulk far
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from any confining walls. Essam [10] extended this work to biased growth and to mean-cluster
size and length, finding exact recurrence relations for length and size distributions, the closed
form for the relation for the moment generating function of the length distribution, and the
first three moments for the size distribution. Following on from this, non-nodal clusters and
the cluster size distribution were investigated by Essam and TanlaKishani [13].

The effect of adjacent interacting walls is a key topic in critical phenomena and the effect
of the presence of a wall in directed, compact percolation was first considered by Essam and
TanlaKishani [14]. They considered a so-called wet wall where the sites of the wall are all
deemed to be occupied. They found expressions for the percolation probability, the mean
length of finite clusters and the mean-cluster size, and so discovered that the critical behaviour
of the percolation probability in the wet case is the same as in the bulk case [8]. The opposite
case of a dry wall, where the sites along the wall are fixed to be unoccupied, was considered
by several authors. Here the critical behaviour departs from the bulk model.

An exact form of the percolation probability in the dry-wall case was conjectured by
Bidaux and Privman [2] and derived by Lin [18], who found that the critical exponent for the
percolation probability, β, changed from the bulk value β = 1 to β = 2 in the dry case. Essam
and TanlaKishani [14] generalized this result to include the possibility of a bias towards the
wall or a bias away from the wall. Essam and Guttmann [11] found an exact expression for the
mean-cluster size below the critical point and used differential approximants to conjecture that
the average cluster size above pc and the mean-cluster length satisfy second-order differential
equations. Brak and Essam [5] used a mapping to a directed walk problem to derive the
percolation probability and used the Zeilberger algorithm [20, 21] to find the mean length and
number of contacts (occupied sites adjacent to the wall) in the dry case—these results involved
elliptic integrals.

Given that the critical behaviour varies from wet to dry, and also that the dry case
demonstrates quite different mathematical behaviour, it is of interest to examine a model
which interpolates between dry and wet: this was mentioned, though not defined, in [5] as the
damp wall model. In our damp wall model there are two independent probabilities associated
with bulk and wall occupation, respectively.

In this paper we consider directed, compact percolation near a damp wall and calculate
the percolation probability exactly. We find the percolation probability, P(p, pw), to be

P(p, pw) = (2p − 1)2

p2(p − pw + ppw)
, p � pc,

where pw is the probability of a site on the wall being wet, and p is the probability of any
other site being wet. In doing so we elucidate the crossover from the wet wall to the dry-wall
critical behaviour. We note that when pw = 1, we obtain the wet wall percolation probability,

P wet = P(p, 1) = (2p − 1)

p2
, p � pc,

which was calculated previously in [14]. When pw = 0, we obtain the dry-wall percolation
probability,

P dry = P(p, 0) = (2p − 1)2

p3
, p � pc,

which was calculated previously in [18].
Also, as a byproduct of finding the percolation probability for the damp wall case, we

obtain the partition function of vesicles having two interaction parameters with a wall—see
(4.69).

However, first we review how each of the cases so far considered can be mapped onto
various problems of directed walks, and introduce a new mapping for the damp model. This
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Figure 1. A directed, compact percolation cluster on the rotated square lattice. This cluster has
probability p7q9.

allows comparison of the solution methods in a common framework and gives rise to an
explanation of the origin of different mathematical complexities of various cases: different
cases require a different number of walks and different numbers of walk parameters. We find
an explicit expression for the generating function of the walk problem associated with the
damp case. We note that this walk model is also related to the ASEP model: a stochastic
traffic flow model. Finally, we introduce a functional-equation approach to the solution which
should prove useful in the future work on these problems.

2. Directed compact percolation in the bulk

2.1. The model

Directed compact percolation can be defined through a growth process. We shall restrict
ourselves to the square lattice in this work. Starting with an integer grid in coordinates t
(horizontal) and x (vertical) we utilize a (directed) square lattice turned through π/4 where
points (t, x) are sites of the grid such that t ∈ N ∪ {0}, x ∈ Z and t + x is even, see figure 1.
Moreover, the (directed) bonds of the lattice occur between sites (t, x) and (t + 1, x + 1), and
between sites (t, x) and (t + 1, x − 1).

The sites of the lattice are deemed to be ‘occupied’/‘wet’ or ‘not occupied’/‘dry’ by the
following process. A set of m contiguous sites in the column t = 0 is fixed to be wet. In
particular we can choose (0, 2), (0, 4), . . . , (0, 2m) to be wet. We shall concentrate on the
case m = 1 in this work. From this seed a cluster of wet sites is grown in the following way.
As we see in figure 1, the cluster produced by the process described below remains contiguous,
though of variable size. We label the coordinates of the wet sites in column t as (t, xj ), where
j = 1, . . . , w(t) and xj = b(t) + 2(j − 1). Here, b(t) is therefore the x-coordinate of the
bottom-most wet site in column t. We have b(0) = 2 and w(0) = m.

The process proceeds a column at a time. Let the currently rightmost occupied column
have the horizontal coordinate T. Although the order is flexible, for the sake of definiteness,
start with considering the site (T + 1, b(T ) − 1). It will be occupied or not with a probability
p. There is no need to consider sites with smaller x-coordinates as these will remain dry in the
process. Move up the column site-by-site using the general rule that a site (T + 1, x) becomes
wet with certainty if both sites (T , x ± 1) are wet, and with probability p if only one of these
sites is wet, and so stays dry with probability q = 1 − p. If both sites (T , x ± 1) are dry then
the site (T + 1, x) remains dry. These rules ensure the contiguity of the cluster in any column,
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and hence the descriptor compact in the title of the model. The process either stops after a
finite number of columns, say � (being the length of the cluster), or continues indefinitely.

Note that as the process moves from column T to T +1 the probability of the cluster obtains
a factor of p2 if the width of the cluster increases by 1, pq if the width stays unchanged and
q2 if the width decreases by 1. Also note that the size of a cluster s = ∑

t w(t), being the
number of wet sites, is not simply related to the length of a cluster �.

Now, consider the configurations produced by this growth process and the associated
probabilities. We label the set of all configurations of finite length � by �bulk

� . The probability
of a particular configuration ϕ� ∈ �bulk

� is

π(ϕ�) = p2i (pq)cq2d , (2.1)

where i, c and d are the number of times the width of the cluster increases, stays constant and
decreases in width, respectively. Now we know that i + c + d = � and since a cluster that
terminates in a finite length (w(�) = 0) must decrease its width m more times than it increases
it, this gives d = i + m. Hence we have

πbulk(ϕ�) = (pq)�−mq2m. (2.2)

We define the probability that the cluster is finite as

Qbulk(p) =
∞∑

�=1

∑
ϕ�∈�bulk

�

π(ϕ�) (2.3)

and so substituting our expression for the configuration probability (2.2) gives

Qbulk(p) =
(

q

p

)m ∞∑
�=1

(pq)�
∑

ϕ�∈�bulk
�

1 =
(

q

p

)m ∞∑
�=1

b�(pq)�, (2.4)

where b� = |��|.
There are several quantities of interest. The key quantity, on which we focus in this paper,

is the probability P(p) that an infinite cluster is grown from the seed, given by

P bulk(p) = 1 − Qbulk(p), (2.5)

which is known as the percolation probability. Also of interest is the average length of finite
clusters 〈�〉(p) given by

〈�〉bulk(p) =
∑∞

�=1 �b�(pq)�∑∞
�=1 b�(pq)�

. (2.6)

The other quantity usually considered is the average size of finite clusters 〈s〉bulk(p), which
needs to be defined from first principles as

〈s〉bulk(p) =
∑∞

�=1

∑
ϕ�∈��

s(ϕ�)π(ϕ�)∑∞
�=1

∑
ϕ�∈��

π(ϕ�)
. (2.7)

Directed, compact percolation has been shown [8] to undergo a phase transition in a
similar way to that of ordinary percolation. The order parameter is the percolation probability
and there exists a critical point at some value of the occupation probability p = pc. For p < pc

only finite clusters are produced by the process described above and P(p) = 0. However, for
p > pc an infinite cluster is found to exist and P(p) > 0. A critical exponent β is defined by
the way P(p) approaches zero as p approaches pc from above:

P(p) ∼ B(p − pc)
β (2.8)
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Figure 2. Mapping the cluster to a pair of directed walks, of weight z9.

as p → p+
c . The exponent τ1 is defined by the behaviour of the average length 〈�〉(p) near pc,

〈�〉(p) ∼ C±|p − pc|−τ1 as p → pc. (2.9)

Other exponents and a scaling theory linking the exponents have been developed [8, 10].
We shall now confine ourselves to the case of m = 1, where the seed is in a single

occupied site.

