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Abstract. We investigate a lattice model of polymers where the nearest
neighbour monomer–monomer interaction strengths differ according to whether
the local configurations have so-called ‘hydrogen-like’ formations or not. If the
interaction strengths are all the same then the classical θ-point collapse transition
occurs on lowering the temperature, and the polymer enters the isotropic liquid
drop phase known as the collapsed globule. On the other hand, strongly favouring
the hydrogen-like interactions gives rise to an anisotropic folded (solid-like) phase
on lowering the temperature. We use Monte Carlo simulations up to a length of
256 to map out the phase diagram in the plane of parameters and determine the
order of the associated phase transitions. We discuss the connections to semi-
flexible polymers and other polymer models. Importantly, we demonstrate that
for a range of energy parameters, two phase transitions occur on lowering the
temperature, the second being a transition from the globule state to the crystal
state. We argue from our data that this globule-to-crystal transition is continuous
in two dimensions in accord with field-theory arguments concerning Hamiltonian
walks, but is first order in three dimensions.
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1. Introduction

The self-avoiding walk (SAW) on a lattice [1, 2] is a key model in statistical mechanics
for the study of the static properties of polymers. Incorporating interactions in this
model makes it possible to represent many features of real polymers. Regardless of the
constraints on the lattice relative to the real world, the model mimics very well many
properties of physical systems [3]. The self-avoiding walk on a lattice is a random walk
which is not allowed to visit a lattice site more then once. Unless a bending energy is
introduced, each visited lattice site is considered to model more than one of the monomers
of the polymer chain, thereby taking into account the natural rigidity of real polymers. A
modelling, though unnatural, simplification is to consider fully flexible polymers so that
each visited lattice site is considered to model only a single monomer. In either case,
a common way [2] to model intra-polymer interactions in such a walk is to assign an
energy to each non-consecutive pair of monomers lying on the neighbouring lattice sites.
This is the canonical ISAW model which is the standard model of polymer collapse using
self-avoiding walks. With this modification one studies a polymer in a solvent, where the
energy between monomers can be attractive or repulsive and depends on temperature. If
the energy is repulsive the polymer behaves as a swollen chain (the so-called excluded-
volume state) regardless of temperature and one says that it is in a good solvent. When
the energy is attractive, and the temperature is low enough, the chain becomes a rather
more compact globule [2, 4], reminiscent of a liquid droplet: this is also known as the poor
solvent situation. The transition point between those two phases is called the θ-point; it
is a well-studied continuous phase transition (see [5] and references therein).

The modelling changes as soon as we want to describe any biological system
(e.g. proteins), in which the hydrogen bonding plays an important role [6]. One of the main
features of the bonding is that the interacting residua lie on partially straight segments
of the chain. Hydrogen-like bonding was first modelled on the cubic and square lattices
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using Hamiltonian paths by Bascle et al [7]. A monomer acquires a hydrogen-like bond
with its (non-consecutive) nearest neighbour if both of them lie on straight sections of
the chain (see figure 2). Note that the identification of a single contact of this type with
a single hydrogen bond is only valid if fully flexible polymers are considered; otherwise
the contact represents an agglomeration of such bonds. The interacting self-avoiding walk
modified to have only such interactions will be referred to as the hydrogen-like bonding
model, or rather hb-model. The hb-model was studied in mean-field approximation [7]
and a first-order transition from a high temperature excluded-volume (swollen) phase to
a quasi-frozen solid-like phase was found in both two and three dimensions. Hence this
would indicate that it is a different type of transition from the θ-point one. Note also that
the low temperature hb-phase is anisotropic whereas the collapsed globule of the standard
θ-point model is isotropic. The hb-model on the square lattice was studied directly by
Foster and Seno by means of the transfer matrix method [8] and by Krawczyk et al [9]
on both the square and cubic lattices using a Monte Carlo method. In both studies a
first-order transition was found between an excluded-volume (swollen coil) state and an
anisotropic ordered compact phase in two and in three dimensions, again in contrast to
the θ-point [2].

