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Abstract
We study a proper subset of polyominoes, called polygonal polyominoes, which
are defined to be self-avoiding polygons containing any number of holes, each of
which is a self-avoiding polygon. The staircase polygon subset, with staircase
holes, is also discussed. The internal holes have no common vertices with
each other, nor any common vertices with the surrounding polygon. There are
no ‘holes-within-holes’. We use the finite-lattice method to count the number
of polygonal polyominoes on the square lattice. Series have been derived for
both the perimeter and area generating functions. It is known that while the
critical point is unchanged by a finite number of holes, when the number of
holes is unrestricted the critical point changes. The area generating function
coefficients grow exponentially, with a growth constant greater than that for
polygons with a finite number of holes, but less than that of polyominoes. We
provide an estimate for this growth constant and prove that it is strictly less
than that for polyominoes. Also, we prove that, enumerating by perimeter, the
generating function of polygonal polyominoes has zero radius of convergence
and furthermore we calculate the dominant asymptotics of its coefficients using
rigorous bounds.

PACS numbers: 0540F, 0550, 6460

1. Introduction

In an earlier paper [1] the problem of punctured polygons was studied. Punctured polygons
are self-avoiding polygons (SAPs) with a fixed finite number of holes or punctures, each hole
being a SAP. Similarly, staircase polygons with a finite number of staircase holes were also
investigated. Topologically, the objects look like the cross section of a slab of Emmenthaler
cheese or foam rubber. There is a boundary polygon, containing disjoint polygons which do
not touch the boundary. It was shown that the connective constant is unchanged for any finite
number of holes. This result was first proved for area enumeration in [2,3], and for enumeration
by perimeter in [1]. Further, when enumerating by area, the critical exponent was found to
increase by 1 per puncture [2, 3], while when enumerating by perimeter the critical exponent
was found to increase by 3/2 per puncture [1].
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A SAP can be defined as a walk on a lattice which returns to the origin and has no other
self-intersections. Alternatively we can define a SAP as a connected sub-graph (of a lattice)
whose vertices are of degree 2. The history and significance of this problem is nicely discussed
in [4]. Generally SAPs are considered distinct up to a translation, so if there are pn SAPs of
lengthn there are 2npn returns (the factor of two arising since the walk can go in two directions).
A polygonal polyomino, hereinafter abbreviated to PP, is defined as a SAP with an arbitrary
number of holes, with the perimeter of each hole itself being a SAP. In other words a polygonal
polyomino is a SAP enclosing an arbitrary number of SAPs each of which contains no further
SAP. Another name for a polygonal polyomino is an arbitrarily punctured polygon. A staircase
PP (hereinafter called an SPP) is a staircase polygon containing an arbitrary number of disjoint
staircase holes.

The model is of interest for several reasons. Firstly, it interpolates between two important,
unsolved problems: the enumeration by area of polygons and of polyominoes. All available
numerical evidence supports the conclusion that the growth constants, or, equivalently, critical
points of these two models differ. A simple proof of this result is given in section 3.1. We know
that [2], with a finite number of punctures, the growth constant of polygons does not change.
The proposed model aids in our understanding of the key features in regulating asymptotic
behaviour of lattice objects. In fact we also know that allowing an arbitrary number of punctures
gives an increase in the connective constant [2] compared to finitely punctured polygons,
though, we find and prove here, not to the same value as that for polyominoes. Thus the model
truly interpolates, being exponentially more numerous than polygons, and exponentially less
numerous than polyominoes. This then permits us to conclude that the dominant class of
polyominoes is those with vertices of degree four. Another reason the model is interesting
is that it corresponds to a previously undiscussed model of site animals, by virtue of the
well known bond–site transformation that exists between polyominoes and site animals. It is
also well known that polygons model biological vesicles. These may contain occlusions, or
bubbles, which would then be modelled more realistically by polygonal polyominoes, rather
than polyominoes.