2.2. Mapping to directed walks

The configurations of the directed compact percolation clusters can be placed in bijection with
a problem of directed walks. This is true in both the bulk and the various wall cases discussed
later. In the bulk case for m = 1 the directed walk problem involves two fully directed walks
on the square lattice that start and end at the same lattice site: that is, the problem of staircase
polygons [3]. In particular the problem of finding P(p) becomes equivalent to finding the
perimeter generating function for staircase polygons [6]. To see this, consider the boundary
of a cluster on the dual lattice (where t + x is odd), see figure 2. Moving from left to right
the boundary begins at (−1, 2) and finishes when t = �. Between each column of the cluster
there are two steps of the boundary (of which there are (�− 1) such pairs) and additional pairs
of boundary steps at each end of the cluster. There are (� + 1) pairs of steps in total. Given
that the steps in the boundary are only those with unit vectors (1, 1) or (1,−1) the boundary
is clearly made of two fully directed walks on the square lattice which start and end at the
same sites but otherwise avoid each other; these are staircase polygons. It is also simple to see
that all staircase polygons of non-zero perimeter are boundaries for percolation clusters and
that the mapping is one-to-one. The probability of a cluster is given by equation (2.2), with
m = 1, that is (pq)�−1q2 and the boundary walk of the same configuration is given weight
z�+1. Now consider the perimeter generating function for staircase polygons

Gsc(z) =
∞∑
t=2

atz
t = 1 − 2z − √

1 − 4z

2
, (2.10)

where z is associated with the half-perimeter t, and at is the number of staircase polygons with
half-perimeter t. The bijection described above has established that b� = a�+1 and so

Gsc(z) = z

∞∑
�=1

b�z
�. (2.11)

Hence by making the mapping z = pq we have

Qbulk(p) = p−2Gsc(pq). (2.12)
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The average length of finite clusters 〈�〉(p) can also be found from the perimeter staircase
polygon generating function via equation (2.6). If we define Msc(z) as

Msc(z) = z
d

dz

(
log

[
Gsc(z)

z

])
(2.13)

then the mean length of finite clusters is

〈�〉bulk (p) = Msc(pq). (2.14)

The average size 〈s〉(p), and indeed all the moments of the size distribution, can be found
by consideration of the area–perimeter generating function [6].

2.3. Solution

The mapping above immediately gives us the percolation probability as

P bulk(p) =

⎧⎪⎪⎨
⎪⎪⎩

0 p <
1

2
2p − 1

p2
p � 1

2
.

(2.15)

This implies that there is a critical point at p = pc = 1
2 , such that below pc only finite clusters

are formed, whereas above pc there exists an infinite cluster and correspondingly P(p) > 0.
Moreover the critical exponent βbulk = 1 in the bulk.

The average length of finite clusters 〈�〉(p) can also be found from the perimeter staircase
polygon generating function (equation (2.14)) as

〈�〉bulk(p) = 1

|2p − 1| . (2.16)

Therefore the critical exponent τ bulk
1 = 1 in the bulk.

3. Directed compact percolation near a wall

3.1. Definition for a general ‘damp’ wall

Let us consider the growth process again starting from a seed of size m = 1, and modify it
in two ways. First, to introduce a wall, nominally at x = 1, we restrict occupation of sites to
x � 1. Second, we introduce a separate probability of occupation, pw, for sites on the wall in
the following way. We note prior to this that sites on the wall only occur for odd values of the
horizontal coordinate t. Consider that the growth process is currently in column T = 2r . If
the site (2r, 2) is wet then the site (2r + 1, 1) is wet with probability pw, and hence is dry with
probability qw = 1 −pw. If the site (2r, 2) is dry then the (2r + 1, 1) is dry with certainty. For
all other sites with x > 1 in column 2r + 1, and indeed for any site with x > 1 in a column
with even horizontal coordinate, the same growth rules as in the bulk case hold. All sites with
x < 1 are fixed to be dry.

To consider the probability of any finite cluster one needs to know its length �, the number
of sites, v1, with x = 1 that are occupied and the number of sites, v2, with x = 2 that
are occupied. Relative to the bulk probability of (pq)�−1q2, each occupied site at x = 2
where there is no wet site in the subsequent column at x = 1 (of which there are v2 − v1)
adjusts the probability by a factor of qw

q
. Each wet site on the wall (of which there are v1)

adjusts the probability in two ways: the non-occupation of x = 0 supplies a factor of q−1
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Figure 3. A cluster of a damp wall model. This cluster has probability p5q5p2
wq2

w .

while the different probability of occupying the site at x = 1 gives a factor of pw

p
. Therefore

the probability of such a configuration, ϕ�,v1,v2 ∈ ��,v1,v2 , is

π
(
ϕ�,v1,v2

) = (pq)�−1q2

(
pw

p

)v1
(

qw

q

)v2−v1
(

1

q

)v1

. (3.1)

The probability that the growth process produces a finite cluster is

Q(p, pw) =
∞∑

�=1

∑
v1,v2

∑
ϕ∈��,v1 ,v2

π(ϕ�,v1,v2), (3.2)

which can be written as

Q(p, pw) =
(

q

p

) ∞∑
�=1

∑
v1,v2

c�,v1,v2

(
pw

pqw

)v1
(

qw

q

)v2

(pq)�, (3.3)

where c�,v1,v2 = ∣∣��,v1,v2

∣∣.
The percolation probability is given by P(p, pw) = 1 − Q(p, pw), and the mean-cluster

length and other averages in an analogous way to the bulk expressions.

3.1.1. Mapping to directed walks. In the same way as in the bulk the clusters of the growth
process can be put into bijection with configurations of staircase polygons. However, to
accommodate the damp wall, the restriction that the wet sites must have x � 1 implies that
the sites visited by the polygon must obey x � 0. Also, the weights of the polygon must be
modified to allow for the different occupation probability on the wall. Let us define a particular
problem of staircase polygons above a wall at x = 0 where one end is fixed at (−1, 2) as in
the bulk case, and the other end is free with the rest: see figure 3. Now in addition to attaching
the fugacity z to each pair of steps in the polygon we attached extra fugacities to steps that
move from x = 1 to x = 2 and those that move from x = 1 to x = 0. Let the number of
staircase polygons of half-perimeter t ′, with u1 steps that move from x = 1 to x = 0 and u2

steps that move from x = 1 to x = 2 be dt ′,u1,u2 . The generating function for this polygon
problem, which we shall call damp staircase polygons, or damp vesicles for short, is

Gdv(z; κ1, κ2) =
∑
t ′=2

∑
u1,u2

dt ′,u1,u2κ
u1
1 κ

u2
2 zt ′ . (3.4)

Each step from x = 1 to x = 0 can be mapped one-to-one with wet sites at x = 1. Hence
u1 = v1. Each step from x = 1 to x = 2 can be mapped one-to-one with certain pairs of sites
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at x = 1 and x = 2, precisely, a wet site at x = 2 in one column and a dry site at x = 1 in the
next column. So u2 = v2 − v1. Therefore, we have c�,v1,v2 = d�+1,v1,v2−v1+1. Hence we have

Gdv(z; κ1, κ2) = z
∑
�=1

∑
v1,v2

c�,v1,v2

(
κ1

κ2

)v1

κ
v2
2 z�. (3.5)

Correspondence to the percolation problem is made by the associations κ1
κ2

= pw

pqw
, κ2 = qw

q

and z = pq. Therefore, making the substitutions

z = pq (3.6)

κ1 = pw

pq
(3.7)

κ2 = qw

q
(3.8)

into the damp vesicle generating function Gdv(z; κ1, κ2) gives us the correspondence

Q(p, pw) =
(

1

p2

)
Gdv

(
pq; pw

pq
,
qw

q

)
. (3.9)

We now review the limiting cases already analysed in the literature, namely, the wet wall
and the dry wall. Before we do this let us rewrite the probability of a cluster in the following
way:

π
(
ϕ�,v1,v2

) = p�−v1−1q�−v2+1pv1
w qv2−v1

w . (3.10)

We note that 1 � v2, 0 � v1 � v2 and v1 + v2 � �.

