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Abstract
Two-step restricted walk (TSRW) models are a class of restricted self-avoiding
walk (SAW) where, in addition to the self-avoidance constraint, certain
restrictions are placed upon each pair of successive steps. In this paper,
we explore the relationship between the restrictions and the scaling of the
average size of walks in three-dimensional models. We use the Pruned-
enriched Rosenbluth method algorithm to perform Monte Carlo studies in five
representative TSRW models in three dimensions. The results present strong
numerical evidence that all non-trivial TSRW models in three dimensions have
the same size scaling behaviour as unrestricted SAWs. This is in contrast to
two dimensions where several universality classes are accepted to exist. In
particular, we find no rule analogous to the ‘spiral’ walk of two dimensions.

PACS numbers: 05.50.+q, 05.10.Ln, 05.40.−a

1. Introduction

The self-avoiding walk (SAW) model has long been used as a standard model for linear
polymer behaviour [1–4]. Due to both the difficulties in finding an exact solution to the
model [5] and the wish to understand the robustness of the universality class of SAWs, much
effort has been directed towards studying modified models. Two-step restricted walk (TSRW)
models [6, 7] are a class of restricted SAW models—the allowed configurations are oriented
walks that have certain restrictions placed upon each pair of successive steps in addition to
the self-avoidance constraint. The walk rule of each model can be conveniently depicted by a
‘rule diagram’, denoting the possible next steps after each step—three-dimensional examples
can be found in figure 1.

The average (squared) geometric size of the walks, measured by the radius of gyration
squared or an eigenvalue of the moment of inertia tensor for example, in any of these models
is generally expected to grow asymptotically as

〈R2〉N ∼ N2ν{B0 + B1N
−� + B2N

−1 + · · ·} as N → ∞ (1)
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(P − P − P ) (S − C − 3)
(a) (b)

Figure 1. Three-dimensional rule diagrams for (a) model S and (b) model A proposed by Guttmann
and Wallace [15]. One specifies which of the next steps (arrowed lines) is allowed from each of
the six lattice bonds (full lines) representing the current step of the walk. The three-character code
is used in this work as a name—see main text for explanation.

Table 1. Two-dimensional universality classes of TSRW on the square lattice. The number of
walks of length N is cN . The accepted or proved scaling forms of cN as N becomes large are
shown in column two. The next two columns give values of the size exponent ν. There are two
values for the exponent ν associated with the scaling of the geometric size of the walks and are
related to the major (ν+) and minor (ν−) directions of the average moment of inertia tensor for
the configurations. For spiral walks, confluent logarithmic factors appear in the asymptotics. The
right-most column contains the rules used in this paper for the construction of three-dimensional
rules (see table 2).

Universality class Scaling form for cN ν+ ν− Rules

SAW cN ∼ CµNNγ−1 3
4

3
4 S

Spiral cN ∼ C e
2π
3

√
NN

7
4 1

2 (log) 1
2 (log) P

Directed cN ∼ CµN 1 1
2 D

Aniso-spiral cN ∼ CµN ea
√

NNβ 0.95(2) 0.47(1) 3 and 2
One-dimensional cN ∼ CN 1 0 or 1 O, R and C
Trivial cN ∼ C 0 0

where B0, B1, B2 . . . are some real constants and ν is called the size exponent; the non-
analytic correction-to-scaling exponent � ∈ R

+\Z
+ may be absent if 〈R2〉N has only analytic

correction-to-scaling terms. Confluent logarithmic factors can also exist in some models.
In this work, we shall consider the full moment of inertia tensor and define the notations

ν+ and ν− to be the values of the scaling exponent for the maximal and minimal eigenvalues,
respectively. For the unrestricted SAW model, ν+ = ν− = 3/4 in two dimensions [8], and
ν+ = ν− ≈ 0.588 in three dimensions [9–11]. Some of the walk restrictions are known to
cause different size scaling1 from that of the unrestricted model. For instance, ν+ = 1 and
ν− = 1

2 for directed walks in two dimensions [12]. There is a classification [6, 7, 13] of
two-dimensional TSRW models delineated according to the values of ν+ and ν−, a summary
of which is given in table 1. The study of models in the aniso-spiral walk class [14] needs
further work as good values of the exponents and a full understanding of that universality class
is still lacking.

