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Abstract
In two dimensions the universality classes of self-avoiding walks on the
square lattice, restricted by allowing only certain two-step configurations to
occur within each walk, has been argued to be determined primarily by
the symmetry of the set of allowed two-step configurations. In a recent
paper, primarily tackling the three-dimensional analogues of these models, a
novel two-dimensional model was discovered that seemed either to break the
classification of the models into universality classes according to microscopic
symmetry or was itself a member of a novel universality class. This was
supported by series analysis of exact enumeration data. Here we provide
conclusive evidence that this model, known as ‘anti-spiral walks’, is in the
directed walk universality class. We arrive at these conclusions from Monte
Carlo simulations of these walks using a PERM algorithm modified for this
problem. We point out that the behaviour of this model is unusual in that
other models in the directed walk universality class remain directed when
the self-avoidance condition is removed, whereas the behaviour of anti-spiral
walks becomes that of a isotropic simple random walk. We also remark that
the symmetry classification of walk models can be kept by adding a natural
condition to the scheme that disallows models, all of whose configurations avoid
some infinite region of the plane by virtue of their microscopic constraints.

PACS numbers: 05.40.Fb, 05.50.+q, 05.70.-a, 61.41.+e

Two-step restricted walk (TSRW) models [1,2] are oriented self-avoiding walks (SAW) where
the allowed configurations have certain restrictions placed upon each pair of successive steps.
The rules obeyed by the successive steps of TSRW models are most conveniently depicted
by rule diagrams. Such a diagram describes all allowed pairs of steps by depicting the set of
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Figure 1. The rule diagram of the anti-spiral walk. The bold edge represents the current or last
step of a walk of length n − 1 while the arrowed edges denote the allowed next steps to construct
all possible walks of length n.

permissible continuing steps from each of the permissible lattice directions. In figure 1 the
rule diagram for the so-called anti-spiral walk model is shown.

Guttmann et al [1] studied square lattice TSRW models in general and argued
that certain properties of the rules could be used to determine into which universality
class the model would fall. These properties included two types of conditions: firstly,
conditions (balanced, reverse-balanced and mixing) that eliminate ‘unbalanced’ walks or
rules, where certain directions are never taken, giving rise to trivial, one-dimensional or
directed walks; secondly, a set of conditions regarding the symmetry of the rules further
delineate the more interesting universality classes. While attempting to summarize this
classification scheme of TSRW models in two dimensions Rechnitzer and Owczarek [2]
recently found a TSRW model that is not excluded as trivial, one-dimensional or directed
by the balanced, reverse-balanced and mixing conditions and was not in the original
classification by Guttmann et al [1]. This model, given the name ‘anti-spiral’, appeared
to be neither trivial nor directed when studied by exact enumeration [3]. Rechnitzer and
Owczarek [2, 4] suggested a property of this model, which they called region exclusion,
may be important in its classification, since it seemed directly related to the lack of spiral
configurations.

Rechnitzer [3] enumerated the mean moment-of-inertia tensor series up to 50 terms using
a parallelized backtracking algorithm and analysed the resulting series using the method
of differential approximants [5]. Pathological results were obtained for the exponent ν

extracted from the scaling of the mean moment-of-inertia tensor in its major and minor
directions. Unbiased approximant analysis gave critical points far from the theoretical critical
point of xc = 1, and the exponent estimates from the same analysis gave anisotropic
results which, however, did not approach the directed values of 1 and 1/2, as one may
have expected. Rather, the analysis suggested that 2ν+ ≈ 1.80(2), where ν+ is associated
with the line x + y = 0, and 2ν− ≈ 1.15(2), where ν− is associated with the line
x − y = 0, with ν+ decreasing and ν− increasing. The symmetry of the walk rule for
the anti-spiral TSRW model suggests a natural direction along the line y = x. However,
the series analysis suggests growth of the walks occurs principally along the direction
perpendicular to this. Since anti-spiral walks appear to be very anisotropic this seems to
rule out the isotropic SAW universality class and the movement of the estimates of the
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exponents away from the directed-walk values as length increases seems to rule out the
directed class the results tentatively suggest a novel universality class. On the other hand,
the TSRW walk literature warns us about such badly behaved series analysis: aniso-spiral
walks [6] (another TSRW square lattice model) display a turning point [7] in the estimates
of their size exponents at a length of O(102). In light of this, it is clearly prudent to
examine much longer walks in the case of anti-spirals than is possible by exact enumeration
methods.

With regard to the considerations above we have simulated anti-spiral walks up to lengths
of O(104) using an efficient Monte Carlo algorithm [8], PERM, that is easily modified for use
with these TSRW models. These simulations allow us to conclude that anti-spiral walks fall
into the directed universality class. Moreover, we can explain why the series analysis found
spurious results: the true asymptotic behaviour is affected by huge corrections to scaling so
that this is not seen for walks at least as large as O(103). In fact, at short lengths analysis
of the moment of inertia tensor would lead one to incorrectly identify the major and minor
scaling directions: there is a crossover in the scaling of the two axes at around length 1000.
This kind of unexpected pathology makes for a cautionary tale in accepting the results of brute
force series analysis. However, we point out that careful analysis of corrections to scaling [9],
as championed by Conway and Guttmann [10], would have indicated the presence of this
pathology.