3.2. Wet wall

If we set pw = 1 and so qw = 0 then all sites on the wall are occupied, or wet, and this is
known as the wet wall model. The effect of taking this limit is that the clusters remain attached
to the wall. Any cluster must have as many sites wet at x = 1 as at x = 2. We therefore
have v2 = v1 and v1 + v2 = �. This implies that � must be even so let � = 2r and hence
v1 = v2 = r . The probability of a cluster then becomes

πwet(ϕ�) = (pq)r−1q2, (3.11)

and the probability that a cluster is finite can be written as

Qwet(p) =
(

q

p

) ∞∑
r=1

ĉr (pq)r , (3.12)

where ĉr = ∣∣�̂wet
r

∣∣ and �̂wet
r is the set of clusters of length r. We note that this is a singular

limit as the probability measure is zero whenever v1 �= v2.
The consequence of taking this limit qw → 0 is that the mapping to a directed walk

problem is modified. This occurs because if one attempts to use the staircase polygons as
the mapped configuration one notices that only polygons where the bottom walk is fixed in
a zig-zag configuration have non-zero weight. Therefore one can use a mapping to a single
walk, being the top boundary walk on the dual lattice: see figure 4.

We consider a walk beginning at (0, 3), and tracing the upper boundary of the cluster of
length 2r in the positive t direction (see figure 4). We note that the final two steps must be in
the (1,−1) direction. In free directed walks above a surface and finishing on the surface only
the final step is fixed in such a way. Therefore we consider only the part of the boundary walk
that finishes in 2r − 1 steps at height x = 2. We note that because of the wet condition this

8
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Figure 4. A cluster of a wet wall model with a boundary shown. This cluster has probability p3q5.

part of the boundary walk always obeys x � 2. This is then a (reversed) Ballot path [4] of
length 2r − 1 and end height of 1. The generating function of such Ballot walks is

GB(y) =
∑
r=1

d̂ry
r , (3.13)

where the variable y is associated with the half-length r of the walk, and d̂r = B2r−1,1, where
Bn,h are Ballot numbers as defined in [4] (there is more than one notation in the literature). It
is clear that ĉr = d̂r for r � 1 and hence

Qwet(p) =
(

q

p

)
GB(pq). (3.14)

Now

Bn,h = 2(h + 1)

(n + h + 2)

(
n

n−h
2

)
, (3.15)

so

d̂r = B2r−1,1 = 2

r + 1

(
2r − 1

r − 1

)
= 1

r + 1

(
2r

r

)
= Cr, (3.16)

where Cr are the Catalan numbers. Hence

GB(y) =
∞∑

r=1

Cry
r . (3.17)

Hence,

GB(y) = 1 − 2y − √
1 − 4y

2y
. (3.18)

This, in turn, implies that

Qwet(p) = 1 − 2p(1 − p) − |2p − 1|
2p2

(3.19)

=

⎧⎪⎪⎨
⎪⎪⎩

1, p � 1

2
q2

p2
, p >

1

2
.

(3.20)
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That is, there is a critical point at p = 1/2 as in the bulk model and that the order parameter
exponent β is also the same as in the bulk, namely βwet = 1.

The average cluster length can also be calculated from knowledge of GB(y) as

〈�〉wet (p) = MD(pq) = 1

|2p − 1| , (3.21)

where

MD(y) = 2y
d

dy
(log GB(y)) = 1√

1 − 4y
. (3.22)

We note that the mean length of finite clusters for a wet wall is identical to that of the bulk
case and so the exponent τwet

1 = 1 in the wet model.

3.3. Dry wall

If we set pw = 0, and so qw = 1, then all sites on the wall are unoccupied (and unable to
become occupied), or dry, and we have the dry-wall model. We now have v1 = 0 and the
probability of a cluster of length � with v2 wet sites at x = 2 is

πdry(ϕ�,v2

) = p�−1q�−v2+1 = q

p
(pq)�

(
1

q

)v2

(3.23)

and the probability that a cluster is finite can be written as

Qdry(p) =
(

q

p

) ∞∑
�=1

∑
v2

č�,v2

(
1

q

)v2

(pq)�, (3.24)

where č�,v2 = ∣∣�dry
�,v2

∣∣ and �
dry
�,v2

is the set of all clusters of length � with v2 wet sites at x = 2.
Since dry wall is the limit pw → 0 one can use the mapping described above for the damp

wall model onto the staircase polygons with the two wall weights κ1 and κ2 where κ1 → 0.
This means that there are no steps of the lower boundary of the polygon between x = 1 and
x = 0 and so consequently no sites of that walk at x = 0. Essentially the cluster configurations
now map one-to-one with staircase polygons starting at (−1, 2) and not going below x = 1 (as
opposed to x = 0 as in the full damp case). Consider the generating function, Grv , for such
a staircase vesicle (polygons) made up of two directed walks starting at (−1, 2) that mutually
avoid except at this first site and also the final site, picking up the weight zt�+1

κ
v2
2 with � and

v2 defined as previously. We have

Grv(z; κ2) = Gdv(z; 0, κ2) (3.25)

and

Qdry(p) = p−2Grv

(
pq,

1

q

)
. (3.26)

An expression for the generating function was found in [5],

Grv(z; κ) = z2κ(κ − 2)

(κ − 1)2

[
1 +

(
1 +

ω

z

) (
ω − 2z2 −

√
ω(ω − 4z2)

2z2

)]
θ(κ − 2) (3.27)

+
z2

κ − 1

∞∑
r=0

z2r (Cr + zCr+1)

∞∑
s=r+1

Csω
s−r , (3.28)

10
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where ω = κ−1
κ2 . This gives an expression for the dry case percolation probability,

P dry(p) = 1 − Qdry(p), as

P dry(p) =

⎧⎪⎪⎨
⎪⎪⎩

0, p � 1

2
(2p − 1)2

p3
p >

1

2
,

(3.29)

which immediately gives us that βdry = 2.
In [11], differential approximants were used to find a differential equation satisfied by the

unnormalized mean length L̄(p):

p2(1 − p)(1 − 2p)(1 + 4p − 4p2)
d2L̄

dp2
+ p(7 − 8p − 46p2 + 72p3 − 24p4)

dL̄

dp

+ (9 − 28p − 2p2 + 24p3 − 8p4)L̄ = 9 − 12p + 12p2 (3.30)

This was solved numerically in [11] with the result

L̄(p) ∼= B± log|2p − 1| + C± (3.31)

as p → 1/2, where B− = B+ = −2.547, C− = 4.097 and C+ = −3.901. This implies that,
effectively, τ

dry
1 = 0. It was conjectured that B− = B+ = − 8

π
and C− − C+ = 8. These

conjectures were confirmed by the exact results of [5] with C− = log 8−8
π

+ 4 = 4.101 148 . . .

which differs from the numerical calculation by one part in a thousand.
In [5], Zeilberger’s algorithm is used to obtain an exact expression for the unnormalized

mean length,

L̄(p) = 1

8p3

(
−5 + 4z + 6

√
1 − 4z − 8E(16z2)

π
+

2(3 − 4z)(1 + 4z)K(16z2)

π

)

+ θ(p − pc)
(1 − p)(3 − 2p)

p3
, (3.32)

where z = p(1 − p).
Also in [5], the asymptotic form for S̄(p), the unnormalized mean size of clusters, is

found,

S̄(p) ∼= 1

2p − 1
{A− + B−(2p − 1)4 log|2p − 1|}, (3.33)

where A− = 32
3π

− 1
2 and B− = 8

π
, confirming the estimate for A− in [11] to be very accurate,

only differing from the exact value by 1 in the sixth decimal place.