A central question addressed in [6] was ‘Do properties of these rules determine the
universality class?’ There it was suggested that the symmetry of the walk rules in two

1 Reflected by either a different asymptotic form or a different value of ν.
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Table 2. Planar walk rules used in the construction of three-dimensional rules.

Unrestricted SAW Three-choice walk Two-choice walk Planar spiral

Directed walk Concatenations of 1D walks One-dimensional Rectangular

dimensions, as seen in the rule diagrams, gives insight into which universality class the
model falls. In this paper, we investigate if such a relationship exists in three-dimensional
TSRW models. The aim of this paper is to investigate the proposed delineation of non-trivial
universality classes in three dimensions of TSRW models as suggested in [7] and subsequently
to re-evaluate the relationship between the microscopic features (in particular the symmetry)
of the walk rule of a model and the university class into which it falls.

Aside from trivial and directed walk models, Guttmann and Wallace [15] were the first
to propose non-trivial three-dimensional TSRW models. Their original aim was to find
walk rules that create walks that display a ‘spiralling’ property, i.e. those that produce walks
which wrap around the origin. Accordingly, they defined model S (also known as the three-
dimensional spiral walk) and model A (also known as the three-dimensional aniso-spiral
walk)—associated rule diagrams are depicted in figure 1. Using exact enumeration data, they
estimated that the size exponent for model S is ν = 0.67 ± 0.10, which possibly signalled
a distinct universality class from the class of unrestricted SAW. On the other hand, the size
of the error estimate for model S encompasses the unrestricted value. For model A, they
estimated that ν = 0.595 ± 0.025, which suggested that that model is in the same class as the
unrestricted SAW.

Rechnitzer and Owczarek undertook a systematic study of three-dimensional TSRW
models in [7]. In three dimensions, however, the number of distinct TSRW models is
26×5 = 1 073 741 824, so in order to reduce this set to a manageable size, it was paramount
to devise a scheme to eliminate trivial, one-dimensional, or directed walks, which are deemed
‘uninteresting’. They introduced a nomenclature for three-dimensional walk models: each
walk model was denoted with a three-letter code (Z–Y–X), where Z denotes the planar walk
model on the plane normal to the z-axis, Y denotes the planar walk model on the plane normal
to the y-axis and similar for X. The letters that we shall use in our study are defined in table 2.
However, as pointed out in [7] not all possible combinations of three letters create consistent
and thus possible walk rules. For instance, (O–O–R) is an impossible rule. Under this
system, Guttmann and Wallace’s models S and A are given the codes (P –P –P) and (S–C–3),
respectively.

To eliminate ‘uninteresting’ walk models, two conditions were enforced, namely: (i)
symmetric ‘balance’ condition which is a combination of two conditions—balance and reverse-
balance conditions and (ii) the mixing condition. The ‘balance’ condition requires that the
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walk rule (not any particular configuration though) has equal numbers of continuing steps in the
positive and negative components of each axis. Models violating this condition are expected
to be biased in a particular direction and so be directed or one-dimensional. The reverse-
balance condition is similar to the balance condition except that it concerns the corresponding
‘reverse’ walk rule: that is, considering the rule produced by reversing the orientation of
the configurations produced from a particular rule. Indeed, there are walk rules which are
balanced that have a reverse rule which is not so (for example rule (k) in [6]). The mixing
condition requires that after a step in any one of the six directions (in three dimensions)
the walk is able to eventually take a step in any of the six directions. This condition also
attempts to exclude directed rules. There are 432, 096 TSRW models in three dimensions that
satisfy these conditions [7] and these models are called symmetric-mixing models. To further
reduce the size of the set under consideration, Rechnitzer and Owczarek [7] enforced another
condition that no more than one plane has a one-dimensional or directed rule (e.g., D,C,O

or R). They chose nine of the most ‘promising’ models to analyse based on their numerical
behaviours [7]. They also chose three other models not constructed in the above manner to
have representatives of walk rules with as many symmetries as possible. They computed
various exact enumerations for each of the models and used differential approximants [16]
to analyse the number of configurations cN , the radius of gyration series and the eigenvalues
series of the mean moment of inertia matrices to give estimates of the size exponents. The
differential approximants of these models were found to cluster into three distinct bands, and
the central estimates of the exponents differed appreciably from each other, which led them
to tentatively suggest that there may be at least three non-trivial university classes in three
dimensions; these possible classes are2

