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Abstract. Recently, an exhaustive study has been made of the corrections-to-scaling for the number of,
and various size measures (eg. radius of gyration) of, self-avoiding walks on the various two-dimensional
lattices. This study gave compelling evidence that the first non-analytic correction-to-scaling has exponent
Δ1 = 3/2. However, there also exist predictions in the literature for the corrections-to-scaling of the
number of nearest neighbour contacts of self-avoiding walks. These are partially based on the analysis of
relatively short series. Here we demonstrate that the form for the scaling of the number of self-avoiding
walks recently proposed, and some standard scaling assumptions, implies that this older conjecture on the
corrections-to-scaling for the number of nearest neighbour contacts is unlikely to hold. We consolidate this
claim by the analysis of Monte Carlo data for both two and three dimensional self-avoiding walks. This
work also shows that the often standard assumption that all quantities have the same corrections-to-scaling
is misleading.

Recently, an exhaustive study [1] by Caracciolo, Guttmann, Jensen, Pelissetto, Rogers and Sokal of the
corrections-to-scaling for various quantities of self-avoiding walks (SAW) on the square and triangular
lattice has been made. In particular, they analysed the number of walks, the mean-square end-to-end
distance, the mean-square radius of gyration and the mean-square distance of a monomer from its
endpoints. Actually, the complete endpoint distribution was calculated. Series analysis of enumerations
up to length 59 on the square and 40 steps on the triangular lattice were consider as well as Monte Carlo
data up to length 8000. A careful theoretical discussion of field theoretic aspects of the problems led to
refined scaling predictions for each of the measured quantities. The analyses gave compelling evidence
that the first non-analytic correction-to-scaling has exponent Δ1 = 3/2.

In this paper I want to focus on their prediction for the number of self-avoiding walks. They
conjectured that the number, cn, of n-step SAW in two dimensions scales as

cn ∼ μnn11/32
[
A1 + A2

n + B1

n3/2 + A3
n2 + · · ·

]

+ (−μ)nn−3/2
[
D1 + D2

n + D3
n2 + · · ·

]
(1)

where they estimated the values of the constants Aj , Bj and Dj with accuracy of between 7 and 3
significant figures. Let us concentrate on the leading corrections, which are non-oscillatory, and rewrite
this result in more general form

cn ∼ μnnγ−1
[
A1 +

A2

n
+

B1

nΔ1
+ · · ·

]
(2)
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on the assumption that 0 < Δ1 < 2.
Let us now consider the problem of interacting self-avoiding walks momentarily. These are self-

avoiding walks with a Boltzmann weight ω = eε associated with pairs of vertices along the walk which
are nearest neighbours on the lattice but do not lie consecutively along the walk. The partition function
Zn(ε) is given by

Zn(ε) =
∑

φ∈Ωn

em(φ)ε (3)

given that Ωn is the set of self-avoiding walks of length n and m(φ) is the number of nearest neighbour
interaction pairs as described above. The average number of nearest neighbour interaction pairs
mn ≡ 〈m〉(n) is clearly

mn =
∑

φ∈Ωn
m(φ)em(φ)ε

Zn(ε)
=

d log(Zn(ε))
dε

(4)

We note immediately that when ε = 0 the partition function is simply equal to the number of self-
avoiding walks: that is, Zn(0) = cn.

It is well known (though not proven rigorously) that for ε < εθ, where εθ > 0, the universality
class of interacting self-avoiding walks is unchanged and is therefore that of the non-interacting case of
self-avoiding walks as studied in [1]. Let us begin by assuming that the scaling of the partition function
follows that of cn when ε < εθ except that the ‘constants’ μ, Aj and Bj now depend upon ε:

Zn ∼ eκ(ε)nnγ−1
[
A1(ε) +

A2(ε)
n

+
B1(ε)
nΔ1

+ · · ·
]

(5)

Making the mild assumption that the asymptotic expansion (5) can be differentiated we conclude that for
ε < εθ, including ε = 0, that

mn ∼ E(ε)n
(

1 +
d1(ε)

n
+

d2(ε)
n2

+
g1(ε)
nΔ1+1

+ · · ·
)

(6)

where Δ1 + 1 = 5/2 in two dimensions, and E(ε) is the internal energy. We note immediately that the
first non-analytic correction-to-scaling for the thermodynamic observable internal energy is 5/2 in two
dimensions. This means such corrections are even smaller than for the raw observable of the partition
function. We note here that the standard assumption (see the opening paragraph of [1]) that all global
observables have the same corrections-to-scaling, excepting special symmetry considerations, can be
misleading.

On the other hand, the introduction of interactions could give rise to other corrections-to-scaling
which would be visible in the scaling of the partition function at values of ε other than zero. For
example, it has been established that the exponent 11/16 arises as a correction-to-scaling exponent for
self-avoiding trails and walks on the Manhattan lattice (see [1] for a review), which are accepted to be in
the self-avoiding walk universality class. In any case, the corrections-to-scaling exponent, 1 + Δ1, for
the number of contacts must be greater than one, and this is the crucial conclusion of this paper (here
we consider Δ1 simply as the smallest non-analytic corrections-to-scaling exponent for the partition
function, whether it be 3/2 or something else).