4. Solution for the general damp case

Let us recall that to find the percolation probability P(p, pw) one can instead calculate
the generating function, described above, for damp vesicles Gdv(z; κ1, κ2), and then use
the correspondence (3.9). Essentially then the generating variable z becomes dependent
on the parameters κ1 and κ2. We refer to these values as the percolation values. We shall first
consider the calculation of the generating function Gdv(z; κ1, κ2) for independent values of
the generating variable z.

11
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4.1. Generating function of the damp vesicle problem

We will find the generating function Gdv(z; κ1, κ2) by considering associated partition
functions. Let us denote the finite perimeter partition functions for staircase vesicles (polygons)
with one end free as Źν

t ′(κ1, κ2), so that

Źν
t ′(κ1, κ2) =

∑
u1,u2

dt ′,u1,u2κ
u1
1 κ

u2
2 . (4.1)

Here the half-perimeter is t ′. Therefore,

Gdv(z; κ1, κ2) =
∑
t ′�2

Źν
t ′(κ1, κ2)z

t ′ . (4.2)

Let us define the partition function, ZT
t (x|1; κ1, κ2), for weighted pairs of mutually avoiding

directed walks of length t, weighted with κ1 for each step from x = 1 to x = 0, and with κ2 for
each step from x = 1 to x = 2, beginning at (0, 1) and (0, 3) and ending at particular points
(t, x) and (t, x + 2), respectively. However, let us include an extra factor of κ2 if x = 1: this
takes care of the weight of a final step of the vesicle if it is between x = 1 and x = 2. Hence,

Źν
t+2(κ1, κ2) =

t+1∑
x=0

ZT
t (x|1; κ1, κ2). (4.3)

The mathematical reason for this peculiar definition will become clear below. In any case we
now have

Gdv(z; κ1, κ2) = z2
∑
t�0

zt

t+1∑
x=0

ZT
t (x|1; κ1, κ2). (4.4)

If we define the generating function G(z; κ1, κ2) simply as

G(z; κ1, κ2) = z−2Gdv(z; κ1, κ2) =
∑
t�0

zt

t+1∑
x=0

ZT
t (x|1; κ1, κ2), (4.5)

where we note that the first few terms of the generating function are

G(z; κ1, κ2) = κ2 + (κ1 + κ2)z +
(
κ2 + 2κ1κ2 + κ2

2

)
z2 +

(
2κ2

1 + 2κ2 + 4κ1κ2 + 2κ2
2

)
z3 + · · · ,

(4.6)

then

P(p, pw) = 1 − q2G

(
pq; pw

pq
,
qw

q

)
. (4.7)

To begin we call upon the Gessel–Viennot determinant [15, 16] to express this fixed-end
vesicle partition function in terms of single-walk partition functions as

ZT
t (x|1; κ1, κ2) =

∣∣∣∣∣Z
s
t (x|1; κ1, κ2) Zs

t (x + 2|1; κ1, κ2)

Zs
t (x|3; κ1, κ2) Zs

t (x + 2|3; κ1, κ2)

∣∣∣∣∣ , (4.8)

where Zs
t (xf |xi; κ1, κ2) is the partition function for single walks beginning at x = xi � 0 and

terminating at x = xf � 0, after t steps, weighted with κ1 for each step from x = 1 to x = 0,
and with κ2 for each step from x = 1 to x = 2 and with the extra weight κ2 if xf = 1 attached
to the final site of the walk. We shall refer to these unusually weighted walks as damp walks.
What is important to note is that one could equivalently weight each step from x = 0 to x = 1
with the weight κ1 and each step from x = 2 to x = 1 with weight κ2 and add the additional
weight κ2 if xi = 1 to obtain the same partition function. This implies the symmetry

Zs
t (xf |xi; κ1, κ2) = Zs

t (xi |xf ; κ1, κ2) (4.9)

12
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and it is this symmetry that plays an important role in using the constant term method to
solve for Zs

t . Of course, from equations (4.5) and (4.8) it is precisely the single-walk partition
function that we are required to find.

It is therefore apropos to consider the mathematics of the solution for the single-walk
partition function Zs

t (xf |xi; κ1, κ2). Importantly as well as being able to write an explicit
solution for Zs

t one can also find a recurrence relation in t for it that allows one to derive a
recurrence relation for ZT

t . The recurrence can be solved using generating functions which is
precisely the required result.

4.1.1. Single damp walk partition function. Because of the symmetry noted above let us
consider Zs

t (xf |xi; κ1, κ2) to be that partition function for a single directed walk of length
t beginning at (0, xi) and ending at (t, xf ), weighted with κ1 for each step from x = 0 to
x = 1, and with κ2 for each step from x = 2 to x = 1, with an extra weight κ2 if xi = 1, and
constrained such that x � 0.

First we consider the constraints due to the shape of the lattice—as the walk can only pass
through points such that x + t is odd. So for t = 1, regardless of xi (where xi is assumed to
take odd values due to the lattice we are using), we cannot have xf = 1, due to the location of
sites on the lattice. Hence,

Zs
1(1|xi; κ1, κ2) = 0. (4.10)

We consider a walk of trivial length. For t = 0, the only physical possibility is if xf = xi .
This is weighted by 1 for xi > 1, and by κ2 if xi = 1. So we have

Zs
0(x|xi; κ1, κ2) = δx,xi

, for x > 1 (4.11)

Zs
0(1|xi; κ1, κ2) = κ2δ1,xi

. (4.12)

We can combine (4.11) and (4.12) to obtain

Zs
0(x|xi; κ1, κ2) = δx,xi

(1 + (κ2 − 1)δxi ,1). (4.13)

Due to the location of the wall, we know that if a walk is at x = 0 after t steps, then after
(t − 1) steps it was at x = 1, with an adjustment of the weightings, so we have

Zs
t (0|xi; κ1, κ2) = κ1

κ2
Zs

t−1(1|xi; κ1, κ2), t > 0. (4.14)

Considering walks that are at x = 1 after t steps we have

Zs
t (1|xi; κ1, κ2) = κ2Z

s
t−1(0|xi; κ1, κ2) + κ2Z

s
t−1(2|xi; κ1, κ2). (4.15)

Away from the wall, we have the general recurrence, for t > 0, x � 2,

Zs
t (x|xi; κ1, κ2) = Zs

t−1(x − 1|xi; κ1, κ2) + Zs
t−1(x + 1|xi; κ1, κ2). (4.16)

We list a few values of the single-walk partition function:

Zs
0(1|1; κ1, κ2) = κ2 (4.17)

Zs
2(1|1; κ1, κ2) = κ1κ2 + κ2

2 (4.18)

Zs
4(1|1; κ1, κ2) = κ2

1 κ2 + κ2
2 + κ3

2 + 2κ1κ
2
2 (4.19)

Zs
0(3|1; κ1, κ2) = 0 (4.20)

Zs
2(3|1; κ1, κ2) = κ2 (4.21)

Zs
4(3|1; κ1, κ2) = 2κ2 + κ1κ2 + κ2

2 . (4.22)
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After applying a standard separation of variables ansatz 
tyx we find that equation (4.16)
is satisfied by

f (x, xi, y) = A(xi, y)(y + ȳ)t (yx − S(y)ȳx), (4.23)

where ȳ = y−1. For f (x, xi, y) to also satisfy (4.14) and (4.15), we have


2(y − S(y)ȳ) = κ1(y − S(y)ȳ) + κ2
(y2 − S(y)ȳ2), (4.24)

where 
 = y + ȳ. Hence,

S(y) = (
2 − κ1)y − κ2
y2

(
2 − κ1)ȳ − κ2
ȳ2
. (4.25)

The choice for A(xi, y) is made to ensure that the interchange xi ↔ xf symmetry noted in
equation (4.9) is obeyed:

A(xi, y) = 1
2 (ȳxi − S(ȳ)yxi ). (4.26)

This gives, on noting that S(ȳ) = S(y)−1,

f (x, xi, y) = 1
2
t(yx−xi + yxi−x − S(y)ȳx+xi − S(ȳ)yx+xi ). (4.27)