1. SAW: (S–S–S) , (S–C–3) , (3–3–C), (S–C–P), (Rot-π ) and (S–P –3) model;

2. Three-demensional spiral: (P –P –P) and (P–R–2) models;

3. New: (P –O–3) , (P –3–3) and (P –2–2) models; and

4. Undetermined: (P–P–D) and (P –P –3) models.

This classification is consistent with the earlier conclusion by Guttmann and Wallace [15]
regarding the (S–C–3) and (P–P–P) models. However, there were several concerns that were
discussed in [7]. There appears to be no obvious relationship between the walk rule symmetry
and the universality class that they fall into, as opposed to two dimensions, except a possibly
relevant new statistic known as the turning number [7]. Also, estimates of the systematic
error of the differential approximant analysis for size exponent ν overlapped mostly with the
unrestricted model, and, finally, estimates of the exponent γ derived from the total number of
walks did not display the same banding pattern.

Indeed it was suggested [7] that the delineation of universality class in three dimensions
is only due to different degrees of finite-length correction effects across classes, and all non-
trivial walk models in fact fall into a single universality class. The systematic error detected in
the differential approximant analysis suggests that a different approach should be attempted.
Therefore, there is a need to test this universality classification by studying much longer walks
using the Monte Carlo methods—the approach we shall pursue here.

2. Simulation details

In total, we have studied five symmetric-mixing walk models (including the unrestricted walk
model as a benchmark) which have been previously studied in [7, 15]. They were chosen
2 The boxed models are those we shall study in detail in this paper.
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Figure 2. Three-dimensional rule diagrams for the (a) (P–P–3) and (b) (P–O–3) models.

out of the original 12 models in [7] because each of them represented a possible universality
class in [7], and they included the unrestricted SAW model and the two models proposed by
Guttmann and Wallace [15]. All their rule diagrams can be found in figures 1 and 2, except
that of the unrestricted SAW model, which, of course, simply allows all possible continuing
steps.

We have chosen the Pruned-enriched Rosenbluth method (PERM) algorithm [17] to
simulate walks in all these five symmetric-mixing models. It is because the PERM algorithm
is relatively easy to modify to account for the TSRW model restrictions and the demonstrated
efficiency of the algorithm for SAW simulations that led us to choose PERM. Other candidate
algorithms such as the also efficient pivot algorithm [18] are difficult to adapt to TSRW models
since the walk rules are very difficult to maintain during the pivoting operations. We have
modified the PERM algorithm as given in [19]. We have calculated the mean moment of inertia
tensor to give a more complete picture of how the walk model scales in three-dimensional
space. This measure often provides a more robust estimate of the size exponents than the
mean end-to-end distance and mean monomer-to-end distance.

Since long walks are built upon shorter ones in the PERM algorithm, the statistics that
we take from various points of a single walk simulated by PERM are correlated. In order
to eliminate this correlation problem, we have performed independent runs of simulation for
each walk length N, where 16 � N � 8, 192 in steps of power two, in each model (except
for shorter walks where N � 256, data were less important with respect to the eventual
asymptotic behaviours and hence they were collected from a single run of simulation). Each
model consumed roughly 2 months of CPU time on a Compaq DECAlpha (667 MHz). We
have generated 50 000 000 samples of walks of length N = 8192 in each model.