It is appropriate to compare this difference between the behaviours of the hb-model
and θ-point models with the difference between the behaviours of interacting semi-stiff
polymers and the fully flexible θ-point polymers. This is because hydrogen bonding
induces an effective stiffness in the polymer between those monomers that are taking
part in the interactions. As the temperature is lowered the proportion of the monomers
experiencing this stiffness increases, so while not all the segments of the polymer feel
this stiffness at high temperatures, the proportion of monomers involved with nearest
neighbour hb-interactions increases towards unity as the temperature is lowered. In
three dimensions, Bastolla and Grassberger [10] discussed so-called semi-stiff self-avoiding
walks, which interact via all nearest neighbours, as in the θ-point model, and include a
bending energy. They showed that when there is a strong energetic preference for straight
segments, this model undergoes a single first-order transition from the excluded-volume
high temperature state to a state similar to the low temperature solid-like state of the hb-
model. Intriguingly, if there is only a weak preference for straight segments, the polymer
undergoes two phase transitions: on lowering the temperature the polymer undergoes the
θ-point transition to the liquid globule followed at a lower temperature by a first-order
transition to the frozen phase. We should point out though that in two dimensions the
transition between the globule and the frozen state has only been studied in Hamiltonian
walks, and there it seems to be continuous one [11].

To complicate matters further, there is at least one other model using a different
definition of interactions which could be regarded as hydrogen-like bonding. This
model [12] defines interactions between parallel segments, that is, bonds of the lattice
occupied by the walk and so connecting monomers; see figure 2. We will call this model the
interacting bond model. Studying this model by means of Bethe approximation, Buzano
and Pretti [12] found, in both two and three dimensions, two phase transitions: while
decreasing the temperature the θ-collapse to an isotropic globule phase is followed by a
first-order transition to a solid-like phase. Hence, this is similar to the semi-stiff model for
weak stiffness. The interacting bond model in two dimensions has recently been studied
by Foster [14] and also displays two transitions. In [13] Buzano and Pretti added isotropic
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nearest neighbour monomer–monomer interactions to the interacting bond model, and
investigated the phase diagram in three dimensions, again in the Bethe approximation.
They showed that the phase diagram is similar to the interacting bond model. However,
if the interactions between monomers are repulsive, there is only one first-order phase
transition from the swollen coil to the solid-like phase. This is again reminiscent of the
semi-stiff model for strong stiffness.

It is therefore of some interest to study an enhanced hb-model where non-hydrogen
bond nearest neighbours are also considered. Hence, in this paper we investigate a model
of self-interacting self-avoiding walks with two types of nearest neighbour interaction: the
hb-interactions and nearest neighbour interactions that are not hydrogen bonds, which
we denote as nh-interactions. The competition between these two types of interaction
(hb versus nh) leads to a three-phase phase diagram, with excluded-volume, globule and
frozen phases. Of special interest is the comparison to the semi-stiff model. One key
question is whether there can exist two phase transitions on lowering the temperature.
The orders of the transitions in two and three dimensions are also of interest. We use
a Monte Carlo technique, known as FlatPERM [15], to study self-avoiding walks on the
simple cubic and square lattices with interactions as described.

The paper is organized as follows. In section 2 we explain more carefully details of
the model. In section 3 the phase diagram in both dimensions is discussed. A discussion
of the anisotropy of the model is also given. We conclude with a summary and discuss
the similarity of this model to the semi-stiff model.

2. Model and simulations

The polymer is modelled on a square and simple cubic lattice as a self-avoiding walk with
interactions between nearest neighbour monomers of different types: that is monomers
that are not consecutive in the walk but nearest neighbours on the lattice. The strength of
the interaction depends on the relative position of the monomers involved in the interaction
to those next to them on the walk. A segment is defined as a site along with the two
adjoining bonds visited by the walk, and we say that a segment is straight if these two
bonds are aligned. The ‘hydrogen bonds’ are nearest neighbour interactions that are
between monomers where both are part of straight segments of the polymer; see figure 1.

