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Abstract. A self-interacting polymer with one end attached to a sticky surface
has been studied by means of a flat-histogram stochastic growth algorithm known
as FlatPERM. We examined the four-dimensional parameter space of the number
of monomers (up to 91), self-attraction, surface-attraction and pulling force
applied to one end of the polymer. Using this powerful algorithm the complete
parameter space of interactions and pulling force has been considered. Recently it
has been conjectured that a hierarchy of states appears at low-temperature/poor
solvent conditions where a polymer exists in a finite number of layers close to a
surface. We find re-entrant behaviour from the stretched phase into these layering
phases when an appropriate force is applied to the polymer. Of interest is that
the existence, and extent, of this re-entrant phase can be controlled not only by
the force, but also by the ratio of surface-attraction to self-attraction.

We also find that, contrary to what may be expected, the polymer desorbs
from the surface when a sufficiently strong critical force is applied and does
not transcend through either a series of de-layering transitions or monomer-by-
monomer transitions. We discuss the problem mainly from the point of view of the
stress ensemble. However, we make some comparisons with the strain ensemble,
showing the broad agreement between the two ensembles while pointing out subtle
differences.
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1. Introduction

It is now possible to study and manipulate single molecules using recently developed
experimental techniques [1]. These methods allow us to directly interact with single
molecules such as proteins and DNA; one can push and pull a single molecule and see how
it reacts. It is also possible to apply forces large enough to induce structural deformation of
single molecules. One can watch a single molecule undergo a force-driven phase transition!
Theoretical understanding of such behaviour has recently attracted much work [2]–[4].

The response of a single polymer to an external force under good solvent conditions [5]
was considered some time ago. The response under poor solvent conditions (below
the θ-point) was examined later [6]–[8], [2, 3]. Here the self-attraction of the polymer
competes with the force. Another phenomenon commonly studied in polymer physics is
the adsorption of a polymer tethered to a ‘sticky’ wall. The response of such a polymer
to a force perpendicular to the wall has also recently been considered [4, 9, 10]. However,
when there is competition between the self-attraction (i.e., monomer–monomer attraction
that leads to polymer collapse), and the surface-attraction (that leads to adsorption), the
response to an external force has not yet been elucidated (some interesting results can
be found in [11]). Certainly the full phase diagram has not yet been considered. Making
such a study now is all the more timely because of the very recent discovery [12] of a new
low-temperature phenomenon of layering transitions (without a force). It is this layering
phenomenon that raises the intriguing question about the response of a low-temperature
polymer to an external force. In the layered ‘phase’ a polymer is tightly confined within
a fixed number of layers above the wall. Therefore, it may be especially interesting to
examine such a situation experimentally.

We demonstrate for the first time how the full two-dimensional phase diagram of
surface- and self-attraction changes as the force is increased. The desorbed regime, which
changes its scaling behaviour as soon as the force is made non-zero, simply grows as the
force is increased; the rest of the phase diagram remains relatively unaffected so long as the
force is small. The second-order phase transitions of adsorption and collapse become first
order. After the force passes a critical value, which depends on the zero-temperature force
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Figure 1. A diagram showing the two-dimensional version of the three-
dimensional model simulated.

required to pull a polymer from a wall, a re-entrant behaviour occurs at low temperatures.
For a particular value of the force the re-entrance may or may not occur depending on
the ratio of the surface-attraction to self-attraction. For different values of the force, this
re-entrant behaviour occurs for both the adsorption and collapse of polymers. We provide
a full force–temperature diagram for all ratios of surface-attraction to self-attraction.

The most commonly used ensemble to discuss the behaviour of stretching polymers
is the stress ensemble (for constant force f) [13]; we mainly discuss the problem in this
ensemble. We also compare these results with results for the strain ensemble, finding
broad agreement between the two ensembles with some minor subtle differences.

2. Model and simulations

In our simulations we use a recently developed algorithm, FlatPERM [14], that is
specifically designed to obtain information about the whole phase diagram in one
simulation run: it is effectively a stochastic enumeration algorithm that estimates the
complete density of states.