3. Data and analysis

For each of the symmetric-mixing models, we performed the following analysis. For any
given simulated walk, ωN = {ri = (xi, yi, zi) : 0 � i � N} of length N, we measure its
geometric size by its moment of inertia tensor matrix, I(ωN), which is defined to be

I(ωN) = 1

n + 1

N∑
i=0

(
r2
i 1 − riri

) = 1

n + 1

N∑
i=0




y2
i + z2

i −xiyi −xizi

−xiyi x2
i + z2

i −yizi

−xizi −yizi x2
i + y2

i


 (2)
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where 1 is the identity tensor. The mean moment of inertia tensor over all walks of length N
is therefore defined to be

〈I〉N = 1

cN

∑
ωN

I(ωN) (3)

where cN is the number of walks of length N in the model. Diagonalizing 〈I〉N , the eigenvectors
correspond to the natural coordinate axes in which the walk model scales on average; and
the respective eigenvalues correspond to the radius of gyration along those axes—we denote
the eigenvalues and their corresponding eigenvectors at length N by {λ1(N), λ2(N), λ3(N)}
and {v1, v2, v3}, respectively. Note that vi are expected to be independent of N, at least for
sufficiently large N. Following what we have discussed earlier, we expect that

λi(N) ∼ AiN
2νi i = 1, . . . , 3 as n → ∞. (4)

Using the Monte Carlo simulations, we obtained estimates of the mean moment of inertia
matrix

〈Î〉N ≈ 1

|S|
∑
ωN∈S

I(ωN) (5)

where S is the set of samples generated from the simulations. We have calculated a
corresponding error matrix, δIN , which contains the estimated error of all entries in 〈Î〉N .

To estimate λi(N), we diagonalized 〈Î〉N and we denote its ith eigenvalue by λ̂i(N). To
estimate the error of λ̂i(N), denoted by δλ̂i(N), which results from the errors of the entries in
〈Î〉N , we used Wilkinson’s rigorous bound [20] which showed that

|δλ̂i(N)| � ‖δIN‖2∣∣ut
ivi

∣∣ ∼ ‖δIN‖2

‖vi‖2
(6)

where ‖ · ‖2 is the matrix 2-norm [21] and | · | is the standard Euclidean vector norm; ui is the
left eigenvector of 〈Î〉N associated with λ̂i(N). Note that the moment of inertia matrices 〈I〉N
considered here are symmetric by definition and therefore the estimates ut

i = vi , at least for
sufficiently large N.

To obtain local estimates of νi around each walk length N, denoted by ν̂i (N), we first took
logarithms on both sides in equation (4) to get

log λi(N) ∼ log Ai + 2ν̂i (N) log N (7)

and performed least-square regressions within each window of three data points,
{(log k, log λi(k)) : k = N/4, N/2, N}. Of the three eigenvalues, we focused on the largest
and the smallest eigenvalues, as denoted by λ+(N) and λ−(N) and their corresponding size
exponents by ν+ and ν−, respectively.

Using these local estimates ν̂i (N), we then needed to extrapolate to large N using some
assumption about possible corrections to scaling. In this way we obtained our final estimate
of νi , which we denote by ν̂i . In general, we expect that

ν̂i (N) ∼ ν̂i + KN−� (8)

with some constants K and � > 0. However, the value of �, in particular as to whether
� < 1 in the unrestricted walk model, has been of some debate. For a summary of the history
of this debate, refer to Hughes [22]. Recently, due to advances in numerical studies [9] and
renormalization group theory [23], it is generally accepted that � is in the neighbourhood
of 1/2. Hence, we assumed that � = 1/2. For want of better theoretical justification we
extrapolated our local estimates using a scale of

√
N in each TSRW model. The data appeared

consistent with this assumption for at least ν̂+(N): when we plotted ν̂+(N) in each model
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Figure 3. A plot of ν±(N) estimates against 1/
√

N for the unrestricted SAW model. The
confidence intervals on the y-axis denote the final estimates of ν+ (square) and ν− (circle).
(BN and LMS denote the previous ν estimates by Belohorec and Nickel [10] and Li et al [9].)

against 1/
√

N , fairly straight lines were observed in the asymptotic region in each case,
except perhaps for (P–P–3). To obtain the final estimates ν̂± we performed a least-square
regression on the plot of ν̂±(N) against 1/

√
N using on the last three or four local estimates.