Our model weights the parallel and orthogonal hb interactions equally. Our model
also includes all other possible nearest neighbour interactions and assigns them different
Boltzmann weight. The two kinds of distinguished interactions are shown in figure 2. As
just described, interactions between monomers sitting on straight lines, as in monomer
No 5 of the triple of monomers No 2, No 5 and No 14, form the hydrogen bond interactions
with like monomers, as in the interacting pairs of monomers 2–5 and 5–14. The energy
of those interactions is denoted as −εhb. The other kind of interaction consists of any
nearest neighbour interaction between non-consecutive monomers that are not hydrogen
bonds, as in the pairs 1–6 and 10–13 for example. The energy of those interactions is
denoted as −εnh.

Note that the number of all nearest neighbour interactions, m, is equal to the sum of
the numbers of the two types of interaction considered in our model, that is m = mnh+mhb.
The energy of configuration ϕn of an n-step walk is calculated as

E(ϕn) = −mhb(ϕn) · εhb − mnh(ϕn) · εnh, (2.1)
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Figure 1. The types of nearest neighbour interactions between two straight
segments of the polymer involved in the hb-interactions: parallel segments (left)
and orthogonal segments (right). In the model studied in this paper these two
types are weighted equally. In two dimensions, only parallel interactions are
possible.
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Figure 2. Interactions in a 3D interacting self-avoiding walk. In our model we
distinguish two different kinds of interactions, which are denoted by two different
colours. The red colour (dark shading) denotes hydrogen-like interactions (hb)
(monomers 2–5, 5–14) whereas the green colour (light shading) denotes all other
interactions between two neighbouring monomers (nh) (monomers 1–6 and 10–13
for example).

where mhb and mnh are the number of hydrogen-like bond interactions and that of
non-hydrogen-like nearest neighbour interactions, respectively. The inverse temperature
is denoted as β = 1/kBT , where kB is the Boltzmann constant and T the absolute
temperature. We define for convenience βhb = βεhb and βnh = βεnh. The partition
function is then given by

Zn(βhb, βnh) =
∑

mhb,mnh

Cn,mhb,mnh
eβhbmhb+βnhmnh (2.2)

with Cn,mhb,mnh
the density of states. Canonical averages are calculated with respect to

this density of states.
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Since we will consider simulation results along lines in parameter space at a constant
ratio of εnh/εhb = βnh/βhb we define εnh = γ, and εhb = 1− γ, so the energy is then given
by

E = −mhb · (1 − γ) − mnh · γ. (2.3)

In our study we will analyse the (reduced) specific heat to investigate the phase diagram:
that is,

C(T ) =
1

T

〈E2〉 − 〈E〉2
n

. (2.4)

We will also consider fixing one of the parameters, either βhb or βnh, and varying the
other. To analyse the possible phase transitions we then use the fluctuations in the number
of monomers of the appropriate type. In the case of βhb being constant we consider

σ2(mnh) = 〈m2
nh〉 − 〈mnh〉2. (2.5)

When βnh is constant we consider

σ2(mhb) = 〈m2
hb〉 − 〈mhb〉2. (2.6)

Simulations have been performed with the FlatPERM algorithm [15]. We have
simulated the models using a two-parameter implementation (utilizing mhb and mnh) for
length n = 128 where the simulation directly estimates this density of states Cn,mhb,mnh

.
We have also performed one-parameter (mhb or mnh) simulations for systems of size 256
where the simulation estimates partial summations of this density of states over one of
the variables.

3. Results and discussion

3.1. Pure hydrogen bonding and the canonical ISAW models

When γ = 1/2 the model becomes the canonical interacting self-avoiding walk (ISAW),
which displays the θ-transition from coil to globule state. The θ-transition is a second-
order phase transition in both two and three dimensions. In two dimensions the established
crossover exponent is φ = 3/7 [16], which implies a negative specific heat exponent
α = 2−1/φ = −1/3 (the specific heat does not diverge on approaching the transition) [17].
In three dimensions, which is the upper critical dimension for the θ-transition, the specific
heat is expected to diverge logarithmically [18]. The collapsed state is an isotropic dense
liquid-like droplet with a well-defined surface tension [19, 20].