The model considered is a self-avoiding walk in a three-dimensional cubic lattice in
a half-space interacting via a nearest-neighbour energy of −εb per monomer–monomer
contact. A force f is applied in the direction perpendicular to the boundary of the half-
space (wall). The self-avoiding walk is tethered at one end to the wall and interacts with
the surface with an energy of −εs per monomer in contact with the wall. The total energy
is given by

En(mb, ms, h) = −mb(ϕn)εb − ms(ϕn)εs − fh (1)

for a configuration ϕn of length (number of monomers) n depending on the number of non-
consecutive nearest-neighbour pairs (contacts) along the walk mb, the number of visits to
the wall ms, and the height h in the direction perpendicular to the wall. Figure 1 shows
a diagram of the two-dimensional analogue.

For convenience, we define

βb = βεb, βs = βεs and βf = βf, (2)

doi:10.1088/1742-5468/2005/05/P05008 3

http://dx.doi.org/10.1088/1742-5468/2005/05/P05008


J.S
tat.M

ech.
(2005)

P
05008

Pulling absorbing and collapsing polymers from a surface

where β = 1/kBT for temperature T and Boltzmann constant kB. The partition function
is given by

Zn(βb, βs, βf) =
∑

mb,ms,h

Cn,mb,ms,he
βbmb+βsms+βfh (3)

with Cn,mb,ms,h being the density of states. It is this density of states that is estimated
directly by the FlatPERM simulation. Our algorithm grows a walk monomer-by-monomer
starting on the surface. We obtained data for each value of n up to nmax = 91, and all
permissible values of mb, ms, and h. The algorithm samples over a large parameter space
and the trade-off is that only relatively modest polymer lengths can be simulated: the
space and time requirements scale at least as n4

max. The average number of surface contacts
is calculated by

〈ms(βb, βs, βf)〉 =

∑
mb,ms,h msCn,mb,ms,he

βbmb+βsms+βfh

Zn(βb, βs, βf)
, (4)

and in the same manner we calculate average values of mb, and h.
Since the density of states depends on the height of the endpoint, we can use our data

to calculate results in the strain ensemble. Usually the strain ensemble is defined for a
constant end-to-end distance. We rather only keep the vertical distance constant, i.e. h.
The partition function in this ensemble is given by

Zn,h(βb, βs) =
∑

mb,ms

Cn,mb,ms,he
βbmb+βsms (5)

where summation is done for a given constant h. Having calculated the partition function,
we can look at the average force in this ensemble and compare the phase diagrams for
both ensembles. For convenience and comparison with the stress ensemble we shall set
β = 1. If the height were a continuous variable the average force would be given by

〈fh(βb, βs)〉 =
∂ log(Zn,h(βb, βs))

∂h
, (6)

but since we have discrete values of h the force is calculated from relation

〈fh(βb, βs)〉 = log(Zn,h+1(βb, βs)) − log(Zn,h(βb, βs)). (7)

3. Results

3.1. Stress ensemble

When f = 0 the phase diagram of the model contains various phases and transitions
between them [15]–[17], [12]. For small βb and βs, there is a desorbed-extended (DE) phase
with the polymer behaving as a free flexible polymer in solution. For βb fixed and small,
increasing βs leads to a second-order phase transition (adsorption) into a phase where the
polymer is adsorbed onto the wall and behaves in a swollen (extended) two-dimensional
fashion (AE). Alternately, if βb is increased at small βs a second-order collapse transition
occurs to a state resembling a dense liquid drop. This phase is known as desorbed-collapsed
(DC) on the assumption that it has little contact with the wall [15, 16]. However, it has
been subsequently argued [18] that for large βb and at some positive βs there is instead a
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polymer-surface transition to a surface-attached globule (SAG) phase, where the polymer
is like a liquid drop partially wetting the wall. This transition will not be seen directly by
studying thermodynamic polymer quantities as it occurs as a singularity in the surface free
energy and not the bulk free energy of the polymer. Alternately, when βs is large, so the
polymer is already adsorbed onto the wall, increasing βb will result in a two-dimensional
(second-order) transition to an adsorbed and collapsed phase (AC). Finally, at fixed large
βb, increasing βs through the SAG phase will also reach the AC phase. The transition
from the SAG phase to this AC phase is expected to be first order in the thermodynamic
limit.

