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We present results for the generating functions of single fully-directed walks on the
triangular lattice, enumerated according to each type of step and weighted proportional
to the area between the walk and the surface of a half-plane (wall), and the number
of contacts made with the wall. We also give explicit formulae for total area generating
functions, that is when the area is summed over all configurations with a given perimeter,
and the generating function of the moments of heights above the wall (the first of which
is the total area). These results generalise and summarise nearly all known results on
the square lattice: all the square lattice results can be obtaining by setting one of the
step weights to zero. Our results also contain as special cases those that already exist
for the triangular lattice. In deriving some of the new results we utilise the Enumerating
Combinatorial Objects (ECO) and marked area methods of combinatorics for obtaining
functional equations in the most general cases. In several cases we give our results both
in terms of ratios of infinite g-series and as continued fractions.

PACS number(s): 05.50.4q, 02.10Ab, 61.41.+e

Keywords: Directed lattice walks; triangular lattice; Enumerating Combinatorial Objects
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1. Introduction

The study of directed lattice walks have been of increasing interest for the past
two decades, since the article of Fisher' demonstrating the many modelling uses
for these lattice objects as simple polymer models? and as domain walls between
phases in various systems. Because of their intrinsic interest as a basic type of
lattice object, and their many relations to other types of combinatorial objects
such as lattice trees and partitions of integers,3* they have been studied in the
combinatorics literature for more than a century. Recently the connections between
combinatorics and physics have been strengthened through their appearance in a
range of exactly solvable lattice models and in relation to various g-series identities
that arise in these studies. The study of a single walk is usually the basis for
studying arbitrary numbers of walks in that the solution of many walk generating
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functions can often be written in terms of one walk generating functions. Hence
the single walk is the starting place for many studies of directed walk systems,
and so it is important to have a compendium of one walk results from which to
consult. Directed walks often appear in physics as weighted configurations and so it
is of some importance to study single lattice walks with a variety of key properties
distinguished by different weights.

Single walks on various lattices under several different boundary conditions were
studied in now little-known papers about paths on a chessboard,® 8 and some cases
were treated as lattice permutations in Ref. 9. On the square lattice, denoted S,
many problems concerning one and more directed walks have been solved exactly,
and so this task has essentially been accomplished.!~1® However, a less complete
set of problems have also been solved on the triangular lattice, denoted T. The liter-

16—26 11ore references

ature pertinent to T directed lattice walks is still fairly large;
are listed in Refs. 27 and 28. The triangular lattice is interesting in the combina-
torial sense as the regular planar lattice other than the square where each site is
topologically equivalent. Also, by considering weighted paths the square lattice can
be treated as a special case. Triangular lattice results are of interest in statistical
mechanics because they allow one to test the hypothesis of universality for various
quantities, in particular in regard to the study of different corrections to scaling.
Mathematically, the triangular lattice can force one to approach the solution of
problems a little differently and so lead one to introduce new techniques. Here we
take the opportunity to make contact with the combinatorial literature on the sub-
ject of directed walks and survey most of the physically useful results and related
methods. Hence, while many sub-cases of the results appearing here have appeared
previously in the combinatorics literature our most general results containing the
contact weights as well as area and step weights have not appeared. This paper
then provides a review of the most physically interesting triangular lattice results
by providing a compendium of general formula for those results already known. Our
work also generalises those results by the inclusion of two types of surface contact
weight. Additionally, we introduce methods from the combinatorics literature that
may prove useful in future work.??

As stated above we consider directed walks on the triangular lattice. Our tri-
angular lattice is a tiling of isosceles right-angled triangles so that two adjacent
triangles meeting along their hypotenuses form a square. Let us refer to those
bonds as diagonal bonds as they form diagonals of squares. In this way the square
lattice, rather than any arbitrary parallelogram lattice, can be obtained by the re-
moval of a subset of bonds. This is simply an aesthetic consideration here because
we consider walks with general step weights. We shall refer to this lattice as the
“squared-triangular” lattice to distinguish it from the normal isotropic triangular
lattice made from equilateral triangles.

We consider a “wall” parallel to some diagonal edge so that steps of the walk
are allowed only on one side of the wall or on the wall. It is more convenient visually
to display such single walk configurations by rotating the lattice through 45° (see
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Fig. 1. The half-plane of the squared-triangular lattice considered here with the coordinate system
displayed. Sites are coincident with each axis at only even integer values of the coordinates. The
shaded region represents the wall with the t axis (direction axis) lying along the wall.

Fig. 1). We consider single walks in the half-plane on one side of (or on) the wall
with one end of the walk on (touching) the wall. We use the site of attachment
of the walk to the wall (i.e. left-most such touching) as the origin of a coordinate
system. We use a coordinate system (¢, h) where the ¢t coordinate measures distance
along the wall (along a direction axis) and the h coordinate height above the wall,
both scaled so that the first site beyond the origin that is on an axis is at distance
2. By considering orienting the walks away from the origin in the first quadrant
they are directed so that every step in the path has non-negative projection on the
axis parallel to the wall (direction axis). For convenience we consider the direction
axis to be on the wall.

In this paper, two classes of single walks most interesting to physics and fun-
damental in combinatorics are studied in particular. These classes are shown on
the T lattice in Fig. 2. The classes of walk studied are types of single walks in the
half-plane described above that have starting sites on the wall but can finish on
or above the wall. In general these walks are called ballot walks. The two related
classes of ballot walks considered here are

e A return walk is a ballot walk that, in addition, ends on the wall.
e An elevated walk is a return walk that touches the wall only at its starting and
ending sites.

We will demonstrate later how to obtain results for general ballot walks from results
concerning return walks.

The paper has the following structure. We begin in the next section by con-
sidering only step weights. This allows us to introduce the forms of the generating
function solution and provide some fundamental formulae required in later sections.
We then add contact weights in Sec. 3. In Sec. 4 we consider the added complica-
tion of counting area and introduce the Enumerating Combinatorial Objects (ECO)
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Fig. 2. Single walks with a wall on the T lattice: (a) a ballot walk (b) a return walk (c) an elevated
walk.

method from combinatorics. First area-moment and height moments generating
functions are then tackled in the following two sections, allowing us to introduce
another combinatorial method known as marked area.

2. Return Walks with Step Weights

The walks that start and end at the wall in a one-wall system have been studied
by various authors and go by many names: they have been called positive paths

10,3031 zoro paths,3? return paths,?® restricted walks®* or under-diagonal

or walks,
walks,?® amongst other names. On the S lattice, the walks are often referred to as
Dyck paths, since when represented as words of z’s and y’s they are Dyck words.?
Here, walks that start and end at the wall are always referred to as return walks.
The empty or zero-step walk that is the site at the origin is classed as a return
walk.

We introduce variables x, y and d associated with down, up and horizontal steps

of a walk respectively.

Example 2.1. There are six return walks on the T lattice that consist of an up
step, a down step and two horizontal steps. Each of the six walks contribute an
zyd? term to an anisotropic length generating function for return walks. The walks
are shown in Fig. 3; the walk labelled as (e) in Fig. 3 is an elevated walk.

/\ AL 7\ /S N\ /7 ) NV
@ (b) © (d) © (f)

Fig. 3. Return walks of weight zyd?.