On the other hand, for γ = 0 the model becomes the hb-model studied by Foster
and Seno [8] on the square lattice and Krawczyk et al on the square and simple cubic
lattices [9]. In both two and three dimensions, there is a single first-order transition to a
folded crystalline state, which is anisotropic.

Using these results as a starting point, one therefore expects there to be at least
these three phases (swollen, globule, crystal) in the full two-dimensional parameter space
explored here. For γ > 1/2, the hb-interactions are suppressed relative to the non-hb
interactions, and the simplest hypothesis would be that the θ-transition is not affected.
To test this hypothesis, we have considered the line γ = 1 below. For γ close to zero, the
hb-interactions dominate, and one may expect there to exist some range of values for γ
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for which the first-order transition of the pure hb-model persists. To test this, we need
to consider a small value of γ. We of course then need to consider other values of γ to
see whether the two transitions can occur for fixed γ and whether there exist any other
phases.

3.2. Features of the phase diagram

To gain an understanding of which values of γ we may need to consider more closely,
we first examine the fluctuations in the numbers of interactions across a wide range of
(βhb, βnh). As in previous work [21, 22, 9], we found the use of the largest eigenvalue of
the matrix of second derivatives of the free energy with respect to the parameters βnh

and βhb most advantageous for showing the fluctuations in a unified manner. Figure 3
displays density plots of the size of fluctuations for −0.1 ≤ βnh, βhb ≤ 2.0 in two and three
dimensions, respectively. The lighter the shade, the larger the fluctuations.

This suggests the presence of three thermodynamic phases separated by three phase
transition lines meeting at a single point. From our discussion above, we can therefore
identify these three phases as swollen, globule, and crystal. Therefore, for small values
of βnh and βhb, we expect the model to be in the excluded-volume universality class of
swollen polymers, since at βnh = βhb = 0 the model reduces to simple self-avoiding walks.
For fixed βhb and large βnh, we deduce that the polymer is in a globular state, while for
fixed βnh and large βhb, we deduce that the polymer is in the anisotropic crystalline state.

A fixed value of γ corresponds to a straight line of slope (1 − γ)/γ on the plots in
figure 3. The line with γ = 0.5 is shown on both plots and it is clear that for any value of
γ ≥ 0.5 (slope less than 1) the system will undergo only one phase transition on lowering
the temperature. This transition should be in the universality class of the θ-transition.
Below, we consider the line γ = 1 to verify this. The line with γ = 0.1 is shown on both
plots and it is clear that there is indeed a range of values of γ around 0 (slope sufficiently
large) for which the system will undergo a single first-order hb-model-like transition on
lowering the temperature. The figures also suggest that there exists a critical value of γ,
say, γc, where this scenario ends.

Therefore one may deduce that there exists some range of γ between γc and 0.5,
not necessarily the whole range, for which the system undergoes two transitions on
lowering the temperature. In this region, the polymer starts in the swollen state at high
temperatures, undergoes a θ-transition to a globular state on lowering the temperature,
and on lowering the temperature further, undergoes a further (novel) transition to the
crystalline state. We verify this by considering the line with γ = 0.4.

Figure 4 shows the specific heat in two and three dimensions for n = 128 at
γ = 0.1, 0.4, and 1.0 as a function of temperature. For γ = 0.1 and 1.0, there is one
peak in the specific heat which is sharp for γ = 0.1 and relatively broad for γ = 1.0.
This is consistent with the scenario described above, where at γ = 0.1 there should be a
first-order transition in the thermodynamic limit, while at γ = 1.0 we expect a transition
in the θ-point universality class. Also as predicted above, for γ = 0.4 there are two well-
formed peaks in the specific heat. In three dimensions the peak at lower temperature is
sharp, while the one at higher temperatures is relatively broad, consistent with a θ-like
transition from the swollen coil to a collapsed globule at a moderate temperature, followed
by a stronger globule–crystal transition at a lower temperature. In two dimensions, there
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Figure 3. Density plots of the logarithm of the largest eigenvalue of the matrix
of second derivatives of the free energy with respect to βnh and βhb (the lighter
the shade, the larger the value). Both plots are for n = 128, for two- and three-
dimensional systems, top and bottom, respectively. The lines shown indicate
cross-sections for which we have performed additional simulations or analysis. In
both pictures we show lines with slope (1− γ)/γ for γ = 0.0, 0.1, 0.4, 0.5 and 1.0.
Displayed are also vertical lines at βnh = 1.0 and 0.7 in two and three dimensions,
respectively.