It will prove useful to write the partition function as a constant term expression: the operator
CTy[] is defined to act on Laurent series in y with finitely many negative powers, giving the
coefficient of the constant term. Expanding in powers of y we have

y2S(ȳ) = 1 − κ2 + κ2(2 − κ1 − κ2)y
2 + O(y4), (4.28)

and similarly expanding ȳ2S(y) in powers of ȳ, we see that CTy[f (x, xi, y)] satisfies the
boundary and initial conditions. As interchanging y and ȳ in any term under the CT operation
has no effect, we can hence write

Zs
t (x|xi; κ1, κ2) = CTy[
t(yx−xi − y2S(ȳ)yx+xi−2], (4.29)

where y2S(ȳ) is to be expanded in powers of y.
If we define

T (y) = 1 − y2S(ȳ) = κ2(1 − y4)

1 − (κ1 + κ2 − 2)y2 − (κ2 − 1)y4
(4.30)

then we have

Zs
t (x|xi; κ1, κ2) = CTy[
t(yx−xi − (1 − T (y))yx+xi−2)] (4.31)

and for xi = 1 we have the simple result,

Zs
t (x|1; κ1, κ2) = CTy[
tT (y)yx−1]. (4.32)

Factorizing the denominator of T (y) in (4.30) as (1−cy2)(1−dy2), we have the variable
transformations

c + d = κ1 + κ2 − 2, cd = 1 − κ2, (4.33)

that is,

κ1 = (c + 1)(d + 1), κ2 = 1 − cd. (4.34)

This gives

Zs
t (x|1; κ1, κ2) = CTy

[
κ2


t(1 − y4)yx−1

(1 − cy2)(1 − dy2)

]
. (4.35)

We note that, for c �= d

1

(1 − cy2)(1 − dy2)
= 1

c − d

(
c

1 − cy2
− d

1 − dy2

)
. (4.36)
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So we have

Zs
t (x|1; κ1, κ2) = CT

[
κ2


t+1(1 − y2)yx

c − d

(
c

1 − cy2
− d

1 − dy2

)]
. (4.37)

The single-walk partition function for the dry-wall case Ut(x; c) = Zs
t (x|1; κ1, 1) found in

Brak and Essam [5] as

Ut(x; c) = CT

[

tyx(1 − y2)

1 − cy2

]
(4.38)

allows a neat expression for the damp case. When x = 1,

Ut(1; c) = 1

1 + c
Ut+1(0; c) (4.39)

and so we can express Zs
t (1|1; κ1, κ2) in terms of this dry-wall partition function,

Zs
t (1|1; κ1, κ2) = κ2

c − d

(
c

1 + c
Ut+2(0; c) − d

1 + d
Ut+2(0; d)

)
. (4.40)

Let us introduce the variables ωc and ωd as

ωc = c

(1 + c)2
, ωd = d

(1 + d)2
. (4.41)

Now from Brak and Essam [5] we know that

U2r+2(0; c) = (1 + c)

(
ω−r

c

(c + 1)(c − 1)

c2
θ(c − 1) +

1

c

∞∑
s=r+1

Csω
s−r
c

)
(4.42)

with θ being the unit step function, and so we have a complete expression for the single-walk
partition function.

4.1.2. Recurrence relations for single-walk partition function. If we express T (y) as

T (y) = κ2
y(1 − y2) +
κ2
y(1 − y2)((c + d)y2 − c dy4)

(1 − cy2)(1 − dy2)
(4.43)

then substituting this into (4.32) gives a recurrence in the end point position,

Zs
t (x|1; κ1, κ2) = κ2Bt+1,x + (c + d)Zs

t (x + 2|1; κ1, κ2) − c dZs
t (x + 4|1; κ1, κ2), (4.44)

where Bt,x is the Ballot number,

Bt,x = (x + 1)t!(
1
2 (t + x) + 1

)
!
(

1
2 (t − x)

)
!

= CTy[(y + ȳ)t (1 − y2)yx]. (4.45)

Similarly,

Zs
t (x|1; κ1, κ2) = κ2(ωc − ωd)

c − d
CTy

[

t+2(1 − y2)

(1 − ωc
2)(1 − ωd
2)

]
(4.46)

gives a recurrence in the length t,

Zs
t (1|1; κ1, κ2) = κ2(ωc − ωd)

c − d
C 1

2 t+1 + (ωc + ωd)Z
s
t+2(1|1; κ1, κ2) − ωcωdZ

s
t+4(1|1; κ1, κ2).

(4.47)
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4.1.3. Recurrence for partition functions for vesicles with a fixed end. We can simplify the
determinant (4.8) to be only in terms of single-walk partition functions beginning at 1, by
using the relationship,

Zs
t (x|3; κ1, κ2) = 1

κ2

(
Zs

t+2(x|1; κ1, κ2) − (κ1 + κ2)Z
s
t (x|1; κ1, κ2)

)
, (4.48)

obtained by the general recurrences (4.14), (4.15) and (4.16). Applying this to (4.8) gives

ZT
t (x|1; κ1, κ2) = 1

κ2

∣∣∣∣∣Z
s
t (x|1; κ1, κ2) Zs

t (x + 2|1; κ1, κ2)

Zs
t+2(x|1; κ1, κ2) Zs

t+2(x + 2|1; κ1, κ2)

∣∣∣∣∣ . (4.49)

We shall see below that we will only need to consider ZT
t (1|1; κ1, κ2) to evaluate

Źν
t (κ1, κ2) so from (4.49), if we set x = 1 we have

ZT
t (1|1; κ1, κ2) = 1

κ2

∣∣∣∣∣Z
s
t (1|1; κ1, κ2) Zs

t (3|1; κ1, κ2)

Zs
t+2(1|1; κ1, κ2) Zs

t+2(3|1; κ1, κ2)

∣∣∣∣∣ . (4.50)

Applying the physical property of (4.48) (traversed backwards in this case), we have

ZT
t (1|1; κ1, κ2) = 1

κ2
2

∣∣∣∣∣Z
s
t (1|1; κ1, κ2) Zs

t+2(1|1; κ1, κ2)

Zs
t+2(1|1; κ1, κ2) Zs

t+4(1|1; κ1, κ2)

∣∣∣∣∣ . (4.51)

Now, setting t = 2r and substituting into the recurrence (4.47), we have

ZT
2r (1|1; κ1, κ2) = ωc − ωd

κ2(c − d)

∣∣∣∣∣Cr+1 Zs
2r+2(1|1; κ1, κ2)

Cr+2 Zs
2r+4(1|1; κ1, κ2)

∣∣∣∣∣ + ωcωdZ
T
2r+2(1|1; κ1, κ2). (4.52)

This will be the main recurrence that we will be required to solve.

4.1.4. Simplifying the partition function for vesicles with a free end. We now seek an
expression for the free-end vesicle partition function Źν

t (κ1, κ2). We begin by combining
a recurrence found earlier from the single-walk partition function with the Gessel–Viennot
expression of the fixed-end vesicle partition function. That is, we can use (4.44) to simplify
(4.49) to

ZT
t (x|1; κ1, κ2) = Dt(x) + (1 − κ2)Z

T
t (x + 2|1; κ1, κ2), x �= 0 (4.53)

ZT
t (0|1; κ1, κ2) = 1

κ2
(Dt(0) + (1 − κ2)Z

T
t (2|1; κ1, κ2)), (4.54)

where

Dt(x) =
∣∣∣∣∣Bt+1,x Zs

t (x + 2|1; κ1, κ2)

Bt+3,x Zs
t+2(x + 2|1; κ1, κ2)

∣∣∣∣∣ . (4.55)

Using (4.32) and (4.45), we can hence write

Dt(x) = CTy1,y2

[

t+1

1 
t
2

(

2

2 − 
2
1

)
(y1y2)

x
(
1 − y2

1

)
y2T (y2)

]
. (4.56)

Summing (4.53) over x and using (4.54) gives

Źν
t (κ1, κ2) = 1

κ2

(
t+1∑
x=0

Dt(x) − cdZT
t (1|1; κ1, κ2)

)
. (4.57)