Because a return walk finishes at the wall, it has the same number of down steps
and up steps, and so the z and y variables have been coalesced in this case without
loss of generality into a variable v = zy that counts the number of up-down step
pairs.

aDyck words (and the Dyck language) are named after Walther Franz Anton (von) Dyck 1856—
1934, a German mathematician.
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Thus, with W denoting the set of return walks on the T lattice, let L(v,d) be a
generating function
L(v,d) = Z @) ge(w) (2.1)
weWw
that enumerates return walks on the T lattice by types of steps, so that a walk w
with a(w) up (and so down) steps and ¢(w) horizontal steps contributes a v*(*)de(®)
term to L(v,d).

Two equivalent representations for L(v,d) are derived in this section. While
L(v,d) is relatively simple, it is a building block of the more complex generating
functions and allows us to introduce some of the methods used to calculate such
generating functions. The first is as an algebraic function derived as the solution
to a quadratic equation, whilst the second is as an infinite continued fraction.
Corresponding functions for elevated walks are then deduced.

Both derivations of L(v,d) begin by partitioning the set of return walks in the
following manner. The set W of return walks can be partitioned by splitting each
walk in the set (other than the zero-step walk) into two parts at its first return to
the wall. The section before this first return is either (i) a horizontal step, or (ii) an
elevated walk. The section after the first return is a (possibly empty) return walk.
If the zero-step walk is included as a separate category, the set of return walks has

the partition shown schematically in Fig. 4, taken from, for example.36:37

N = v~ o+ S

Fig. 4. Partition of return walks on the T lattice by first return to the wall.

From the decomposition of each walk leading to the partition of the set of walks
one can deduce

L(v,d) =1+ dL(v,d) +vL(v,d)?. (2.2)

2.1. Deriving L(v,d) as an algebraic function

An algebraic function representation of L(v, d) is found by solving the quadratic of
Eq. (2.2). The equation has two roots,

l—d+/(1-d)? -4
N 2v ’
only one of which can be the solution unless the discriminant is zero. A generating
function enumerating walks by number of steps via the variable z is L(z2,z). An
examination of the first few terms in the Laurent expansions of L4 show that L_
is the only allowed candidate. Hence,

L(v,d) = 1—d—\/(210—d)2—4v’ (2.4)

L. (2.3)
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where the generating function for the return walks in the variables z,y, d is given
by L(zy,d).

2.2. Deriving L(v,d) as a continued fraction

A continued fraction representation for functions similar to L(v,d) is often used
in the literature, for example in Refs. 10, 32 and 38, and can be easily derived for
L(v,d). Indeed, Eq. (2.2) can be rearranged as

1
L(v,d) = —————— 2.5
D) = et (2.5)
which by iteration gives the infinite continued fraction representation
1
L(v,d) = T4 > , (2.6)
[ Qe
or, in more compact notation,
1
L(v,d) = Y ? (2.7)

l-d- 1—d— 1-d—---~

This representation of L(v,d) may be further specified by including the height
coordinate of the site at the start of each step. Indeed, from the partition of the
set of return walks in Fig. 4 and the relation in Eq. (2.5) for L(v,d), the first
denominator of the fraction in Eq. (2.7), i.e. 1 — d — v, represents steps (or step
pairs zy in the case of v) that start and end at height 0. Continuing, the second
denominator represents steps (or step pairs) that start and end at height 1 and
so on. If d; denotes a horizontal step at height ¢ and v; an up-down step pair that
starts and ends at height ¢ (see Fig. 5 for examples), then from Ref. 10, a generating
function that enumerates return walks by types of steps and in addition specifies
the height of each step is the infinite continued fraction

1 Vo U1 Vh
1—dop— 1—di— 1—do— 1—dh+1—~-~.

L# = (2.8)
2.3. Elevated walks

Elevated walks, i.e. return walks that do not touch the wall between their starting
and ending sites, have also been called prime paths,3¢ lead paths,3? elevated paths*°

Fig. 5. A return walk with step heights specified.
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and excursions (from the wall),*! among other names. The zero-step walk does not
leave the wall and so is not considered an elevated walk. Elevated walks are a subset
of return walks, and their anisotropic length generating functions can be obtained
from the corresponding functions for return walks. An elevated walk begins with
an up step and ends with a down step, and in between these two steps is a return
walk that starts and ends at height 1. Thus elevated walks can be constructed
by “expanding” return walks away from the wall. A generating function, E(v,d),
enumerating elevated walks by its types of steps is then

L(v,d) = vL(v,d) (2.9)

2.4. Length metrics

Before we consider some special cases of the results above let us define a length
metric on the T lattice to facilitate the discussions. The results with arbitrary
weights x,y and d can be used to consider those cases where a length alone is
assigned to each configuration. If we let the (o, 8,7) “metric” to be such that

T = 2%, y = 2P, d=2z", (2.10)

then «a, 8 and +y assign length multiples to each type of step so that a length gener-
ating function for walks is

G(2*,2°,27) = Z ln2", (2.11)
n>0

where [, is the number of walks of “length” n = a(a + 3) + ¢y with a being the
number of up-down pairs of steps and ¢ being the number of horizontal steps. It is
given that «, 3,7 are usually all non-negative integers. There is one exception to
allow for cases where, say d = 0, we use the convention that a metric can have the
“value” —, e.g. v = —. Under metrics with v = — walks that have steps counted
by d do not contribute to the generating functions, and so such cases consider the
square lattice with n = a(a + ), where a is the number of up-down step pairs.

2.5. Special cases

Case 2.1. An early application of a one-wall lattice system for an enumerative
problem appears in Ref. 5. The problem can be described as finding the number of

2-row Young tableaux*?

in which each row had n entries. These tableaux can be
represented as return walks on the S lattice from the origin to the site at (¢,h) =
(2n,0), i.e. Dyck paths. The S lattice scaled so that each step has unit length is the
same as the T lattice under the (1,1, —) metric. Thus the length generating function
enumerating return walks by steps on the S lattice, or by number of configurations

to (2n,0), is
1-V1—422

L(2%,0) = 5.2

C(2?), (2.12)
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where C(2) = Y., 5, ¢nz" is the generating function for Catalan numbers.® The
coefficients of L(22,0) are often referred to as aerated Catalan numbers because of
the zero term in between each successive Catalan number (see Refs. 40 and 46 for
example).

Case 2.2. The (1,1,2) metric is a natural metric of the lattice under the (¢, h)
coordinate system since it implies that whether a walk takes an up and then a down
step to traverse across the diagonal of a square or simply takes a diagonal “step”
both are counted as 2 steps. Hence using this metric is equivalent to considering
walks enumerated by length on the squared-triangular lattice. The generating func-
tion for the return walk configurations ending at successive sites along a wall on
the T lattice under a (1, 1,2) metric, given by evaluating L(v,d) at v = 22,d = 22,
is

1—22—V1-622+ 2%

2 2y _ — R(s2

L(z%,2%) = 5,2 = R(z7), (2.13)
where R(2%) = Y, .07n2”" is the generating function for the (aerated) large

Schroder numbers.© Here diagonal (horizontal) steps are treated as twice the length
of up or down steps. This case is interesting since it is a case where all return walks
of equal length end at the same lattice site. This condition fails when the isotropic
lattice is considered.