For finite length polymers the situation is more complicated. In recent work [12]
the AC phase was also referred to as the one-layer phase because for very large βb and
βs < βb there exist metastable �-layer phases where the polymer is two-dimensionally
collapsed and more-or-less restricted to � layers for small �. A series of rounded first-order
transitions between adjacent values of � occur as βs is varied at fixed βb. All these pseudo-
transition lines can be seen in figure 2(a), which shows a plot of the maximum eigenvalue
of the (2× 2) matrix of second derivatives in the variables βb and βs of log(Zn(βb, βs, βf))
for fixed βf = 0. The local maxima indicate the approximate location of transitions. The
pseudo-transitions between the layers are expected to coalesce in the thermodynamic limit
to the first-order transition between the SAG and AC phases.

Using the evidence available in the literature [8], [2]–[4], [9, 10] let us now consider
what we can expect when f > 0. The first important feature to note is that the isotropic
DE phase is replaced by an anisotropic phase in which the height of the end point of the
polymer scales linearly with n; we denote this phase the stretched phase. The transition
from stretched to adsorbed phases becomes first order [4]. Likewise, at least in three
dimensions [8], the transition from the vertically stretched phase to the collapsed phase
also becomes first order. This implies that the multi-critical point (where for f = 0 the
DE, AE and DC phases meet) is now a triple point: the meeting of three first-order lines.
The transition from the AE to AC phases should not be affected by the application of
a small force as the force acts in a direction perpendicular to the plane of the collapse.
Finally, it is intriguing to ask what happens to the layering phases observed in [12].
One can imagine that the force simply extends a vertical ‘tail’ from a layered block (see
figure 3) and that as the force is increased the monomers are peeled off one at a time
with corresponding micro-transitions [11] for each monomer pulled until a vertical rod is
achieved. Instead we see at some point a sharp first-order transition between the highly
stretched vertical rod and a layered system with short tail.

In figures 2(b) and (c) we show plots of the maximum eigenvalue of the matrix of
second derivatives in the variables βb and βs of log(Zn(βb, βs, βf)) at fixed βf (as in
figure 2(a)) but at values of βf being 1.5 and 3.0. It is clear that as βf is increased
the stretched phase that occurs for small βb and βs expands, while the positions of the
other phases and transitions move little. We immediately note that these plots do not tell
the whole story, since physically one is usually interested in fixing the force f rather than
βf : fixing βf implies that the force applied goes to zero at low temperatures. It is for this
reason that the re-entrant behaviour for absorbing polymers [4, 12] is not seen directly in
these plots. However, re-entrant behaviour does occur, and occurs for any ratio of surface
to bulk interaction energies. Let us first consider the more traditional force–temperature
diagram and return to this point.
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(a)

(b)

2L

DE

AEDC

3L AC

Stretched

(c)

Figure 2. A plot of the maximum eigenvalue of the matrix of second derivatives
of the free energy for the three values βf = 0.0, 1.5 and 3.0. The phase in the
top corner of each plot is the desorbed-extended phase (when βf = 0) or the
‘stretched’ phase (when βf > 0). The location of the two-layer (2L), three-layer
(3L), adsorbed-collapsed (AC) and adsorbed-extended AE phases do not seem to
move greatly as βf is increased.

In figure 4 (left) we give a plot of the force fc(T, α) needed to pull a polymer from
the wall against temperature and a parameter α which measures the relative strength of
the surface (wall) and self-interaction. We have parameterized the energies of surface and
self-attraction as εs = α and εb = 1 − α respectively. Using this parameterization for
0 ≤ α ≤ 1 gives the whole range of attractive interactions: the ratio of surface to bulk
activities is given as βs/βb = α/(1 − α) and so is fixed for fixed α. For α = 0 we have
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Figure 3. A typical configuration resulting from the application of the critical
force fc to a polymer in the two-layer adsorbed collapsed phase.
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Figure 4. Left: a plot of the force, fc, needed to pull a polymer from the surface
against temperature T and a parameter α. The parameter α controls the relative
strength of surface-attraction and self-attraction with εs = α and εb = 1−α. The
limiting cases of pure adsorption (βb = 0) and pure self-interaction (βs = 0) are
visible. Right: a plot of the maximum of fc (denoted fmax) for a given α and the
low-temperature limit of fc (denoted flow) for a given α against α. Given a fixed
force f and parameter α one observes (as the temperature is increased) a single
stretched phase, re-entrant behaviour or a single transition from an unstretched
to stretched state, depending on whether the force is greater than fmax, between
flow and fmax or less than flow, respectively.