We now consider separately the free-end vesicle partition function for vesicles of even
length. We note that for even t, ZT

t (x|1; κ1, κ2) = 0 when x is even, and also

(

2

2 − 
2
1

) ∞∑
y=0

(y1y2)
2y+2 = y2

1 − y2
2 (4.58)
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and also that ZT
t (x|1; κ1, κ2) = 0 when x + t is even. So, applying these to (4.56) for t even,

we have
r∑

y=0

D2r (2y + 1) = CTy1,y2

[

2r+1

1 
2r
2

(
y2

1 − y2
2

)
ȳ1

(
1 − y2

1

)
T (y2)

]
= CTy1,y2

[

2r+1

1 
2r
2

(
(y1 + ȳ1)

(
1 − y2

1

)
+ (y1 − ȳ1)

(
1 + y2

2

))
T (y2)

]
. (4.59)

But

CTy1,y2

[

2r+1

1 (y1 − ȳ1)F (y2)
] = CTy1,y2

[
y1


2r+1
1 F(y2) − ȳ1


2r+1
1 F(y2)

] = 0 (4.60)

as the second term is identical to the first when y1 and ȳ1 are interchanged. So we have

r∑
y=0

D2r (2y + 1) = CTy1,y2

[

2r+2

1

(
1 − y2

1

)]
CTy1,y2

[

2r

2 T (y2)
]

= Cr+1Z
s
2r (1|1; κ1, κ2). (4.61)

So we have an expression for the free-end partition function for vesicles of even length,

Źν
2r (κ1, κ2) = 1

κ2

(
Cr+1Z

s
2r (1|1; κ1, κ2) + (κ2 − 1)ZT

2r (1|1; κ1, κ2)
)
. (4.62)

We obtain a similar result for t odd,

Źν
2r+1(κ1, κ2) = 1

κ2
Cr+1Z

s
2r+2(1|1; κ1, κ2). (4.63)

Therefore, we now have expressions (4.62) and (4.63) for the partition function of vesicles
with free ends, of even and odd lengths, in terms of single-walk partition functions and fixed-
end vesicle partition functions where the beginning and end points are at xi = xf = 1.

4.1.5. Solving for the generating function of damp vesicles. The generating function

G(z; κ1, κ2) =
∞∑

r=0

Źν
2r (κ1, κ2)z

2r +
∞∑

r=0

Źν
2r+1(κ1, κ2)z

2r+1 (4.64)

using (4.62) and (4.63), is given by

G(z; κ1, κ2) = 1

κ2

∞∑
r=0

Cr+1
[
Zs

2rz
2r + Zs

2r+2z
2r+1] +

κ2 − 1

κ2

∞∑
r=0

ZT
2rz

2r , (4.65)

where Zs
2r ≡ Zs

2r (1|1; κ1, κ2) as given by equation (4.40), and ZT
2r ≡ ZT

2r (1|1).
To find our generating function G(z; κ1, κ2) we must find the generating function∑∞

r=0 ZT
2rz

2r which we shall do using the recurrence (4.52).
Let us define

H(z) =
∞∑

r=0

ZT
2rz

2r (4.66)

and

gr =
∣∣∣∣∣ Cr Zs

2r

Cr+1 Zs
2r+2

∣∣∣∣∣ . (4.67)
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Multiplying (4.52) by z2r and summing over r gives us

H(z) = ωc − ωd

κ2(c − d)

∞∑
r=0

gr+1z
2r + ωcωd

∞∑
r=0

ZT
2r+2z

2r

H(z)

(
1 − ωcωd

z2

)
= ωc − ωd

κ2(c − d)

∞∑
r=0

gr+1z
2r − ωcωd

z2
ZT

0 (4.68)

H(z) = 1

κ2
1 (z2 − ωcωd)

∞∑
r=1

grz
2r − κ2ωcωd

z2 − ωcωd

.

Hence,

Gdv(z; κ1, κ2) = 1

κ2

∞∑
r=0

Cr+1
[
Zs

2rz
2r+2 + Zs

2r+2z
2r+3]

+
κ2 − 1

κ2κ
2
1 (z2 − ωcωd)

∞∑
r=1

[
CrZ

s
2r+2 − Cr+1Z

s
2r

]
z2r+2 − (κ2 − 1)ωcωdz

2

z2 − ωcωd

.

(4.69)

This represents the solution for the generating function of staircase polygons above a damp
wall with one end fixed and the other end free.

4.2. Percolation probability for the damp wall

Note that if κ1, κ2 are set to the values which relate to the percolation problem:,

z = pq, κ1 = pw

pq
, κ2 = qw

q
, (4.70)

then the values of the other variables are

c = p

q
, d = pw − p

p
(4.71)

and

ωc = pq, ωd = p

p2
w

(pw − p). (4.72)

Note in particular that z = ωc.
Since z = ωc we have

H(ωc) = 1

κ2ωc(c − d)

( ∞∑
r=0

grω
2r
c − g0

)
− κ2ωd

ωc − ωd

= 1

κ2ωc(c − d)

∞∑
r=0

grω
2r
c − κ1 + κ2 − 1

ωc(c − d)
− κ2ωd

ωc − ωd

= 1

κ2ωc(c − d)

∞∑
r=0

grω
2r
c − κ1

ωc(c − d)
. (4.73)

So, recalling the definition of H(z) in (4.66), and substituting (4.67) into (4.73), we have
∞∑

r=0

ZT
2rω

2r
c = 1

κ2ωc(c − d)

∞∑
r=0

(
CrZ

s
2r+2 − Cr+1Z

s
2r

)
ω2r

c − κ1

ωc(c − d)
(4.74)

18



J. Phys. A: Math. Theor. 42 (2009) 125001 H Lonsdale et al

G(ωc(p, pw); κ1(p, pw), κ2(p, pw)) = 1

1 − cd

∞∑
r=0

Cr+1Z
s
2rω

2r
c

− cd

κ2ωc(1 − cd)(c − d)

∞∑
r=0

(
CrZ

s
2r+2 − Cr+1Z

s
2r

)
ω2r

c

+
cdκ1

ωc(c − d)(1 − cd)
+

1

1 − cd

∞∑
r=0

Cr+1Z
s
2r+2ω

2r+1
c . (4.75)

Noting the form of Zs
2r (1|1) from (4.40) and (4.42), we are able to rewrite G(ωc, κ1, κ2)

as

G(ωc; κ1, κ2) = θ(c − 1)C − θ(d − 1)D + Ωc − Ωd +
cdκ1

ωc(c − d)(1 − cd)
. (4.76)

We define (and treat) each of C, D,Ωc and Ωd below separately, making use, where
possible, of the result,

∞∑
s=1

Csz
s = 1 − 2z − √

1 − 4z

2z
(4.77)

C = c2 − 1

c(c − d)

( ∞∑
r=0

Cr+1ω
r
c +

∞∑
r=0

Cr+1ω
r
c +

cd

κ2ωc(c − d)

( ∞∑
r=0

Cr+1ω
r
c −

∞∑
r=0

Crω
r−1
c

))
.

(4.78)

Using (4.77), (4.70)–(4.72) and setting q = 1 − p gives

C = (1 − 2q)
(
q2 − q + qw + qqw − 4q2qw + 2q2q2

w

)
qqw(1 − q)2(1 − 2q + qqw)2

. (4.79)

We do not need to consider D, as θ(d − 1) = 0 in the region p > 1
2

Ωc = 1

c − d

( ∞∑
r=0

Cr+1ω
r
c

∞∑
s=r+1

Csω
s
c +

∞∑
r=0

Cr+1ω
r
c

∞∑
s=r+2

Csω
s
c

)

+
cd

κ2ωc(c − d)2

( ∞∑
r=0

Cr+1ω
r
c

∞∑
s=r+1

Csω
s
c −

∞∑
r=0

Crω
r−1
c

∞∑
s=r+2

Csω
s
c

)
. (4.80)

Making use of (4.77), we can rewrite Ωc as

Ωc = J1 + J2, (4.81)

where

J1 = (1 − 2ωc − √
1 − 4ωc)

2

4ω3
c (c − d)

− cd(1 − 2ωc − √
1 − 4ωc)

2ω3
cκ2(c − d)2

(4.82)

and J2 will be considered later.
Using (4.70)–(4.72) and setting q = 1 − p gives

J1 = q2

(1 − q)2(1 − 2q + qqw)
− q(q − qw)

qw(1 − q)(1 − 2q + qqw)2
(4.83)

Ωd = 1

c − d

( ∞∑
r=0

Cr+1

(
ω2

c

ωd

)r ∞∑
s=r+1

Csω
s
d +

ωc

ωd

∞∑
r=0

Cr+1

(
ω2

c

ωd

)r ∞∑
s=r+2

Csω
s
d

)

+
cd

κ2ωc(c − d)2

( ∞∑
r=0

Cr+1

(
ω2

c

ωd

)r ∞∑
s=r+1

Csω
s
d − 1

ωd

∞∑
r=0

Cr

(
ω2

c

ωd

)r ∞∑
s=r+2

Csω
s
d

)
.