As just mentioned, the two previous examples are exceptional in that all return
walks of length n end at the one site, (¢,h) = (n,0). The final two examples do not
have this property; nonetheless a generating function enumerating return walks by
length can be calculated for each.

Case 2.3. Walks on a lattice of unit step length equilateral triangles can be
counted using the results above on the T lattice under the (1,1, 1) metric. Return
walks under this metric have the length generating function

1—2—+1—-2z—322
L(22,2) =
(%2) -

where M (z) is the generating function for Motzkin numbers.4

= M(z), (2.14)

PThe sequence of terms {%H(Z:)} for n > 0, now commonly referred to as the sequence of

Catalan numbers cp, has a long and often misrepresented history starting in the middle of the
eighteenth century;*43 see also Refs. 44 and 45.

¢The Schréder number sequences are named after the author of a paper concerning bracketing
problems47 in which the small Schroder numbers s, (related linearly to ry, via so = 1,8n, = %rn)
were mentioned. The sequence {sp} also has a curious history, beginning apparently in ancient
Greece [Refs. 48 (mark 732)], 49 [mark 1047], for which see Refs. 50 and 51. Schréder numbers
also occur often in combinatorics; see Refs. 4, 22 and 52, for example.

dThe Motzkin number sequence m, was first introduced in another area of combinatorics in
Ref. 53. Further details of the many classes of combinatorial objects counted by Motzkin numbers
can be found in Refs. 4, 46 and 54-56. The “standard” walks enumerated by Motzkin numbers
are walks not on a lattice of equilateral triangles, but on a graph that is a different generalisation
of the S lattice.10,30,40,57
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Case 2.4. Return walks under the (1,2,2) metric have the length generating
function

1—2%2 — V1 —222 — 423 + 24

223 '
This is essentially the generating function of Sequence A025250 in the Sloane
encyclopaedia,®® and so there is now a lattice derivation of the terms of that
sequence.

L(zS,ZQ) =

(2.15)

3. Single Walks with Return Contact Weights

We now assign a weight x to a site on the wall arrived at by a down step, and
assign a weight p to a site on the wall arrived at by a horizontal step along the wall
(see Fig. 6). These weights describe the return contacts of the walk with the wall.
Walks have been counted by their number of returns to the wall in combinatorics
also; examples are found in Refs. 33, 37 and 59-61.

K K U K U

Fig. 6. Weights of (return) contacts representing the interaction between the walk and the wall.
The weight « is associated with sites that are on the wall having incident steps that are down
steps, while the weight p is associated with sites that are on the wall having incident steps that
are horizontal steps.

Let L(v,d; k, u) be a generating function

L(v,d; k, ) = Z (W) getw) gmw) n(w) (3.16)
wew
that enumerates return walks by types of steps and also by number of return con-
tacts with the wall. A return walk w of a(w) up (and so down) steps and c(w)
horizontal steps that has m(w) down steps incident on the wall and n(w) hori-
zontal steps along the wall then contributes a unit v*(®)ge(®)gm(w) 7(w) term to
L(v,d; k, p).

The function L(v, d; k, i) is simple to derive using the decomposition of return
walks introduced in Sec. 2. Here, though, as a method which generalises to walk
pairs it is derived by splitting a return walk into components by each return to the
wall. The length generating function of return walks on the S lattice was derived
using different terminology in Ref. 9 (p. 128) by separating a return walk into its

elevated components, i.e.
1
L(v,0) = ————. (3.17)
1— L(v,0)
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In general, on the T lattice, where in addition to elevated walk components, a return
walk may also have single horizontal step components along the wall,

L(v,d) !

" ied (3.18)

which, since L(v,d) = vL(v, d), is then the same as Eq. (2.5), thus the concatenation
of elevated components provides a direct combinatorial interpretation of Eq. (2.5).

An elevated walk has a single return contact with the wall from the down step
to its ending site (that is weighted by k). A horizontal step along the wall has a
single return contact at its ending site (that is weighted by p). By incorporating
these two weights of return contact to Eq. (3.18), one obtains

1 2
1—pd—kL(v,d)  2—r+d(k—2p)+ry/(1—d)?—4v

L(v,d; k, ) = . (3.19)

Cases of L(v,d; k, ) for various values of the contact weights are given below.

3.1. Special cases

Case 3.1 (Vanishing wall). If (k,u) = (2,1), then
1

which is a generating function for bilateral walks on T, i.e. for walks not in the
half-plane but in the infinite plane that end at height 0 (h = 0). In other words,
setting x to 2 is the same as removing the wall and counting all walks that traverse
the plane (in directed manner) freely so long as they end at height 0. This can
be thought of as having two choices for each elevated walk component returning
to the wall, one above the wall, and the other its reflection below the wall. This
behaviour for k = 2 was first noted for the S lattice in Ref. 2, where it represents
the behaviour of a system at its critical point.

L(v,d;2,1) = (3.20)

Case 3.2 (p =0 or bouncy walks). The return walks that have weights (k, )
set to (1,0) can touch the wall at sites other than their starting and ending sites but
do not include steps along the wall. Thus such walks are concatenations of elevated
walks. The single site (zero-step walk) is from these definitions included in this set.
A generating function enumerating walks that “bounce” off the wall (bouncy
walks) is then
. 1
L(v,d) =L(v,d;1,0) = ——— 3.21
(1)7 ) (1)7 ? ) ].—UL(U7d) ( )
1

2
1—L(v,d) 1+d+/(1—d?—4v

On any parallelogram lattice, i.e. the T lattice under an («, 3, —) metric, L(v,d) =

(3.22)

L(v,d) since no horizontal steps (represented by the variable d) are allowed along
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the wall or elsewhere in a walk. On triangular lattices, however, L(v,d) # L(v, d).
Two specific subcases for which the numbers of bouncy walks of length n are well-
known sequences are given below.

Subcase 3.2.1. Under the (1,1,2) metric, the isotropic length generating func-
tion for bouncy walks is

s o oy 14221622421

L(z%,2%) = o2 =
where S(z?) is the generating function for (aerated) small Schréder numbers s,,.
The first lattice derivation of a generating function for the sequence {s,} apparently
is in Ref. 22, but this was in another context. From Eq. (3.21), the small and large
Schréder numbers can be related using

S(2%), (3.23)

1
11— 22R(22)°

Subcase 3.2.2. Under the (1, 1,1) metric, i.e. on the isotropic triangular lattice,
the perimeter generating function for bouncy walks is

. 1 1-3z
L(z%,2)=—[1- . .2
ot (1) o2

S(=%) (3.24)

The sequence of coefficients {[2"]L(22,2)} was first considered in the context of
rooted trees in Ref. 39, where it was referred to as {7,}. The numbers v, count
the number of bouncy walks of length n on the T lattice under the (1,1, 1) metric.®
One example of their relationship to Motzkin numbers (that counted return walks
under the same metric), is, from Eq. (3.21),

2 9 1

L(z%,2z) = =200 (3.26)

This relation was shown algebraically in Ref. 54 (p. 277).