To benchmark our Monte Carlo simulations, we studied the unrestricted SAW model,
(S–S–S). Figure 3 displays a plot of the local exponent estimates ν̂±(N). After extrapolation
we have estimated that

ν̂+ = 0.5874 ± 0.0033 (9)

and

ν̂− = 0.58715 ± 0.00150 (10)

using a least-square fit on the last three data points. Our estimates are in good agreement
with all the earlier estimates as tabulated in table 3. One thing to note in table 3 is that ν

estimates are still seemingly affected by some finite-size effects: in general, the ν estimates
tend to decrease with the maximum length of the study. Most recent Monte Carlo simulations
have focused on very long walks, with one exception by Belohorec and Nickel [10], whose
alternative approach [29] analyses very high statistical precision data generated from long
runs of short walks. Our simulation data concern moderate to long walks in the context of the
studies in table 3.

Additionally, we note that the moment of inertia tensor matrix has the following theoretical
form:

〈I〉N =



a(N) 0 0
0 a(N) 0
0 0 a(N)


 (11)

where a(N) is some function depending on N. So, this suggests an alternative approach.
Perform a biased analysis by first forcing the moment of inertia matrix 〈Î〉N estimated to adopt
such a form. We do this by forcing the off-diagonal entries of 〈Î〉N to zero and averaging the
diagonal entries of 〈Î〉N , replacing each entry with this mean value. This procedure also has
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Figure 4. A plot of ν̂(N) for the unrestricted SAW model.

Table 3. A table summarizing important previous ν estimates for the unrestricted SAW model
to-date in chronological order. (N: length of SAWs used in analysis; MC: Monte Carlo; SE: series
extrapolation; sc: the simple cubic lattice; bcc: body-centre cubic lattice; d: diamond lattice.)

Source ν estimate method

Rapaport [24] 0.592 ± 0.002 MC, N � 2400 (sc and bcc)
Madras and Sokal [18] 0.592 ± 0.002 MC, N � 3000 (sc)
Eizenberg and Klafter [25] 0.5909 ± 0.0003 MC, N � 7168 (sc)
Li et al [9] 0.5877 ± 0.0006 MC, N � 80 000 (sc)
Belohorec and Nickel [10] 0.58758 ± 0.00007 MC, N � 384 (sc)
Prellberg [11] 0.5874 ± 0.0002 MC, N � 16 384 (sc)
This work 0.5873 ± 0.0011 MC, N � 8192 (sc)

Guttmann [26] 0.592 ± 0.003 SE, N � 21 (sc), 16 (bcc) and 27 (d)
MacDonald et al [27] 0.5875–0.5882 SE, N � 26 (sc)

Flory [1] 3/5 = 0.6 ‘Flory argument’
Cotton [28] 0.588 ± 0.002 Light-scattering experiments
Le Guillou and Zinn-Justin [23] 0.588 ± 0.0015 RG, n = 0 field theory

the effect of reducing the error bars of each diagonal entry by roughly a factor of 1/
√

3. We
denote the resulting matrix by 〈Î〉bN . A plot of exponent estimates ν̂(N) is shown in figure 4.
The final biased estimate is

ν̂ = 0.5873 ± 0.0011 (12)

where we have used the least-square fit to the last four data points. Again, we note that this
estimate is in good agreement with all earlier ν estimates. The sequence {ν̂(N)} appears to
behave better than the unbiased counterparts ({ν̂+(N)} and {ν̂−(N)}), therefore we shall use
this estimate as the size exponent estimate for the unrestricted SAW model in subsequent
discussion.

Next, we present the results for the four other TSRW models. Let us first consider the
(P–P–P) model. We have calculated the local and the final size exponent estimates as we
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Figure 5. A plot of ν̂±(N) for the (P–P–P) model. UE is the unrestricted ν estimate.

have for the unrestricted model—a plot can be found in figure 5 of the local estimates against
N−1/2. The final estimates, following extrapolation as above are

ν̂+ = 0.5873 ± 0.0027 (13)

and

ν̂− = 0.5910 ± 0.0047. (14)

Both of these final estimates overlap with our ν estimates in the unrestricted model as
quoted above. We observe that the above estimate of ν̂− is greater than that of ν̂+ despite
ν̂+(N) > ν̂−(N) as one might expect. This is due to the non-monotonic nature of the
corrections to scaling in ν̂−. (Further details can be found in [30].)

We also note in passing that the theoretical form of the moment of inertia matrices in
each TSRW model has some symmetry that we can exploit in order to obtain biased estimates
(similar to how we have constructed 〈I〉bN in the unrestricted model). In doing this we obtained
similar central estimates to those catalogued below, albeit with smaller error estimates.