εs = 0 and εb = 1, which corresponds to pure self-attraction, while α = 1 gives εs = 1
and εb = 0, which is the pure surface-adsorption case. This extends the diagrams given
in [4, 9] in which only adsorption is considered. If a force smaller than fc is applied, the
polymer is in the phase appropriate to the value of α: either collapsed or adsorbed or
both. On the other hand, for forces larger than fc the polymer is in the ‘stretched’ phase.

We immediately note that the re-entrant behaviour observed in the adsorption-only
case [4, 9] persists for all α. Fixing the force at a value slightly larger than the zero-
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Figure 5. Plots of the average height of the last monomer at fixed force against
βb, βs. On the left f = 0.97 and on the right f = 1.1. In both plots we clearly
see the re-entrant stretched phase for large βb, βs.

temperature critical force (denoted flow) and then increasing the temperature leads to
transitions from the stretched state to a non-stretched state and back again to the
stretched state. This arises due to the entropy of the zero-temperature state; one can
easily extend the arguments in [4] to demonstrate that re-entrant behaviour can occur
even when the zero-temperature configuration of the non-stretched state is a Hamiltonian
(fully packed) cube rather than a totally adsorbed polymer. The entropy of the ground
state changes with α and so the critical force also changes.

In figure 4 (right) we plot the maximum critical force for a given α (which we denote
fmax), and also the low-temperature limit of the critical force, flow. Consider a fixed
parameter α and force f . If the force is greater than fmax, then the polymer is in the
stretched phase for all temperatures. If the force is between flow and fmax, then one
observes re-entrant behaviour. Finally, if the force is less than flow, then there is a single
transition from unstretched to stretched as the temperature increases. From this plot it
is clear that for f = 1.1 and α near 0.6 one would observe only a stretched phase for all
temperatures, while for f = 0.97 and the same α one expects to see re-entrant behaviour.
In figure 5 we plot the average height of the last monomer against βb and βs at these two
values of the force. When f = 0.97, a ray (defined by α) from the origin to infinity passes
through a stretched phase, an unstretched phase and then into a stretched phase again
(as the temperature is decreased for fixed α ≈ 0.5), while for f = 1.1, a ray from the
origin to infinity may stay completely within the stretched phase. Note that, as opposed
to figure 2, in these plots f is fixed rather than βf .

If the critical force is zero then the curve in the T–α plane corresponds to the phase
boundary of the DE phase; the apex of the curve is at α ≈ 1/2, which is the location
of the multi-critical point. On the other hand, for T = 0 there is a kink in the function
fc(α) at exactly α = 1/2; this is a consequence of the first-order point coming from the
transition from SAG/layer phases (at small α) to the AC phase (at larger α). There is the
appearance of a kink joining the multi-critical point to the zero-temperature transition;
this is presumably the finite temperature effect of the transition to the AC phase.

doi:10.1088/1742-5468/2005/05/P05008 8

http://dx.doi.org/10.1088/1742-5468/2005/05/P05008


J.S
tat.M

ech.
(2005)

P
05008

Pulling absorbing and collapsing polymers from a surface

(a)

(b)

0.0
0.5

1.0
1.5

2.0
2.5

0.0
0.5

1.0
1.5

2.0
2.5

 max

h=0.0

 
b

 s

 λ

 λ

0.0
0.5

1.0
1.5

2.0
2.5

0.0
0.5

1.0
1.5

2.0
2.5

max

h=50.0

 
b

β β

β
β

s

Figure 6. A plot of the maximum eigenvalue of the matrix of second derivatives
of the free energy when the last monomer is fixed at height 0 (a) and height 50
(b).

3.2. Strain ensemble

In figure 6 we show phase diagrams in the strain ensemble when the height of the last
monomer is fixed at two different values (h = 0 and 50). The phase boundaries are in
qualitative agreement with the results for the stress ensemble for different βf (compare
figures 2 and 6). A more subtle issue is the average force as a function of height (in the
strain ensemble) as compared to the average height as a function of force (in the stress
ensemble). To make this comparison with the stress ensemble let us first consider the
schematic phase diagram in figure 7: recall that the two-layer (2L) and three-layer (3L)
phases disappear in the thermodynamic limit and are replaced by the SAG phase. As
such we will consider four points A, B, C, and D marked in figure 7 lying in the DE, 3L,
AE and AC the phases respectively. The AC phase can also be thought of as a one-layer
(1L) phase.