The two principal questions one can ask are ‘how many polygonal polyominoes, distinct
up to a translation, are there of perimeter 2n?’ and ‘how many polygonal polyominoes, distinct
up to a translation, are there of area m?’ To avoid any possible confusion in our definition of
polygonal polyominoes, we restate that the punctures are disjoint—there are no degree four
vertices in the objects we are considering.

For unpunctured polygons, enumerated by perimeter, the most recent results are reported
in [5], where polygons of perimeter up to 90 steps are given. In that paper analysis of the
polygon perimeter generating function led to the conclusion that

P (0)(x) =
∑
n

p
(0)
2n x

n ∼ B
(0)
1 (x) + B(0)

2 (x)(1 − µ2x)2−α (1.1)

where p(0)2n is the number of unpunctured polygons of perimeter 2n, and more generally, p(k)2n
is the number of k-punctured polygons of total perimeter 2n, µ = 2.638 158 530 34(10),
α = 1/2, B(0)

1 (1/µ2) ≈ 0.036 and B(0)
2 (1/µ2) ≈ 0.234 913. It was also concluded that there

was no evidence for a non-analytic correction-to-scaling exponent, so that the asymptotic form
of the coefficients behaves as

p
(0)
2n µ

−2n ∼ n− 5
2 [b1 + b2/n + b3/n

2 + b4/n
3 + · · ·]. (1.2)

The connective constant µ is of course the same as that for self-avoiding walks on the same
lattice [4].

For polygon areas the most recent published work appears to be [1], in which the first 42
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terms of the area generating function were given and analysed. In that work it was found that

A(0)(y) =
∑
m

a(0)m ym ∼ C
(0)
1 (y) + C(0)

2 (y) log(1 − κy) (1.3)

where a(0)m is the number of unpunctured polygons of area m, and, more generally, a(k)m is the
number of k-punctured polygons of area m, κ = 3.970 943 97(9) and various amplitudes are
estimated. It was also found that the asymptotic form of the coefficients satisfied

a(0)m κ−m ∼ m−1[c1 + c2/m + c3/m
2 + c4/m

3 + · · ·]. (1.4)

Estimates of the first few amplitudes ci were also given.
Note that κ is slightly smaller than the growth constant for the related problem of

polyominoes [6]. For the polyomino problem, Jensen and Guttmann [7] estimated the
connective constant, on the basis of an enumeration to 46 terms, to be τ ≈ 4.062 570(8).

Note that polygons are just the hole-free subset of square-lattice polyominoes. Further,
PPs differ from polyominoes only by the exclusion of configurations in which corners of
polygons are allowed to touch. That is to say, configurations with vertices of degree four are
permitted for polyominoes, but not for PPs.

For PPs, the basic problem is, analogously, the calculation of the generating functions

P̂ (x) =
∑
n

p̂2nx
n (1.5)

and

Â(y) =
∑
m

âmy
m (1.6)

where

p̂2n =
∑
k

p
(k)
2n (1.7)

and

âm =
∑
k

a(k)m . (1.8)

From the generating functions, one then wishes to deduce the asymptotic behaviour. We use the
method of series analysis to investigate the PP area generating function. That the coefficients
âm = κ̂m+o(m) was proved in [2], along with the result that κ̂ > κ , but no estimate of κ̂ (or κ)
was given, nor its relationship to τ .

For the perimeter generating function we prove here that the radius of convergence is zero
and furthermore that the coefficients grow like p̂2n = (2n)n/2+o(n). The radius of convergence
of the analogous full polyomino generating function can be deduced to be zero from earlier
work on strongly embedded lattice animals (which are none other than polyominoes) counted
by monomer–solvent contacts [8] since the number of monomer–solvent contacts equals the
total perimeter of the animals on the lattice dual to that which the animals sit. Note that the
set of PPs is a subset of full polyominoes. On the other hand the bounds we give for PPs also
hold for full polyominoes so that their number also grows as p̂2n = (2n)n/2+o(n), strengthening
the result in [8].