In our simulations we generated anti-spiral walks of lengths up to 16 384. We used the
mean monomer-to-end distance as the measure of geometric size as it has proven better behaved
than the end-to-end distance in previous analyses of similar models [7]. We implemented the
algorithm on a LOBOS (lots of boxes on shelves) consisting of a cluster of 45 iMacs running
LinuxPPC. We used about a week of LOBOS time to generate 45 million samples (1 million
samples from each machine) of anti-spiral walks of length up to 16 384, which is equivalent
to around one year of CPU time on an iMac. One of the disadvantages of using single-run
data from a kinetic growth type algorithm is that data from different lengths are correlated,
and so error analysis is subtle. We, however, used only data from lengths separated by factors
of 2 which has proven sufficient in the past to render length correlations negligible [11]. We
also ran some independent (smaller sample sizes) simulations at shorter lengths as a double
check, and indeed our errors overlapped sufficiently to give us confidence in the utility of our
data. Additionally, in PERM the enrichment process also adds some degree of correlation
between data of the same length. Since we have performed 45 different simulations we simply
calculated our errors empirically from the spread of the data in those 45 simulations. We also
note that, even within a single run, the average number of samples we obtained from one tour of
a walk that grows from length 0 and returns to length 0 was O(102) compared to our individual
sample sizes of O(106).

Due to the anisotropy in evidence from the exact enumeration data we kept track of the
components of the monomer-to-end distance in the directions given by the line x − y = 0,
〈R2

N 〉−, and by the line x + y = 0, 〈R2
N 〉+, in our simulations. One expects asymptotically

〈R2
N 〉± ∼ B0N

2ν± as N → ∞. (1)

Estimates of 2ν±(N) were therefore found by eliminating B0 using successive pairs of data
points as

2ν±(N) ∼ 1

log 2

(
log

〈R2
N 〉±

〈R2
N/2〉±

)
. (2)

The estimates of 2ν±(N) are plotted in figure 2. The plot clearly shows a crossover of the
estimates in two directions and allows us to identify the larger (parallel) exponent to be ν‖ = ν−
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Figure 2. Plot of estimates of critical exponents, 2ν+(N) and 2ν−(N), in x + y = 0 and x − y = 0
directions, respectively, against 1/N . This data clearly indicates that the model is affected by strong
corrections to scaling and that there is a cross-over in the scaling axes at around N = 1000, and so
we must conclude that ν‖ = ν− and ν⊥ = ν+.

and the perpendicular exponent to be ν⊥ = ν+. Moreover, it is also fairly clear that 2ν‖ = 2
and 2ν⊥ = 1, the directed universality class values, are the prime candidates for the asymptotic
values of these exponents.

One might try to improve the analysis of the size exponents by including correction-to-
scaling terms in the asymptotic forms like

〈R2
N 〉± ∼ N2ν±{B0 + B1n

−� + B2n
−1 + · · ·} as N → ∞. (3)

First we plotted our data against 1/N and observed reasonably straight lines in the asymptotic
region, N > 2000, of figure 2. This indicates little need to introduce further non-analytic
corrections to scaling with � < 1. Assuming analytic correction-to-scaling (� term absent),
we performed a linear extrapolation of the last three data points of 2ν‖(N) and 2ν⊥(N) and
found 2.000 ± 0.014 and 1.04 ± 0.03, respectively. If, however, we assume a square-root
correction-to-scaling term exists (� = 1/2), similar extrapolation finds 2.07 ± 0.06 and
0.90 ± 0.09, respectively, contradicting the theoretical bounds that 1 � 2ν � 2 in two
dimensions (strictly speaking, ν‖ must always satisfy these bounds, but it is possible that
2ν⊥ < 1). This suggests that the assumption of stronger corrections to scaling will still lead
to the conclusion that ν‖ = 2ν⊥ = 1. We note in passing that the corrections-to-scaling in this
problem can still be viewed as strong, not because of the presence of a small exponent � but
rather because of the relative size of the coefficients Bj .

Our data strongly indicates that the moment of inertia tensor for the TSRW model known as
the anti-spiral scales anisotropically with a preferred direction exponent ν‖ = 2ν⊥. Moreover,
we can deduce that the size exponents take on the directed values ν‖ = 1 and ν⊥ = 1/2, and
so that the anti-spiral TSRW is most likely in the directed universality class. It is interesting to
note that, while other models in this universality class remain in the directed class when the self-
avoidance condition is removed, the behaviour of anti-spiral walks becomes that of a random
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Figure 3. Typical instances of anti-spiral walks of length (a) 100 and (b) 10 000. They clearly
illustrate the seemingly different preferred directions at these two length scales.

walk (with ν‖ = ν⊥ = 1/2). This completes the classification of all (balanced and reverse-
balanced) TSRW models into six universality classes according to their size exponents [1].
The question of whether the rules making up the aniso-spiral (as opposed to the anti-spiral)
class are also directed [12] is still of some debate—this question will require a new approach
since Monte Carlo simulations of aniso-spiral walks up to length O(105) produced inconclusive
results [12]. If we use the original arguments in [1], anti-spiral walks might be predicted to
be in class S (SAW) due to the symmetry of the walk rule. As suggested by Rechnitzer and
Owczarek [2,4] the classification scheme should be altered to account for the region exclusion
property of this rule. In [9] it is shown that the anti-spiral walk can never enter the first quadrant
of the plane. We can therefore add the property that some walks must be able to access all
parts of the plane (or at least no infinite regions are excluded) to the mixing condition so that
the classification scheme still holds. However, the utility of the scheme would be called into
question if further analysis of aniso-spiral models demonstrated that they too are part of the
directed universality class.
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