3.2. Ballot walks

A ballot walk, in the literature often called a ballot path or a left factor, is a walk
that starts on the wall remains in the half-plane on or above the wall, and finishes
at an arbitrary (integer) height above the wall. On the S lattice, such a walk is a
representation of a ballot between two candidates A and B, where at any point in
the counting, A always has at least as many votes as B. Ballot problems have been
generalised to include various kinds of winning margins, further candidates and in
other ways. One summary of their early history is found in Ref. 62.

A ballot walk can be decomposed into sections, called “terraces”, by considering
the last site at which the walk is at each height value less than the final height.5!

eMore recently, the coefficients have been called the ring numbers, and also Riordan numbers.?¢

Further properties of the sequence v, are found in Refs. 46 and 54 and in particular in Ref. 56.
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The section of a ballot walk that is after the last step that leaves a height h = 1,
and before the last step that leaves height h = i+ 1, is a (sub)-walk that starts and
ends at height A+ 1, and does not drop below height h 4 1. This is shown in Fig. 7.
Thus ballot walks can be described in terms of return walks.

Fig. 7. A ballot walk can be described in terms of return walks.

Anisotropic length generating functions on the T lattice can be used to construct
length generating functions for ballot walks ending at height k& under various met-
rics. Indeed, if By (x,y,d; &, p) is a generating function enumerating ballot walks
that end at height & above the wall by types of steps and also by return contacts,
then

Bi(z,y,d; , p) = L(v, d; 5, n)y* L(zy, d)* (3.27)

and a function enumerating ballot walks by types of steps, return contacts and
height is then

L(v,d; s, p)

B(z,y,d; &, p; w) = ZBk(:E,y,d; K, p)w* = 1—yL(zy, dw

k>0

(3.28)

4. Return Walks by Length and Area
4.1. Continued fraction generating functions

With W denoting the set of return walks on the T lattice, let A(v,d;q) be the
generating function

Av,diq) = Y v ®d)gi)
weWw
that enumerates return walks by types of steps and standard area, where the stan-
dard area of a return walk on the T lattice is the number of triangular cells enclosed
between it and the wall. A walk w with a(w) up (and so down) steps and ¢(w) hori-

zontal steps that encloses i(w) units of area between it and the wall then contributes
a v de®) i) term to A(v,d;q).

Example 4.1. There are six return walks on the T lattice that consist of an up
step, a down step and two horizontal steps. Of these, the walks of (a), (b) and (c)
in Fig. 8 each enclose one (triangular) cell, (d) and (f) each enclose three cells



Anisotropic Step, Surface Contact, and Area Weighted 1281
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Fig. 8. Cells enclosed by return walks that each have anisotropic length term of vd?.

and the elevated walk (e) encloses five cells. Thus these six walks contribute a
vd%(3q + ¢ + ¢°) term to A(v,d;q).

A continued fraction representation of A(v,d;q) is found here by decomposing
return walks at their first return to the wall, as was done to find L(v,d). By con-
sidering the area enclosed before the first return for each category of walk in the
decomposition of Fig. 4 the equation

A(v,d; q) = 1+ dA(v,d; q) + vgA(vg®, dg*; q)A(v, d; q) (4.29)

is obtained. The similar relation (2.2) for L(v,d) had an algebraic solution, but
Eq. (4.29) does not, due to the A(vq?,dq?;q) term. By collecting the A(v,d;q)
terms, however, a continued fraction representation of A(v,d;q) is found as

1

A(v,d;q) =
(dia) = 1—5= vgA(vg?, dg*; q)
! vq vg? vg2ht1 130
T l-d-1-d@?—1—dg*— 1—dght2— .. (4:30)
A corresponding function for elevated walks is then
3 2h+1
i DN 2 ;2. vq vq vq
A(U7d7 q) - UQA('Uq ’dq 7q) 1 _ dq2_ 1 _ dq4_ T 1 _ dq2h+2 . N (4'31)

An alternative derivation of these continued fractions, presented in Ref. 10 and also
noted in Ref. 52, is to include in the function L# for example, i.e. in Eq. (2.8), the

area under steps at each height level via substitutions such as v; — g%+ 1o,

4.2. Infinite sum generating functions

In previous sections the set of return walks was assumed to be already constructed,
and relations satisfied by generating functions were derived by categorising the
walks in the set by their component sections between contacts with the wall. If,
instead, the set of return walks is built up by starting with walks of minimal length
and applying operators to construct progressively longer walks, then relations sat-
isfied by generating functions can also be derived from the construction process.
In particular, a “local expansion” of the last fall (of down steps to the ending
site) of return walks that was introduced in Ref. 63 can be used to construct walks
recursively from other walks. An equation satisfied by a generating function enu-
merating return walks by their length, area and number of steps in their last fall can
be derived from the expansion. This method of enumerating combinatorial objects
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by constructing objects of given size (here length) from objects of smaller size has
been applied to find generating functions enumerating return walks by length and
standard area, and also length and the so-called non-decreasing-point-area (which
we will denote A-area: see later for definition) in Refs. 31 and 63. It is known as
the Fnumerating Combinatorial Objects method (or ECO method) and can be used
for the enumeration of more general combinatorial objects also. More details and
examples can be found in Refs. 64 and 65 and the references therein.

In this section, the ECO method is used to find an equation satisfied by a
generating function that enumerates elevated walks on the T lattice by types of
steps, standard area and steps in their last fall. The function A(v, d; q) is obtained
from this equation by an iterative technique. We then consider contact weights.

4.3. The Enumerating Combinatorial Objects method

The essence of the Enumerating Combinatorial Objects (ECO) method is the fol-
lowing proposition that is found in Ref. 63, amongst others:

Proposition 4.1. Let S be a class of combinatorial objects and S,, the subsets of
objects having a fized size n. Define the operator © on S, as a function from S, to
the power set of the elements of Sp+1. Suppose that © is an operator on S (and so
on Sy for all n).

If for all Y € 8,11, there exists an X € S, such that Y € O(X), and, if
for all X1,Xs € S, with X1 # X3, O(X1) N O(X2) = 0, then the set family
0 ={0(X)|X € 8,} is a partition of Sp41.

That is, if for a given class S such an operator © can be found, each element of
Sn+1 can be constructed via © from one and only one element of S,,. The elements
of S,, would then have a recursive description. Often, as is the case here, a functional
equation for a generating function enumerating elements of S can be derived from
this description.

Here, the ECO method is used to enumerate elevated walks; from this an ex-
pression for the area-perimeter function fl(’u, d; q) is obtained. The method requires
a set of objects and an operator on that set in order to generate the objects recur-
sively. Let the set of elevated walks on the T lattice be denoted by £. An appropriate
class of elevated walks on which to apply the ECO method is the set &, defined
here as those walks that have ending site at (¢,h) = (2n,0). A satisfactory choice
of operator is one that from &, constructs all elements of the set of elevated walks
Eonto by inserting an up-and-down peak (represented by zy = v) or a horizontal
step (d) into the last fall of w. If this operator is denoted as ©¢, then

O¢ : Ean — Eopga,
Oc(w) = {u € Erpyo,u = W' CW’, with w = w'w”,

w" € {y,yy,yyy,...},C € {v,d}}. (4.32)
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Fig. 9. Construction of the set of elevated walks from the up-down step pair walk via the operator
O¢.

insertion site

Fig. 10. Elevated walks obtained by inserting a peak or horizontal step in the last fall of an elevated
walk, with extra cells enclosed shown.