are two peaks of roughly equal height. However, they are not well separated, which
indicates that we need to go to longer lengths to study these transitions.

3.3. Low temperature phases

Before considering the order of the phase transitions, especially the globule-to-crystal
transition, we verify that the low temperature phases have the properties assumed above.
In particular, we demonstrate that while the globular phase displays no orientational order,
the phase for large βhb at fixed βnh is a crystal phase which displays strong orientational
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Figure 4. The specific heat for different values of γ in two and three dimensions
for n = 128. For γ = 0.1 and 1.0 we see only one maximum in the specific heat,
so we expect only one phase transition. For γ = 0.4 two maxima occur: upon
changing the temperature there are two phase transitions. (The specific heat for
γ = 0.1 is divided by a factor 15 in three dimensions and 10 in two dimensions
to allow us to depict all curves on one diagram.)

order by showing that in this phase the bonds between monomers prefer to align with one
axis of the lattice.

To detect orientational order, we utilize an anisotropy parameter defined in Bastolla
and Grassberger [10]. If we denote the number of bonds parallel to the x-, y-, and z-axes
by nx, ny, and nz, respectively, we define

ρ = 1.0 − min(nx, ny, nz)

max(nx, ny, nz)
. (3.1)

In a system without orientational order, this quantity tends to zero as the system
size increases. A non-zero limiting value less than 1 for this quantity indicates weak
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Figure 5. The plots display the anisotropy parameter ρ of the system in two and
three dimensions.

orientational order with nmin ∝ nmax, while a limiting value of one indicates strong
orientational order, where nmax � nmin.

We consider a fixed value of βnh such that the system is collapsed for any value of
βhb. For small values of βhb the polymer is in the globular phase, while for large values it
is expected to be in the crystal phase; see figure 3. In two dimensions, we use βnh = 1.0,
while in three dimensions we use βnh = 0.7.

Figure 5 shows ρ as a function of βhb for different lengths ranging from 32 to 128 in two
and three dimensions. For small βhb, we find that ρ converges to zero as n−1/2 as expected
if only statistical fluctuations are present. Similarly, for large βhb, we find that ρ converges
to 1 in a corresponding fashion. This indicates the presence of strong orientational order
in the large βhb-phase, which we then deduce to be the ordered crystal. Intriguingly, for
two dimensions only, there exists a value of βhb, 1.54, at which ρ seems to be independent
of system size. Moreover, by choosing an appropriate exponent (φ ≈ 0.75), one can show
indications of a scaling collapse of the data near this point. This is our first indication that
the two-dimensional and three-dimensional globule-to-crystal transitions are different.
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Figure 6. Internal energy distribution associated with mhb at βnh = 0.0 in 2D
for lengths n = 64, 128 and 256 (top) and in 3D for lengths n = 64 and 128
(bottom) at values of βhb for which the fluctuations in mhb are maximal. In both
cases we observe a build-up of a bimodal distribution with well-separated peaks
as n is increased.

3.4. The phase transitions

3.4.1. Swollen coil to folded crystal and swollen coil to globule. As discussed elsewhere [9],
when γ = 0, that is βnh = 0, there is a single phase transition which is first order in both
two and three dimensions. We have verified that for small γ, for which we choose γ = 0.1,
this scenario remains intact. A bimodal distribution of the internal energy associated with
parameter mhb, see figure 6, can be clearly seen forming as the system size becomes larger
very strongly in three dimensions, and more weakly in two dimensions.