In figure 6 there is a plot of ν̂+(N) for the five models considered. The local estimates
clearly seem to be tending to a common value. Extrapolations, as described above for the
unrestricted model for both ν̂+ and ν̂− are presented in table 4. We note immediately that the
central estimates for ν̂− are slightly larger than those for ν̂+ for all the models which implies
corrections to scaling still affect some of the estimates, as discussed above for (P–P–P). The
estimates ν̂+ have smaller confidence intervals and are likely to be more reliable. Nevertheless,
we observe though that for each of the models the confidence intervals for ν̂− overlap with
those of ν̂+, which suggests that ν̂+ = ν̂− and so that each of the models is isotropic.

All estimates of the size exponents confidence intervals reported in each model overlaps
with the exponent estimate intervals in the unrestricted SAW model. In fact, the central
estimates of ν̂+ are within 0.0003 of each other at worst, which is a good deal smaller than the
confidence intervals quoted. (This may be because the confidence intervals calculated from
the simulations are quite conservative.) Therefore, there is no significant difference between
size exponents in each restricted model and those of the unrestricted model. As a result,
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Figure 6. A plot of local estimates of ν̂+(N) in all five models, which shows distinct finite-size
effects consistent with the series analysis results in [7]. The straight line denotes the size exponent
estimate of the unrestricted SAW model.

Table 4. A summary of ν̂ estimates in the five TSRW models. The (S–S–S) estimate quoted is our
biased estimate.

Model ν̂+ ν̂−

(P–P–P) 0.5873 ± 0.0021 0.5910 ± 0.0047
(S–C–3) 0.5874 ± 0.0055 0.5896 ± 0.0110
(P–P–3) 0.5876 ± 0.0035 0.5893 ± 0.0045
(P–O–3) 0.5875 ± 0.0044 0.5894 ± 0.0146
(S–S–S) 0.5873 ± 0.0011 0.5873 ± 0.0011

we conclude immediately that all non-trivial TSRW models fall into the same universality
class as the unrestricted SAW model, albeit with different corrections to scaling.

4. Discussion

We inferred above that all models studied lie in the same universality class which includes
unrestricted SAW. Hence we conclude that all non-trivial TSRW models in three dimensions
that are not directed or lower-dimensional in nature lie in the universality class of unrestricted
SAW. We can reconcile our conclusion here and the prior delineation of universality class in
[7] by noting the various finite-size scaling effects in each model. We refer back to figure 6
for a plot of ν̂+(N) for all five models. In the classification in [7], the (S–C–3) model falls into
the same class as unrestricted SAW, this is due to the rather weak finite-size effect (its line is
the closest line to the (S–S–S) line in figure 6). On the other and, it was suggested in [7] that the
(P–P–P) model may constitute a distinct universality class, this can be explained by the strong
finite-size effect (its line is the furthest line from the (S–S–S) line in figure 6). All the other
pseudo-universality classes as delineated in [7] can be explained in a similar manner. We note
that the systematic error estimate proposed in [7] for differential approximant analyses seems
to be a good measure in these models and builds confidence that it may be used more widely
in the future.
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Table 5. A classification of all TSRW models in three dimensions. The ‘two-dimensional’ class
is as per two-dimensional classifications in table 1.

Universality class ν+ ν−

SAW ≈0.5873 ≈0.5873
Directed 1 1

2
Two-dimensional – –
One-dimensional 1 0 or 1
Zero-dimensional 0 0

In view of this compelling numerical evidence, we give the classification of TSRW models
in three dimensions in table 5. There is no overall relationship between the symmetry of walk
rules of a model and the universality class into which they fall. The only relevant factor
is whether they satisfy the symmetry-mixing conditions. A similar ‘spiral’ class as occurs
in two dimensions is apparently missing in three dimensions, which suggests that the two-
dimensional spiral walk is a unique product of both the walk rule and the specific topology of
two-dimensional lattices. In three dimensions spirality cannot be enforced by placing two-step
restrictions since a growing walk can always escape around the walk already in existence so
breaking strict spirality.
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