Proof that this operator ©¢ on £ satisfies Proposition 4.1 follows the proofs of
similar results in Refs. 31 and 63 and is not detailed here. The construction of the
sets £y, from the (shortest) elevated walk, the up-down step pair, is shown for small
n in Fig. 9.

The insertion of an extra step or step pair to the last fall adds both steps and
units of area to an elevated walk. Let the variable s count the number of steps in
the last fall of the walk and let W (s;v,d; q) (or W(s) for short) be the generating
function

W (s;v,d;q) Z sfall(w) ya(w) ge(w) gi(w) (4.33)
wel

that enumerates elevated walks by steps in the last fall, types of steps and standard
area. The desired function, the area-perimeter function A(v, d; q), is then simply
W(1;v,d; q).

The set of elevated walks £ can be reclassified into sets according to the number
of steps fall(w) of the last fall. For any elevated walk w, suppose the insertion in the
last fall is made at height k, where 1 < k < fall(w) since the result of applying ©¢
must still be an elevated walk. If the insertion is a peak, this constructs a new walk
with fall(w) = k+1 and area 2k + 1 units larger than that of w. Similarly, inserting
a horizontal step constructs a new walk with fall(w) = k and area increased over
that of w by 2k units. These insertions are shown in Fig. 10.

A functional equation for W(s) is found by collecting together the results of
applying O¢ on all elevated walks, and adding to this the shortest elevated walk,
the up-down step pair, that cannot be generated by O¢.
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Thus
fall(w)
W(S) = svg + Z Z {8k+1Ua(w)+1dc(w)qi(w)+2k+1 +8kva(w)dc(w)+lqi(w)+2k}
weE k=1

2
89 a(w) ge(w) i(w all(w
qu—|—(d—‘rqu)1_5q2 ZU( ) de(w) gitw) (1 — (sq%)falw))
wes
2

7 (W(1) = W(sg”)) . (4.34)

s
=svg+ (d+ qu)ﬁ

4.4. Iterative solutions of functional equations

The functional equation (4.34) contains the desired W (1) term but also a W (s) and
a W (sq?) term. It cannot be solved immediately for 1 (1) if information about the
area enclosed by the walk, given by the exponent of g, is to be retained, since some
contribution to this exponent comes from the W(qu) term. Commonly a solution
for W (1) is found by iterating the functional equation to remove the W (sq?) term.
The telescoping technique used below is well-known; the presentation of it here is
based upon that in Ref. 66.
If in Eq. (4.34), s is replaced with sq?, then the equation

4
W(sq?) = svg® + (d + qu3)W(W(1) — W(sq")) (4.35)
is obtained, so that the W (sq?) term can be removed in Eq. (4.34), leaving
N qu 3
W (s) = svg — (d + svq) 1= s svq
sq? o sqt X
+(d+qu)1 i 1—(d+ svq )1 o W (1)
2 4
+ (d + svq) (d + svg®) ekl W(sq). (4.36)
1 — s¢? 1— s¢*

The substitution s — sg? can then be used in Eq. (4.35) to obtain a relation between
W (sq*), W(1) and W (sq®), and then again in this latter relation to obtain a further
relation between W (sq%), W (1) and W (s¢®), and so on. After N iterations of the
substitution,

N n 2j 2j—1
o n q7 (d + svq
n>1 j=1 q
N . n quj(d+qu2j+1) R
LV s e | V)
n>0 =0
N 2j 2j+1
q7(d + svq o
(—1)NHSq2W W(sg*N+2). (4.37)
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The coefficient that is the left part of the final term of Eq. (4.37) is a product, not
a sum of products. If the length variables d and v in the equation are isotropised
to 27 and z®*P, then the minimum exponent of z in the entire final term will be
at least either (N + 1) or (N + 1)(a+ ), both of which increase with N. Thus in
the limit N — oo, then, Eq. (4.37) is

n

~ 2j—1
W(s)=svg [1+ 3 (-1 H 24 (d+ svg” 1)

_ 27
n>1 Jj=1 1 sq !
n 27 d 2541 R
2q + svq )
+ {21 H W w(1). (4.38)

n>0 7=0

The functional equation (4.34) has now been reduced to an equation with just 1 (1)
and W (s) terms. The variable s counting the last fall is not needed in A(v,d;q) =
W (1), so setting s to 1 in Eq. (4.38) and rearranging gives the desired A(v,d;q) as

Vg, 50(— 1)ngr(3)(¢%; ¢2); 1 H?:l(d +og1)

A(v,d; q) = —— S (4.39)
>z (=1)mg D (%5 ¢2) 0 [Ty (d + vg® 1)
where the notation
n—1
(@q); =[]0 -ad), (s5000=1 (4.40)
=0

has been used.
Hence the generating function for return walks is found from Eqgs. (4.30), (4.31)
and (4.39) as

Snzo (=DM ¢*)n T (d 4 vg™ )
> so(=Dmq" D (% ¢2)n [Ty (d + vg?i 1)

Case 4.1 (Return walks on the isotropic S lattice). The S lattice is the T
lattice under the (1,1, —) metric, so from Eq. (4.41) we have

A(v,d;q) = (4.41)

1 Z2q 22q3 22q2h+1
A(2%,0;q) = P e ——

2
B ano(_ZQ)ann +n<q2;q2);1
Sz (—=22)mg2 (g2 )t

A lattice derivation of the first line of this equation can be found in Ref. 10, whilst
the second line is a special case of a more general result [Ref. 14, Thm.12] which
was derived using a different method. The equation is also an identity related to
the so-called Rogers-Ramanujan continued fraction.®”

(4.42)

Both representations of A(22,0;q) in Eq. (4.42) are g-analogues of L(22,0).
Similarly, the representation of fl(v, d; q) in Eq. (4.39) is a g-analogue of f/(v, d) just
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as was the representation in Eq. (4.31). Unlike continued fractions, however, with
ratios of infinite sums it is not possible to set ¢ to 1 and obtain the anisotropic length
generating function, because the expressions are singular at ¢ = 1. Nonetheless,
length generating functions can still be obtained from intermediate results in the
derivation of the infinite sums. For example, the function ﬁ(v, d) can be obtained by
setting ¢ = 1 in Eq. (4.34) and collecting terms. Such a derivation is an example of
what has become known as the kernel method, for which see Ref. 68 (with references
therein) and also Ref. 69

4.5. Return walks with contact weights and area

In a similar manner to the perimeter-only generating functions in Sec. 3, contact
weights can be included in the discussion by using the decomposition of return
walks into pieces including elevated walks. The same can be done for length-area
generating functions. Indeed, a return walk can be split by returns to the wall
into single horizontal steps along the wall and elevated walks, and we note that
horizontal steps along the wall do not enclose any area. Hence, the generating
function A (v, d; g; k, 1) enumerating return walks according to their steps, the area
under the walks, and the types of return contact (as described in Sec. 3) weighted
by x and p satisfies the functional equation

1
1—pd — kA(v,d;q)

A(v,d; q; 5, 1) = (4.43)

Substitution of Eq. (4.39) and some rearrangement leads to

O(_l)nqn(n+1) (q2§ q2);1 H?:l(d 4 ?}q2j_1)
1 ¢ 5, 1) (—1)"q" "D (g% 42 [Ty (d+ vg? 1)
(4.44)

n>
A(v,d; g3k, p) = S G
n>0 TN

where

G (d;qs k1) = 6(1 = ¢*") + ¢°" + (k — p)dg™ . (4.45)

4.6. Walks by length and A-area

The A-area of a return walk on the T lattice is the number of up triangular cells
enclosed between the walk and the wall. An up triangle, denoted A\, is one which has
an apex pointing upwards. Functions that are derived using A-area are given a up-
pointing triangular (A ) subscript. The A-area is also known as the non-decreasing-
point-area.