In figure 8 we show a plot of the average force 〈f〉(h) calculated in the strain ensemble
against the height of the last monomer, h, for the four different points shown in figure 7.
For comparison, in figure 9 we see a plot of the average height 〈h〉(βf) of the last monomer
against βf in the stress ensemble for the same four points. Recall that we have set β = 1,
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Figure 7. The schematic phase diagram in stress ensemble for βf = 0.0 (obtained
from figure 2(a)). The solid lines represent the phase boundaries that will survive
in the thermodynamic limit: the dotted sections cannot be estimated from the
fluctuations but represent assumed behaviour. The dashed lines between the
layered phases will merge in the thermodynamic limit with the boundary between
the AC and 2L phases, and the layering ‘phases’ will merge into the SAG phase.
The dashed–dotted line between the SAG and DC phases is a surface phase
transition, and it will disappear from the bulk free energy in the thermodynamic
limit. Points which feature in our discussion have coordinates (βb, βs), where A
is (0, 0), B is (1.5, 0.8), C is (0, 2.2) and D is (1.5, 2.2).

giving βf = f , so that we have essentially 〈h〉(f) in this plot. One can immediately see
that for each chosen point in the phase space, the plots of 〈f〉(h) in the strain ensemble
are approximately the inverse functions of the plots 〈h〉(f) in the stress ensemble (as one
might expect). For example, considering point C in the adsorbed-extended phase, where
the polymer is in a two-dimensional excluded volume state lying mostly in the surface of
the system when under no stress, the average stress in the strain ensemble is more or less
constant for all heights less than 70 with a value of about 3. The value of 3 coincides
with the force necessary (see figure 9) to pull the polymer from the surface in the stress
ensemble. For heights larger than 70 the force increases sharply, as is expected from the
stress ensemble where one requires these larger values of force to achieve average heights
greater than 70. The other points in the phase diagram have analogous related behaviour
in the two ensembles. Of course, since the height is a discrete variable the correspondence
is not possible for small average heights.

One feature seen in the strain ensemble but not the stress ensemble, which is
presumably a finite size effect, is the slight dip in the average force around heights of
75 for point D (see figure 8). Point D is in the adsorbed-collapsed or one-layer phase
where the polymer acts as a two-dimensional collapsed globule stuck on the surface of
the system. This can be understood by considering the number of monomers neither on
the surface nor needed to achieve the fixed height. At points C and D this achieves a
maximum between 70 and 80 in the value of the height of the last monomer. However,
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Figure 8. Plot of the average force 〈f〉 acting on the last monomer against h in
the strain ensemble.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5

 〈
h 〉

f

stress ensemble

A
B
C
D

β

Figure 9. Plot of the average height of the last monomer 〈h〉 against βf in the
stress ensemble.

only at point D does the favourable weighting of the nearest-neighbour bonds mean that
these monomers can form a necklace of droplets along the tail of the polymer.

4. Summary

In this paper we have studied how the phase diagram of a self-attracting polymer that is
also attracted to and tethered to a flat wall changes as a vertical force is applied to the
untethered end of the polymer. We have accomplished this using a flat histogram Monte
Carlo simulation that is capable of studying the whole range of microscopic energies and
temperatures (for polymers of up to 91 monomers).
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We demonstrate that re-entrant behaviour occurs at low temperature and for a range
of forces for all relative strengths of self- and surface-attraction, though the force required
depends on the relative strength. Hence, we observe that the existence, and extent, of
this re-entrant behaviour can be controlled by both the force and by the ratio of surface-
attraction to self-attraction.

We also have found that for small forces only the transition boundary of the
‘stretched’ phase moves with increasing force and the rest of the phase diagram is relatively
unchanged. We conclude that the novel layering meta-phases found for large but finite
polymer length are unaffected by small forces.

Finally, the trade-off of simulating equally over a large parameter space is that only
relatively short polymers could be considered. As such, the scaling of various quantities
could not be studied. It would indeed be interesting to do this at various points in the
phase space using a different algorithm.
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