In [1] the finite-lattice method for enumerating punctured polygons is described. It is
directly applicable to PP, without modification. We have calculated four series, given in
table 1. These are the number of SPPs enumerated by area, the number of SPPs enumerated
by perimeter, the number of PPs enumerated by area and the number of PPs enumerated by
perimeter.
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Table 1. The number of polygonal polyominoes of perimeter 2n, p̂2n, or area m, âm, and the
number of staircase polygonal polyominoes of perimeter 2n, p̂st

2n, or area m, ŝm.

n=m Op2n Oam Opst2n Osm

1 1 1
2 1 2 1 2
3 2 6 2 4
4 7 19 5 9
5 28 63 14 20
6 124 216 42 46
7 588 756 132 105
8 2939 2685 430 243
9 15292 9650 1442 561

10 82168 35018 4956 1303
11 453376 128084 17400 3026
12 2558074 471623 62251 7047
13 14712038 1746492 226506 16419
14 86029132 6499356 836911 38314
15 510455002 24290272 3136182 89454
16 3068304865 91123171 11906908 209056
17 18658787150 342984175 45761338 488810
18 114663168405 1294829776 177903128 1143686
19 711391109162 4901319978 699167112 2677074
20 4452321247688 18597856445 2776219871 6269438
21 28090360338572 70723784744 11132523840 14687799
22 178550339417087 269486503694 45062497156 34423317
23 1142799275636690 1028736811230 184057276510 80702234
24 7361841911349777 3933715966653 758328417263 189258382
25 47712828183763674 15065252411607 3150593560374 443958607
26 311000299384633777 57779548335314 13195743501195 1041704375
27 2038098982983283068 221896915543750 55701570631532 2444830929
28 13424712837039445351 853232815247444 236912169511538 5739200960
29 88856471571466071022 3284632794812871 1015068593253684 13475465449
30 590850295002210397823 12658330973848610 4380259237747256 31646214004
31 3946205909981551632692 48832263708330818 19033328755899266 74332573028
32 26467556786917603655310 188560709059134046 83264420967604579 174627329054
33 178239966838155965583688 728760817757448226 366655205085330754 410313815426
34 1204995095957680793591247 2818940663555496816 1624942378351678887 964245433466
35 8176962665640957003999066 10912731697954602186 7246555406950817070 2266328149674
36 55688824203643528928729635 42277454370938037803 32514274178033294859 5327442926759
37 380592941318712979509072986 163905930541724093228 146758647164785266546 12524850563664
38 2609885948594665135129922550 635879771229410643736 666287722771906045149 29449740628657
39 17955835774830449233266689242 2468511047239077707194 3042232146776071911832 69253703703773
40 123928596735035984074403512167 9588731818158416489325 13968241947440882579006 162875182415300
41 857987154196013528132355504048 64485004508208085784530 383102538326512
42 5957960953815698380702078725480 299291364610157172753062 901200454419191
43 41494342039847412784054011043806 1396371555510788767947710 2120177203865944
44 6548380870934717496464667 4988449724380572
45 30863810827538886791713408 11738161778732289
46 146186095139239811033955305 27623209128180245
47 695766125351305249088108606 65010917109342081
48 3327227388843853057755195874 153015435868159426
49 15985505420293285150710955822 360180105732172583
50 77154096305090215295655323668 847888100764886424
51 374063765552778126305462873154 1996138067317609179
52 1821599276183366136170795057986 4699750155916801866
53 8909395975714092838161196818354 11065985987591398039
54 43762350849164935682443996974055 26057674785502843842
55 215863782802515724690579508172220 61363552769734094377
56 1069193876276445150407221637411850 144515279072674364214
57 5317437665869390636753224605363860 340364808419076278807
58 26551572351632434658366505912095893 801682439416494282830
59 133104721251439553661654788479523704 1888366048221085250103
60 669863574297537386790186209007157407 4448313430293910458776
61 3384106669969830191675921010590498804 10479227865658340635331
62 17160990384334924879892650065013543652 24688076117070001221977
63 87348979596532466909056055181091335100 58165926803554877074945
64 446239239235538076430340141572814690508 137048064231130032590612
65 2287968370937735984302682976966485803978 322923342753661211750433
66 760935261366896243806045
67 1793152365922104505662634
68 4225784928956712385335430
69 9959047794642276203449266
70 23471887252057509601564025
71 55321955801180461643930996
72 130396499371079231113708937
73 307363871855369467378963987
74 724532355612579177700943905
75 1707970821956519674564551300
76 4026432615357178761395593420