(4.84)
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Similarly to (4.81), we can rewrite Ωd by extracting the portion of (4.84) to which we can
apply (4.77), and express

Ωd = K1 + K2, (4.85)

where

K1 = 1

c − d

(
1 +

ωc

ωd

) ∞∑
r=0

Cr+1

(
ω2

c

ωd

)r ∞∑
s=1

Csω
s
d

+
cd

κ2ωc(c − d)2

( ∞∑
r=0

Cr+1

(
ω2

c

ωd

)r ∞∑
s=1

Csω
s
d − 1

ωd

∞∑
r=0

Cr

(
ω2

c

ωd

)r ∞∑
s=1

Csω
s
d

)
(4.86)

and K2 will be considered later.
Using (4.77), (4.70)–(4.72) and setting q = 1 − p gives, with a lot of manipulation,

K1 = − q(q − qw)(1 − qw)2

qw(1 − q)(1 − 2q + qqw)2
. (4.87)

Substituting (4.79), (4.83), (4.87), into (4.76) gives

G

(
pq; pw

pq
,
qw

q

)
= θ(c − 1)C − θ(d − 1)D + Ωc − Ωd +

(q − qw)(1 − qw)

qqw(1 − q)(1 − 2q + qqw)

(4.88)

= q − 2q2 + qw − 2qqw + q2qw

q(1 − q)2(1 − 2q + qqw)
+ J2 − K2, (4.89)

where J2 and K2 are defined in (4.80) and (4.84) respectively so that

J2 − K2 = cd

κ2ωc(c − d)2

( ∞∑
r=0

Crω
r−1
c

r+1∑
s=1

Csω
s
c −

∞∑
r=0

Cr+1ω
r
c

r∑
s=1

Csω
s
c

)

+
1

c − d

∞∑
r=0

Cr+1

(
ω2

c

ωd

)r
(

r∑
s=1

Csω
s
d +

ωc

ωd

r+1∑
s=1

Csω
s
d

)

+
cd

κ2ωc(c − d)2

( ∞∑
r=0

Cr+1

(
ω2

c

ωd

)r r∑
s=1

Csω
s
d − 1

ωd

∞∑
r=0

Cr

(
ω2

c

ωd

)r r+1∑
s=1

Csω
s
d

)
.

(4.90)

With manipulation of (4.90) it can be shown that J2 − K2 = 0.
Hence, for p > 1

2 :

G

(
pq; pw

pq
,
qw

q

)
= q − 2q2 + qw − 2qqw + q2qw

q(1 − q)2(1 − 2q + qqw)
. (4.91)

Using the relationship (3.9) between the generating function and the percolation probability
we finally arrive at the main result,

P(p, pw) = 1 − q2G

(
pq; pw

pq
,
qw

q

)

= (1 − 2q)2

(1 − q)2(1 − 2q + qqw)
. (4.92)

We can also check with great difficulty that P(p, pw) = 0 for p � 1/2.
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Figure 5. P(p, pw) plotted over p ∈ [ 1
2 , 1], pw ∈ [ 1

2 , 1].

We have hence arrived at the percolation probability for the damp case (plotted in figure 5)

P(p, pw) =

⎧⎪⎨
⎪⎩

(1 − 2q)2

(1 − q)2(1 − 2q + qqw)
, p >

1

2

0 p � 0.

(4.93)

We now check that the expression we have found for the damp percolation probability is
consistent with the previously found wet and dry cases. The wet case corresponds to pw = 1,
giving

P(p, 1) = (1 − 2q)

(1 − q)2
, (4.94)

which is the same as the result obtained for the wet case.
The dry case corresponds to pw = 0 giving

P(p, 0) = (1 − 2q)2

(1 − q)3
, (4.95)

which is the same as the result obtained for the dry case.
We can also note from the damp case that the exponent (β = 2) is the same as in the dry

case, and the transition value of p = 1
2 remains unchanged by the value of pw, which is a

surface effect.

5. Functional-equation approach

In this section we use a functional-equation approach to compute the percolation probability.
While this calculation reproduces the results from section 4, it is a new application of the
family of techniques known as the ‘kernel method’. These techniques have been used to great
effect in combinatorics and indeed one can see that the resulting calculations are somewhat
simpler.

The main drawback of this approach is that we have not yet been able to extend this
technique to other quantities of interest such as the mean-cluster length. While it is in
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principle possible to use the kernel method to obtain the generating function of the two-
walker two-interaction system, we have not yet done so due to the complexity of the resulting
expressions. We include both approaches here to demonstrate their strengths and weaknesses.

5.1. Functional equation for the two-walker system

In order to apply the functional equation method we construct the two-walker system column-
by-column. In particular, each configuration in the two walker system is either of length zero,
or can be constructed by appending a step to each walk of a shorter configuration. To this end
we define f (s, r; z, κ1κ2) to be the generating function for the number of configurations of two
directed walkers above a wall starting from (0, 0) and (0, 2). Note that this differs from the
definition of the walks enumerated by G by one pair of steps. The variable s is conjugate to the
height of the lower walker above the wall and r is conjugate to the separation of the end points
minus 2. In the text below we will often use the shorter notation f (s, r) ≡ f (s, r; z, κ1, κ2).
We will also use the notation [s�]{f (s, r)} to denote the coefficient of s� in the generating
function f (s, r) and similarly for coefficients of r.

In order to compute the percolation probability we need to recover the generating function
G(z; κ1, κ2). This is given by those two-walker configurations in which the walkers end
together at any non-negative height. The connection between the two sets of walks gives
f (1, 0; κ1, κ2) = 1 + zG(z; κ1, κ2). The percolation probability is therefore given by

P(p, pw) = 1 − q

p

(
f

(
1, 0;pq,

pw

pq
,
qw

q

)
− 1

)
. (5.1)

We now derive a functional equation for f . Each configuration is either a single vertex—
this contributes 1 to the generating function, or is obtained by appending a single step to
the end of each walk in a smaller configuration. There are four possible ways in which a
single step can be appended to the end of each path—two north east steps, two south east
steps and one north east step and one south east step (in two different ways). This gives
z(s + s/r + r/s + 1/s) · f (s, r). However, in appending steps in this way, we have produced
invalid configurations and we must subtract off these contributions.

• Appending a south east step to the lower walk when it finishes on the wall results in an
invalid configuration (no matter which step is added to the upper walk) since the resulting
walk steps below the wall. This gives −z 1+r

s
· [s0]{f (s, r)}.

• Appending a north east step to the lower walk and a south east step to the upper walk of
a configuration whose endpoints are touching results in an invalid configuration since the
walkers cross. This gives −z s

r
· [r0]{f (s, r)}.

This construction results in the functional equation

f (s, r) = 1 + z

(
s +

s

r
+

r

s
+

1

s

)
f (s, r) − z(1 + r)

s
· [s0]{f (s, r)}

− zs

r
· [r0]{f (s, r)} + interaction terms. (5.2)

We now take care of the interaction terms. In order to do this we subtract off the terms that
have not yet been weighted by the interaction terms and add back the same contributions but
with additional factors of κ1 and κ2 as necessary.