To show that the θ-transition extends from γ = 1/2 to larger values of γ, we can focus
on the case of γ = 1, which means that βhb = 0.0 and hb-interactions are irrelevant.

In two dimensions the maximum of the fluctuations per monomer for length n for the
θ-point behaves as

σ2
n(mnh) ∼ σ2

∞(mnh) + a · n2φ, (3.2)
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Figure 7. Scaling plots for the fluctuations in mnh for the θ-like transitions
occurring along the line βhb = 0.0.

where φ = 3/7. We have estimated from our data collected at short length that φ = 0.49.
This is consistent with the observation that for finite system size the effective crossover
exponent decreases from a value well above 0.5 [5] to the theoretical value predicted for the
θ-point φ = 3/7. Having extrapolated the limiting value σ2

∞(mnh), we show in figure 7 a
scaling plot of the dependence of the singular part of the fluctuations as a function of βnh.

In three dimensions [2, 18] theory predicts φ = 1/2 and a logarithmic divergence of
the maximum of fluctuations. The scaling of the fluctuations around the transition for
βhb = 0 is shown in figure 7. At short lengths, we find strong corrections to scaling, in
accord with the observations in [23, 24]. The effective exponent of the logarithm is equal
to 2.8, which is about an order of magnitude more than the value 3/11 predicted [18].
However we have checked that the exponent decreases with the system size.

3.4.2. Collapsed globule to folded crystal. We begin with the three-dimensional case and
return to our simulations at fixed βnh = 0.7. On varying βhb we find a first-order transition
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Figure 8. A scaling plot for the fluctuations in mhb for the globule-to-crystal
transition occurring along the line βnh = 0.7 in three dimensions.

from the globule to the crystal. The maximum of fluctuations per monomer σ2(mhb)/n
increases linearly in n, and the shift of the inverse temperature scales as 1/n, in accord
with finite-size scaling of a first-order transition. Figure 8 shows the corresponding scaling
collapse, with an extrapolated value of βc

hb = 1.34.
We turn to our simulations of the two-dimensional case at fixed βnh = 1.0. Now,

on varying βhb we find a transition which is much stronger than the θ-point, but shows
no indication of being first order: the maximum of fluctuations per monomer σ2(mhb)/n
diverges with an exponent less than one. A scaling plot using a consistent power law is not
convincing. Our best estimate for the crossover exponent comes in fact from the scaling
of the anisotropy parameter ρ discussed above, which gives βc

hb = 1.54 and a crossover
exponent in the vicinity of φ = 0.75. The scaling of the fluctuations is not inconsistent
with these values.

3.5. Summary

We summarize our findings by presenting conjectured phase diagrams in two and three
dimensions in figure 9. For large values of the ratio of the interaction strength of hydrogen
bonds to that of non-hydrogen bonds, a polymer will undergo a single first-order phase
transition from a swollen coil at high temperatures to a folded crystalline state at low
temperatures. On the other hand, for any ratio of these interaction energies less than or
equal to 1, there is a single θ-like transition from a swollen coil to a liquid droplet-like
globular phase. For intermediate ratios two transitions can occur, such that the polymer
first undergoes a θ-like transition on lowering the temperature, this being followed by a
second transition to the crystalline state. In three dimensions we find that this transition
is first order, while in two dimensions we find that this transition is probably second
order with a divergent specific heat. It can be argued using a zero-temperature argument
that this scenario arises as soon as the ratio of the interaction energies is greater than 1.
In this way the phase diagram described is qualitatively similar to that of the semi-stiff
interacting polymer model described in three dimensions by Bastolla and Grassberger [10].
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Figure 9. The schematic conjectured phase diagrams in two and three
dimensions. A dashed line denotes a first-order transition, and a solid line a
θ-like transition. The dot–dashed line represents a putative second-order phase
transition that is not yet completely characterized.

The interesting questions that remain for future work include those of further
characterizing the globule-to-crystal transition in two dimensions and also clearly
delineating the range of interaction ratios for which two transitions occur.
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