Example 4.2. Of the six return walks on the T lattice represented by the
anisotropic length term vd?, the walks (a)—(c) in Fig. 11 enclose one unit of A-
area, (d) and (f) each enclose two units and (e) encloses three units.
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Fig. 11. The A-area of walks that are represented by the anisotropic length term vd?, as the sum
of the number of up triangles.

Generating functions enumerating elevated or return walks by A-area as well
as other characteristics can be found by the same processes that led to the corre-
sponding standard area functions above. Such functions, however, are linked by the
observation that the standard area for single walks can be found in terms of the
A-area:

and

Ap (v, d; q) = A(v/gqu, d; \/q) - (4.47)

It appears that A-area was first used as a definition of the area of a walk in
Ref. 63 for Motzkin paths; these biject to walks under the (1,1, 1) metric, so giving
Ap(2%,2;q). The A-area has since been used to find Ax (22, dz?;q), i.e. to consider
return walks under the (1, 1, 2) metric also enumerated by the number of horizontal
steps; these walks were then related to permutations with forbidden sequences enu-
merated by number of inversions in Ref. 31. Both of these previous uses considered
walks on one lattice; here they have been generalised by the enumeration of walks
by types of steps on the T lattice, and by the inclusion of contact weights.

4.7. Fountains of coins

A fountain of coins is an arrangement of identical circles in rows such that any
circle not in the bottom row is supported by, i.e. touches, exactly two circles in the
row below. An (n, k)-fountain is then an arrangement of n coins into rows such that
there are k coins in the bottom row.” A (16, 8)-fountain is shown in Fig. 12(a).
Fountains of coins have been studied in both statistical mechanics and combina-
torics over the past fifty years. An early study of fountains of coins is Ref. 71, in
which fountains were used to enumerate partitions of a set into smaller sets under
certain restrictions. The fountains used had a single contiguous block of coins in
each row (since called block fountains’?). Another partition enumeration problem,
solved in Ref. 73, gave a combinatorial interpretation of the continued fraction of
AA(2%,0;q), in that the number of partitions of n + (g) for which the largest part
is k and for all 4,1 < i < k, the ith part is at least i, is [22¥¢"]AA(22,0;¢q). This
second partition problem can also be represented by fountains (see Ref. 70).

An expression for Aa(22,0;q) as a generating function enumerating fountains of
coins is found in Ref. 70. There, the function was found by decomposing fountains

in a manner similar to decomposing walks by their first return to the wall. These
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(b)

Fig. 12. (a) A (16, 8)-fountain; (b) the return walk on the parallelogram lattice corresponding to
the fountain.

general (i.e. not just block) fountains had previously been mentioned in Ref. 74.
Here, in a different method, a construction linking fountains and triangles of A-
area of return walks on the S lattice is used to show that Ax(z,0;¢) is a generating
function enumerating fountains by coins in the bottom row (counted by z) and
coins in total (counted by ¢).

A section of a parallelogram lattice can be constructed from a fountain as is
clear from Fig. 12. Each coin corresponds to one unit of A-area, as can be seen by
inserting a horizontal line across the middle of each parallelogram cell of the lat-
tice and marking the up-pointing triangles. This parallelogram lattice is equivalent
under a planar isomorphism to the S lattice. Thus an (n, k)-fountain bijects to a
return walk on the S lattice of length 2k and A-area of n units. A similar bijection
was given in Ref. 75.

A generating function for (n, k)-fountains according to total number of coins
(counted by ¢) and number of coins in the bottom row (counted by z) is then

1 2q 22 2" Y s0(=2)"q" "D (g5 )t

An(z,0;q) = Bk ARk el ano(—z)”q”2 @ q)fbl . (4.48)

It is well-known (for example, see Refs. 4 and 70) that the number of fountains with

k coins in the bottom row (regardless of n) is the kth Catalan number ¢y ; this can
be deduced by treating fountains as return walks.

Another question asked about fountains, however, seeks to find the number of
fountains of n coins in total, regardless of the number in the bottom row. This
question is then equivalent to one asking for the number of return walks of given
A-area on the S lattice, regardless of length, and is answered by setting z = 1 and
considering only the area variable ¢ in Eq. (4.48).

5. First Area-Moment of Walks

Let TA (v, d; k, ) be the generating function
TA(v,d; &, p) = Z i(w)p®(W) gew) gmw) n(w) (5.49)
weWw

that enumerates return walks by types of steps and by return contacts, and in
which each walk is given a coefficient weighting equal to its standard area i(w).
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Fig. 13. Return walks that have anisotropic length term of vd?.

The coefficient of v*d® in TA(v,d; k, ) is then the contact-weighted total of the
areas of all return walks with that set of steps. The functions TA A (v,d; &, p),
for which A-area is counted, and ﬁ(v, d) and TAp (v,d), which enumerate the
first area-moment enclosed by elevated walks in units of standard area and /\-area
respectively, are defined similarly. Here generating functions enumerating the first
area-moment of walks by their length are called first area-moment functions.

Example 5.1. Of the six return walks on the T lattice that have anisotropic
length term of vd?, three enclose one unit of standard area each, two enclose three
units each and one encloses five units. Thus the total of the standard areas of those
return walks is 14 units. Since the A-area of a return walk is the number of up
triangles enclosed between the walk and the wall, the total of the A-areas of return
walks that have anisotropic length term of zyd® is 10 units.

In theory, all area-moment functions could be calculated as g-derivatives of the
corresponding length-area functions found in Sec. 4. For example,

TA(v,d; k, p) = qu(v,d;q;/@, 1) . (5.50)
0q q=1

It is possible to find such derivatives from the functional equations, such as
Eq. (4.29) for first area-moment functions. We however take a different route, more
combinatorial in nature that can prove useful in more complex situations. Here,
first area-moment functions are found considering the two-dimensional area as a
sum of one-dimensional heights. The standard area of a walk on the T lattice is
also the sum of the heights of the walk at all integer values of the ¢ coordinate since
the area in one column of the walk is simply the height of that column. If the height
of the walk, w, at ¢t = ¢ is denoted by h;(w), then

TA (v,d; k, ) = Z Zhi(w) pUW) ge(w) gmiw) n(w) (5.51)
wew | i>0

The first area-moment of the set of elevated walks of a given length on the
T lattice under the (1,1,2) metric has been studied in Ref. 76 and the generat-
ing function ﬂ(z2, 2%) in Ref. 52. In Refs. 77 and 78, both this function and the
corresponding S lattice function T\A(ZQ,O) were considered, and in Ref. 40, the
first area-moments of “generalised Motzkin paths”, including both of these previ-
ous cases, were studied. The first area-moment of return walks on the S lattice, i.e.
T A(22,0), was considered in Refs. 59 and 79, and the function T'A(22, 22) was stud-
ied in Ref. 52. The generalisation to return walks on graphs that are not necessarily
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Fig. 14. Elevated walks that pass through (j1,k): (a) at the end of a step; (b) in the middle of a
horizontal step.

lattices formed from tilings of the plane was made in Ref. 80, and more recently in
Ref. 14.