If there arises no other corrections-to-scaling from the interactions themselves, and if we use the
estimated value of Δ1 ≈ 0.56(3) [2] for three dimensions, it follows for self-avoiding walks in three
dimensions

mn ∼ En

(
1 +

d1

n
+

d2

n2
+

g1

n1.56
+ · · ·

)
(7)

However, in the literature there exist other predictions for both the two and three dimensional results
[3] by Douglas and Ishinabe. Their starting point was the result noted by Domb [4, 5, 6] that for pure
random walks the number of self-intersections sn scaled as

sn ∼ S0n + S1n
φ + S2 (8)
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where φ = (4 − d)/2 for d-dimensional random walks. This led Domb [4, 5, 6] to predict

mn ∼ En(1 +
g1

nδ
+

d1

n
) (9)

where δ ≈ 1/2 in two dimensions and δ ≈ 2/3 in three dimensions. Douglas and Ishinabe tested this
prediction using direct enumeration of self-avoiding walks and 1/d expansions. On the square and simple
cubic lattice they utilised direct enumerations up to lengths 22 and 16 respectively. They estimated

δ(d = 2) = 0.75+0.05
−0.10 and δ(d = 3) = 0.85+0.05

−0.05 (10)

Now it is clear that these are wildly inconsistent with the predictions from the arguments presented above
based on the work of Caracciolo, Guttmann, Jensen, Pelissetto, Rogers and Sokal [1] which implies

δ(d = 2) = 2.5 and δ(d = 3) = 1.56(3) (11)

Let us assume for a moment that the predictions of Domb or Douglas and Ishinabe were true with
0 < δ < 1 and so the scaling for mn is given by equation (9) rather than equation (6). Now, let us
consider the scaling form for Zn that would be required to imply equation (9) with 0 < δ < 1 using
the same simple differentiation argument we used in going from equation (5) to equation (6). One can
see that the addition of a factor of a growing exponential ehn1−δ

, with 1 − δ > 0, to the right-hand side
of equation (5) would be sufficient to imply equation (9) and keep μ and γ unchanged in the scaling
of the partition function. Now, it is clear from all previous series analysis work including [1] that this
additional factor does not appear in the scaling form of the partition function. Hence it is very unlikely
that the predictions of Domb or Douglas and Ishinabe are true.

So to check on this numerical discrepancy we have calculated Monte Carlo estimates of mn for
lengths up to 8192 for non-interacting self-avoiding walks on the square and simple cubic lattices. In
two dimensions the longest length data did not prove useful for analysis, due to statistical uncertainties.
Let us consider un = mn/n. So we want to consider the scaling form

un ∼ U0 +
U1

nδ
+

U2

n
(12)

as the statistical uncertainties in our data would not allow for an estimate of the next correction. If we
fix δ = 0.75 in two dimensions, or δ = 0.85 in three dimensions, and estimate Uj it is clear that U1 is
much smaller than estimated by Douglas and Ishinabe. On the square lattice fitting to data from lengths
384 to 4096 we find the coefficient U1 ≈ 0.002 while Douglas and Ishinabe estimated 0.18. If on the
other hand we try an iterative non-linear fit (one with some plausible starting values) and start δ at 0.75
(or 0.85 respectively for the cubic lattice) then δ moves slowly to 1. On the square lattice a fit from 384
to 4096 gives an effective δ of 0.94: this of course is just picking up the error in finding U2 and the next
correction-to-scaling which is presumably of order n−2. Thirdly, if we consider n(un − u2n) then this
scales as

n(un − u2n) ∼ H0n
1−δ + H1 (13)

given (12) holds. When this quantity is plotted there is no evidence in either two or three dimensions
that this quantities diverges (as it would if δ < 1). In two dimensions it is essentially constant within
error while in three dimensions (see Figure 1) one can see that a plot against 1/n1/2 is roughly straight
(as one would expect if δ was about 1.56). All three analyses then indicate that there is no evidence
for a correction to scaling exponent δ less than 1. It would be interesting to do careful series analysis
on extended enumerations for mn to find the actual correction-to-scaling exponent and to analyse the
partition function of interacting self-avoiding walks so as to test the relationship suggestion above.

We conclude that the scaling conjectures presented in [1] and some scaling arguments together can
be used to conjecture the scaling form for the number of nearest neighbour contacts in self-avoiding
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Figure 1. A plot of n(un−u2n) with error bars as indicated against 1/
√

n showing a fairly straight line and the convergence
to a finite value of this quantity in three dimensions.

walks. Furthermore, these contradict earlier predictions [4, 5, 6, 3] of the scaling forms which are almost
certainly incorrect. This conclusion has been verified by the analysis of Monte Carlo data. We reiterate
that the standard assumption (see the opening paragraph of [1]) that all global observables have the same
corrections-to-scaling, excepting special symmetry considerations, can be misleading — rather they may
also differ by one.
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