The methods of series analysis are discussed in section 2. The area series and the results of
the analysis are presented in section 3 along with our rigorous results. The perimeter series and
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the discussion of their behaviour are presented in section 4 along with our rigorous results. In
section 5 we show how the change in the connective constant for PPs relates to the amplitudes
of the generating functions for k-punctured polygons.

2. Analysis of the series enumerations

Both area series are characterized by coefficients which grow exponentially, with sub-dominant
terms given by a critical exponent. (The first clause is rigorously true as discussed above,
the second unproved, except for solved models, but is universally accepted.) The generic
generating function behaviour is G(z) = ∑

n gnz
n ∼ D(z)(1 − σz)−ξ , and hence the

coefficients of the generating function gn = [zn]G(z) ∼ D(1/σ)/ (ξ) σ n nξ−1. The radius
of convergence of the generating function is usually given by the critical point, which is at
z = 1/σ, where σ is often referred to as the connective constant.

We used a number of methods to analyse the series studied in this paper. Firstly, to obtain
the singularity structure of the generating function we used the numerical method of differential
approximants [9]. In particular, we used this method to estimate the growth constant σ and
the critical exponent ξ . For PPs we were able to conjecture an exact value for ξ . Imposing this
conjectured exponent permitted a refinement of the estimate of the growth constant—providing
so-called biased estimates.

While the foregoing analysis method worked well for PPs, it worked less well for SPPs.
In that case we reverted to simpler methods based on the ratio method and its refinements [9].

For the first stage of the analysis, the method of differential approximants, we proceeded
as follows. Estimates of the critical point and critical exponent were obtained by averaging
values obtained from first-order [L/N;M] and second-order [L/N;M;K] inhomogeneous
differential approximants. For each order L of the inhomogeneous polynomial we averaged
over those approximants to the series which used at least the first 80–90% of the terms of the
series, and used approximants such that the difference betweenN , M andK did not exceed 2.
These are therefore ‘diagonal’ approximants. Some approximants were excluded from the
averages because the estimates were obviously spurious. The error quoted for these estimates
reflects the spread (basically one standard deviation) among the approximants. Note that
these error bounds should not be viewed as a measure of the true error as they cannot include
possible systematic sources of error. However systematic error can also be taken into account
in favourable situations, as, for example, in the case of SAP enumerated by perimeter [5].
Again, in the interests of space, we present only our results, and not the intermediate detail
from which our estimates were made. An example in full detail for a similar series to those
investigated in this study can be found in [5]. We turn now to the analysis of the series.

3. Polygonal polyominoes by area

Before giving the results of our series analysis we present some bounds on the growth constants
of PPs and SPPs enumerated by area.

3.1. Bounds for the growth constant of polygonal polyominoes enumerated by area

We have already defined κ as the growth constant, or connective constant, for the number of
polygons enumerated by the number of cells, or, equivalently, area. We have also denoted by τ
the connective constant for polyominoes (enumerated by the number of cells, or equivalently,
by area), and denoted by κ̂ the analogous constant for polygonal polyominoes. The existence
of all three constants follows directly from concatenation arguments and the existence of an
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upper bound to the nth root of the coefficient of the term conjugate to area n. A review of such
arguments can be found in [10]. We note again that in [2] the existence of κ̂ was proved and
κ < κ̂ was also proved. We provide an alternative proof of this result below and expand the
inequality to include τ .