The total A-area of a set of walks, however, does not appear to have been
studied. The alternate (and original) definition of the A-area of a walk is as the
sum of the heights of the walk at the endpoint of each up step or horizontal step.
Thus, if Za (w) is used to denote the subset of the integer ¢ coordinates at which
up or horizontal steps of a walk w end,

TAA (v,d; K, 1) = Z Z hi p v¥ @) getw) gmw) nw) (5.52)
weW | i€Za(w)

In this section, general expressions are found for ﬂ(v,d) and TA(v,d; K, ),
and for the corresponding /A-area functions also. Length metrics are then used to
give examples of first area-moment functions on various lattice systems.

5.1. First area-moment of elevated walks

To find a generating function enumerating the first area-moment of elevated walks
by their length, it is convenient to take the collection of height values of all the walks
and regroup them by the value of the height. Here, this is done for the standard
area case; the A-area case can be derived in the same manner.

If K, (v,d) is a generating function in which the coefficient of v*(*)d**) is the
number of points at integer coordinates of ¢ that are at height k£ in all elevated
walks with that set of steps, then

TA(v,d) =Y kKy(v,d). (5.53)
k>0

The function T'A(v, d) is found here by first deriving an expression for Ky (v, d) via
a convolution previously used in Refs. 40 and 79 which in turn is based upon the
one in Ref. 81.

Suppose an elevated walk ends at (¢, h) = (j2,0). If the walk passes through the
coordinate (j1, k), then at that point, the walk is either at the end of a step or in
the middle of a horizontal step, as is shown in Fig. 14.

In the first case, the number of walk configurations from (0, 0) to (j1, k) is equal
to the number of ballot walks from the origin to (j1, k) that do not return to the wall.
The remainder of the elevated walk, from (j1, k) to the endpoint, is then the reverse
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of a similarly restricted ballot walk from the origin to (jo — ji1,%). In the second
case, since the walk must include a horizontal step from (j; — 1, k) to (51 + 1, k),
the relevant ballot walks are from the origin to (j1 — 1, k) and (ja — j1 — 1, k). The
anisotropic length generating function of ballot walks from the origin to a site at
height k£ that do not return to the wall is, from Eq. (3.27), equal to y*L(zy,d)"
and so the corresponding function for reversed ballot walks from height £ that end
at the wall but do not drop down to it before then is x*L(xy, d)*. Thus, summing
ballot walks over j; and js gives, for k£ > 1, and where as previously v = zy,

K (v,d) = v*L(v,d)?*(1 + d), (5.54)

from which

TA(v,d)=(1+d kvPL(v,d)** = (1 d%
(v,d) <+>§ (v,d) (“(1_@(@,@2)2
= (1+4d) ! .
(1—-d—-2vL(v,d))
Z(lv_(ld)%’ (5.55)

where the second-last equality follows from Eq. (2.2) and the final equality from
Eq. (2.4).

The corresponding function for the total A-area of elevated walks of a given set
of steps, ﬂA (v,d), can be found by a similar convolution of ballot walks as

— 1 VO —dZ_1
TAn(v,d) v 1+dL(v,d) v +d+ (2 d) v

(1—-d)?—4v L(v,d) (1-d)?—4v
(5.56)

5.2. First area-moment of return walks

Generating functions enumerating the first area-moment of return walks by types
of steps and return contacts can be derived from the corresponding functions for
elevated walks. The method used in this section, as was used for similar derivations
in the first two sections, is that of decomposing a return walk at its returns to the
wall.

The following lemma relates the value of a function summed across all integer
coordinates passed through by an elevated walk to the value of the same function
summed across a return walk, and is styled on a similar lemma for walks on the S
lattice in Ref. 59.

Lemma 1. Let ¢ be a real-valued function on the non-negative integers and sup-
pose that ¢(0) = 0. For W (sim. £) the set of return (elevated) walks on the T
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Fig. 15. Isolation of an elevated component of a return walk.

lattice, Z(w) the set of integer values of the t coordinate passed through by a walk
w and h; the h coordinate of a walk at t =i, the generating functions

Fy(v,dir,p) = Y > ¢(hi) pvt®)det)gm)ntw) (5.57)
weW | ieZ(w)
and
Fy(o,d) =0 > o(hy) pv*ac) (5.58)
we | ieZ(w)
satisfy

Fy(v,d;k,p) = fd%(v,d)L(v,d; K, )%, (5.59)

where L(v,d; k, 1) is a generating function enumerating return walks by types of
steps and return contacts.

Proof. The function ¢ is summed across its values at the heights of the walk at each
integer t coordinate. Since ¢ takes the value zero at any coordinate at which the walk
is at height 0, the coefficient of the term in Fy(v,d; k, 1) contributed by a return
walk is therefore the sum of the areas of each of its elevated walk components. Any
return walk w that does not have an elevated walk component is a concatenation of
zero or more horizontal steps along the wall. The sum of the values of ¢(h;) across
such a walk is then zero, so walks without elevated components can be discarded
from consideration.

A new set of walks can be constructed by making as many copies of every
walk w € W as there are elevated components in w, and in each copy marking
one of the components. This new set of marked area walks can be reordered by
grouping together all walks that have the same marked component. Each element
in a group can be characterised as being an elevated walk wedged between two
(possibly empty) return walks, as is shown in Fig. 15. These two return walks are
of arbitrary length, so if w; € £ is the marked elevated component, then the group
of walks with that marked component contributes a

L(v,d; k, i) Z ¢>(hi)va(w1)dc(w1)f€ L(v,d; k, i) (5.60)
€L (wr)
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term to Fy(v,d; k, 11). The result follows from summing over all possible elevated
walk components. O

Corollary 1. With ¢(h;) = h;,
TA (v, d; k, ) = nﬂ(u,d)L(v,d; K, p)? . (5.61)

Lemma 5.1 can be modified to relate the generating functions that enumerate
the total A-area of elevated and return walks by their types of steps. Indeed, if
the set Z is changed to Za, i.e. the integer values of only the ¢t coordinates at the
endpoint of up and horizontal steps of a walk, then for ¢(h;) = h;

TAA(v,d; K, 1) = mﬂA(v,d) L(v,d; k, pu)? . (5.62)

Lemma 5.1 could also be generalised to replace the ¢ functions by, for exam-
ple, the “possibility functions” described in Ref. 10, or by further changing the
restrictions on the coordinate set Z, but these extensions are not studied here.