• When the lower walk steps south east from height 1 onto the wall the weight of the
configuration should increase by a single power of κ1 (no matter which step is appended
to the other walk). This gives z(κ1 − 1)(1 + r) · [s1]{f (s, r)}.
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• Similarly when the lower walk steps north east from height 0 or south east from height 2
to end at height 1, then the weight of the configuration should increase by a single power
of κ2. This gives z(κ2 − 1)s(1 + r) · [s2]{f (s, r)} + z(κ2 − 1)s

(
1 + 1

r

) · [s0]{f (s, r)}.
• However this last term possibly reintroduces configurations in which the walkers cross

and so these must be subtracted off again to give −z(κ2 − 1) s
r

· [s0r0]{f (s, r)}.
Putting these terms together and rewriting the coefficients in terms of derivatives gives

f (s, r) = 1 + z

(
s +

s

r
+

r

s
+

1

s

)
f (s, r) − zs

r
f (s, 0) − z(1 + r)

s
f (0, r)

+ z(κ1 − 1)(1 + r)
∂f

∂s
(0, r) + z(κ2 − 1)

s(1 + r)

2

∂2f

∂s2
(0, r)

+ z(κ2 − 1)s

(
1 +

1

r

)
f (0, r) − z(κ2 − 1)

s

r
f (0, 0). (5.3)

We can now simplify this equation and remove the two unknowns ∂f

∂s
(0, r) and ∂2f

∂s2 (0, r) by
differentiating equation (5.3) repeatedly and setting s = 0. Differentiating once and setting
s = 0 gives

zκ1(1 + r)
∂f

∂s
(0, r) = f (0, r) − 1. (5.4)

Differentiating twice and setting s = 0 gives

zκ2r(1 + r)
∂2f

∂s2
(0, r) = 2

(
r
∂f

∂s
(0, r) − zκ2(1 + r)f (0, r) + zκ2f (0, 0)

)
. (5.5)

Substituting both these expressions back into equation (5.3) and multiplying by sr gives the
following expression:

f (s, r)K(s, r) = A(s, r) + B(s, r)f (s, 0) + C(s, r)f (0, r), (5.6)

where

K(s, r) = sr − z(s2r + s2 + r2 + r), (5.7a)

A(s, r) = sr

κ1
− s2r(κ2 − 1)

zκ1κ2(1 + r)
, (5.7b)

B(s, r) = −zs2, (5.7c)

C(s, r) = −zr(1 + r) +
(κ1 − 1)sr

κ1
+

(κ2 − 1)s2r

zκ1κ2(1 + r)
. (5.7d)

The polynomial K(s, r) is called the kernel. Note that this new equation does not contain the
term f (0, 0); it has been cancelled in the process of removing ∂f

∂s
(0, r) and ∂2f

∂s2 (0, r).
Rather than solving this equation directly to obtain f (s, r), we will first map to the

percolation problem and solve for f (1, 0) using the kernel method. The above functional
equation contains several unknown functions; by making careful choices of s and r we can
cancel the kernel and generate new equations that allow us to eliminate these unknown
functions and so solve for f (1, 0).

Recall that we map to the percolation problem by setting

z �→ pq, κ1 �→ pw

pqw

, κ2 �→ qw

q
, (5.8)

where q = 1 − p and qw = 1 − pw. Setting pw = p returns us to the dry-wall case
(κ1 = 1/q, κ2 = 1).

We first solve the equation in the case of small p and then solve in the case of small q.
We do not need the full f (s, r) generating function; we only require f (1, 0) since it counts
configurations with adjacent endpoints but lying at any distance above the wall.
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5.2. Small p

Consider the functional equation after mapping to the percolation problem and with all q and
qw terms rewritten in terms of p and pw. This gives

K(s, r) = sr − p(1 − p)(s2r + s2 + r2 + r) (5.9a)

A(s, r) = srp(pw − 1)

pw

+
s2r(p − pw)

(1 + r)(p − 1)pw

(5.9b)

B(s, r) = −p(1 − p)s2 (5.9c)

C(s, r) = −p(1 − p)r(1 + r) +
sr(pw − p + ppw)

pw

− s2r(p − pw)

(1 + r)(1 − p)pw

. (5.9d)

If we try to set s = 1, r = 0 in the functional equation then we obtain the tautology
f (1, 0) = f (1, 0).

Instead we set s = 1 and then look for values of r that set K(s, r) = 0; this is the idea
of the kernel method. Doing so gives two solutions r = p

1−p
,

1−p

p
. Since we wish to obtain a

solution that is valid for small p, we cannot substitute the second of these (it will result in a
power series that is singular as p → 0). When we substitute s = 1, r = p

1−p
,K is zero and

by happy coincidence, C is also zero; we are left with

0 = p − p(1 − p)f (1, 0). (5.10)

So f (1, 0) = 1
1−p

and thus the percolation probability is given by

P(p) = 1 − 1 − p

p
(f (1, 0) − 1) = 0 (5.11)

as is expected for small p.

5.3. Small q

Now consider equation (5.6) mapped to the percolation problem and with everything written
in terms of q, qw:

K(s, r) = sr − q(1 − q)(s2r + s2 + r2 + r) (5.12a)

A(s, r) = sr(1 − q)qw

(1 − qw)
+

s2r(q − qw)

(1 + r)q(1 − qw)
(5.12b)

B(s, r) = −q(1 − q)s2 (5.12c)

C(s, r) = −q(1 − q)r(1 + r) +
sr(1 − 2qw + qqw)

1 − qw

− s2r(q − qw)

(1 + r)q(1 − qw)(1 + r)
. (5.12d)

The kernel method does not work as cleanly in this case and we must make several different
substitutions for s, r in order to obtain f (1, 0).

• As above, we start by setting s = 1 and r = q

1−q
which cancels K,

(1 − 2q)qw

(1 − qw)
f

(
0,

q

1 − q

)
+

q + qqw − qw

1 − qw

− q(1 − q)f (1, 0). (5.13)

We will return to this equation after we have found f
(
0,

q

1−q

)
.
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• Since we have f (1, 0) in terms of f
(
0,

q

1−q

)
, we next set r = q

1−q
. We see that there are

two values of s that cancel K, namely s = 1,
q

1−q
. Setting s = r = q

1−q
cancels both K

and C:

f

(
q

1 − q
, 0

)
= 1

1 − q
. (5.14)

• Since we have f
(

q

1−q
, 0

)
in closed form, set s = q

1−q
and leave r = r . This results in an

ugly expression involving f
(

q

1−q
, r

)
, f

(
q

1−q
, 0

)
and f (0, r).

Substitute f
(

q

1−q
, 0

) = 1
1−q

into this expression and then remove the resulting common

factor of (q − r(1 − q)). This leaves an equation in f
(

q

1−q
, r

)
and f (0, r). The coefficient of

the first of these terms can be cancelled by setting r = q

1−q
. This leaves

f

(
0,

q

1 − q

)
= 1 − q

1 − 2q + qw

(5.15)

which is precisely what we require to find f (1, 0).

• Substitute this into equation (5.13) to obtain

f (1, 0) = 1 − 2q + qw − qqw

(1 − q)(1 − 2q + qqw)
. (5.16)

The percolation probability is therefore

P(q, qw) = 1 − q

1 − q
(f (1, 0) − 1) = (1 − 2q)2

(1 − q)2(1 − 2q + qqw)
, (5.17)

which is precisely the result obtained in equation (4.93).

6. Discussion

The next natural step in this work will be to find the mean length and mean number of contacts
for finite clusters near a damp wall. It is anticipated that this will be able to be achieved
using similar methods to those used to find these properties in the dry case [5]. This will
involve finding differential equations satisfied by the cluster properties, and using Zeilberger’s
algorithm to allow us to compute derivatives of the vesicle partition function, and hence
calculate the mean length of finite clusters and mean number of surface contacts.

Following this work, there are many other directions which could be pursued in this area
of research. For example, we have so far only considered the damp case for a seed width
(m) of one, so it might be of interest to investigate the percolation probability for general m.
Another variation on this problem would be to investigate the effect of having a bias: that is,
assign a probability pu for ‘up’ steps, and a probability pd for ‘down’ steps, rather than the
same probability p for both. It would also be possible to consider the effect of more than 1
wall, or perhaps a wall that was not perpendicular to the direction of movement of the cluster.
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