5.3. Special cases

Five special cases of first area-moment generating functions for elevated walks now
follow. The first three cases use the standard area of a walk, whilst the final two use
the A-area. The first area-moment generating function for return walks is easily
found in each case from Eq. (5.61) or (5.62), and is not always mentioned in the
examples.

Case 5.1. Under the (1,1, —) metric, i.e. on the S lattice,

Z2

1— 4227
so the total standard area of all elevated walks of length 2n + 2 is 4™ triangles or

4™ /2 squares. This is well-known. The result for return walks that have unit contact
weights on the square lattice, TA(22,0;1,1), i.e. TA(22,0), is

2 (1—V1-—14z2)?
o 422(1 —422)

TA(22,0) = (5.63)

TA(22,0) = TA(2%,0)L(2>,0) (5.64)

which was derived by other means in Ref. 80 and also in Refs. 59 and 79. Asymp-
totics for this and other first area-moment generating functions are found in Ref. 80.
Case 5.2. Under the (1,1, 2)-metric,

2 2
T2 2y A (+2%)
TA(z%,2%) = T 621 o4 (5.65)

The coefficient of 22 in ﬂ(zg, 2?%) is usually represented as f,,. In Ref. 76, it was
shown that f, =3, 2k(?% 1), and also that

fn+1:6fn_fn71a n>2, (566)
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where fo = 1 and f; = 7. This recurrence was mentioned again in Ref. 52, and
combinatorial proofs of the recurrence which involve lattice walks are found in
Refs. 77 and 78. Other articles that discuss this recurrence or the sequence obtained
from it are Refs. 85-82. The asymptotics of the corresponding return walk function,
T A(22,2?), are considered in Ref. 52.

Case 5.3. Under the (1,1, 1) metric,

22

1-32"
which may have a combinatorial interpretation similar to that given in Ref. 77 for
walks under the (1,1, 2) metric.

TA(2%,2) =

(5.67)

Case 5.4. Under the (1,1, —) metric, i.e. the S lattice, the generating function

enumerating the total A-area of elevated walks by types of steps is
22 222 _ 22 1

1-4221 1422 1-4220(22)

where, again, C(z) is the generating function of the Catalan numbers. The result

TAA(22,0) =

(5.68)

for return walks is

o 1—V1-422  220(z?)

2 _TA 2 2
TAA(2%,0) = TAA(2%,0)L(27,0) SA-47) 142 (5.69)
Case 5.5. Under the (1,1, 1)-metric,
— 2 1 V1—2z—322
TAp (22, 2) = —— tet Zo% (5.70)

1—22— 322 2
and

2 2 2
2\ = s o z 1—2—222—y/1—22—322
TAA(2%,2) =TAA(2%,2)L(2%,2)" = 1— 922 — 3,2 223 '

(5.71)

Although apparently not studied as sequences derived from lattice walks, each
of the sequences of coefficients from these four A-area functions is listed in Ref. 58;
some already have other combinatorial interpretations.

6. Height Moments of Walks

For r > 1, the rth total height moment of a return walk w is here defined to
be > . o(hi)", ie. the sum of the rth powers of the height of the walk at each
integer t coordinate. For example, the walk in Fig. 16 has sequence of heights
0,1,2,1,2,3,2,2,2,1,0 as ¢ ranges from 0 to 10. The first total height moment of
the walk is then the sum of the heights (i.e. 16), the second moment the sum of the
squares of the heights (32), the third moment the sum of the cubes of the heights
(70) and so on. The first total height moment is also the first area moment but
higher moments differ.
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2 4 6 8 10 t

Fig. 16. An elevated walk with first total height moment of 16, second total height moment of 32
and third total height moment of 70.

For r > 1, let ]\/ZT (v, d) be the generating function

M, (v,d) = 3783 " (hy)" pv)de) (6.72)

wee | i>0

that enumerates the rth total height moments of elevated walks (the set of which
is denoted &) by types of steps. Here, with some abuse of notation, this function
is called the rth moment of elevated walks. Similar functions have previously been
considered in Refs. 40 and 59.
The corresponding moments for return walks are found from Lemma 5.1, with
¢(h) = h", as
M, (v, d; K, 1) = £M, (v, d)L(v, d; 5, 12)? . (6.73)
We now derive a formula for ]\//_7,, (v, d) using a technique similar to that used to
solve a S lattice moment problem in Ref. 86. From Eqgs. (6.72), (5.53) and (5.54),
an expression for the rth moment of elevated walks is
M, (v,d) =Y k" Kp(v,d) =Y k" (1+d)p*L(v,d)** . (6.74)
k>0 k>0
An exponential generating function for the moments is

vL(v,d)?e?

K(z) =Y Ep(v,d)e" = (1 + d)m , (6.75)
k>1 )
in that
|:j_::| I?(Z) = Zkrkk(vvd) = M\T(U7d)7 (676)
’ k>1
— [0" [(v(l+d)L(v,d)%e?
M (v, d) = [az’“ ( 1 —vL(v,d)2e* )L:o ' (6.77)

In Ref. 86, it was mentioned that for a given function D, and for A(r,j) the
Eulerian numbers (for which see Ref. 21),
o Det YU, A(rj)Dier
8271 —De* (1 — De)r+1

(6.78)
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and also it was mentioned that that the coefficients m(r, s) for which

r [r/2]
Z A(r, §)a? = Z m(r,s)z (1 + z) 172 (6.79)
j=1 s=1

satisfy the recurrence
m(r,s) = sm(r —1,s) + 2(r —2s+ 2)m(r — 1,s — 1), r,s>1 (6.80)

with m(1,1) = 1, m(1,p) = 0 for p # 1. A table of the values of m(r, s) for small r
and s is given in Table 1.

Table 1. Table of values of
m(r, s) for small r and s.

s\r 1 2 3 4

22 16
52 136
114 720 272

N OOt W N
e
oo

If Egs. (6.78)—(6.80) are applied in turn to Eq. (6.77), then
(4 d) STy Al )0 Lo, d) e5*
(1 —vL(v,d)?e?)r+1

—

M, (v,d) =

z=0

1+ d) S m(r, s)0* Liv, d)2(1 + vL(v, d)?)T 128

= — 6.81
(1 —vL(v,d)2)r+1 , (6.81)
which, after two uses of the functional Eq. (2.2) for L(v, d), becomes
[r/2]
— 14+d
M, (v,d) = + m(r, s)o* (1 — d)7+1-2s (6.82)

\/((1 —d)2 —a) =
This expression for the rth moment of elevated walks relies only on a linear com-
bination of polynomials in the step variables v and d. From this final expression it
also is clear that odd order moments are rational, whilst even order moments are
algebraic.

The moment problem considered in Ref. 86 was that of finding the moments of
the distance between two non-intersecting paths on the S lattice. This was as an
instance of moments of Shapiro’s “Catalan triangle”.3” The array, {w, x} say, of
the numbers of points at height %k in the set of elevated walks on the S lattice that
end at (¢, h) = (2n,0) is then another instance of the Catalan triangle, and thus the
derivation of ]\/ZT (v,d) given here is an extension of the moment problem in Ref. 86
to a system beyond the S lattice.
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