We can similarly define three such constants for staircase polygons, staircase polygonal
polygons and staircase polyominoes enumerated by area. Let these be η, η̂ and ζ respectively.

Prior to our numerical analysis, we first outline a proof that κ < κ̂ < τ , and η < η̂ < ζ,

based on a recent theorem due to Madras [11] (theorem 2.1, p 366).
Applied to the types of ‘cluster’ (embedded graph) enumerated by area that we are

considering, the theorem may be loosely stated as follows. Let Gn be such a cluster of area
n, and λ = limn→∞(Gn)1/n. Let it contain an arbitrary number of patterns P satisfying
axioms given below. (Importantly, this arbitrary number is at least linear in n.) For example,
polyominoes can contain an arbitrary number of figure-eight graphs1.

Let Gn[�m,P ] be the set of such clusters containing at most m translates of a pattern P.
Then there exists an ε > 0 such that

λ > lim sup
n→∞

(Gn[� εn, P ])1/n. (3.1)

Note that the inequality is strict.
Consider as a pattern a unit square. SAPs and k-punctured SAPs contain only a finite

number (k) of these patterns. PPs on the other hand contain an arbitrary number. It therefore
follows that κ < κ̂. Repeating the argument with a different pattern, that of two unit squares
joined corner to corner, a so-called figure eight topology, we again see that PPs have none of
these, while polyominoes have an arbitrary number. Thus κ̂ < τ .

The three axioms that must be satisfied are as follows. (i) Translational invariance. This is
immediately satisfied by the problem specification. (ii) If the clusters are weighted, the weight
function must satisfy a certain property. In our case, all weights are unity, and the property is
thus automatically satisfied. The final axiom is relevant. It states that one can define a new
cluster by altering sites and bonds inside a specified set of sites (the pattern in question) and
a translation from a specified site to create a (possibly translated) occurrence of a specified
pattern, while leaving everything outside the new cluster unchanged. To ensure that this axiom
is satisfied, we have to ensure that the surgery carried out, in which a frame or window is
placed around a pattern, in going from one model to another does not change the topology of a
pattern. In our case the concern is that a polygon pattern might change to a figure eight. This
situation can be accommodated by making the frame of finite thickness (one lattice spacing)
rather than of zero thickness.

The analogous result for staircase polygons, PPs and polyominoes also follows
immediately. That is to say, η < η̂ < ζ .

3.2. Analysis of staircase polygonal polyominoes by area

For SPPs we have generated a 75-term series. We denote the generating function Ŝ(y) =∑
ŝmy

m, where ŝm is the number of SPPs of area m. Differential approximant analysis
gave predominantly defective approximants, and a strong indication of several confluent
singularities. Accordingly we abandoned that method of analysis, and instead looked at
the results of the ratio method. Ratio plots, enhanced by Neville table extrapolation, gave
sequences of estimates of the connective constant that were monotonically increasing. This
behaviour allowed us to conclude that the growth constant η̂ > 2.36, and in fact η̂ ≈ 2.365,

1 These are two polygons sharing a vertex, which is thus of degree four.
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where we expect the error to be confined to the last quoted digit. For staircase polygons with a
finite number of staircase holes, [1], the growth constant is known to be η = 2.309 138 . . . < η̂.
With such an imprecise estimate of the connective constant for SPPs, it is not surprising that
we can only imprecisely estimate the exponent. While the staircase polygon area generating
function has a simple pole singularity, the SPP generating function appears to have a slightly
sharper singularity, but we really cannot say much more than that

Ŝ(y) =
∑
m

ŝmy
m ∼ E (1 − η̂y)−θ (3.2)

and hence

ŝm = [ym]Ŝ(y) ∼ η̂mmθ−1 (3.3)

where η̂ = 2.365 ± 0.005, and θ = 1.25 ± 0.25.
Thus it is possible that the generating function has a simple pole, just like its unpunctured

counterpart—but with a different connective constant. While we consider this the most likely
scenario, the series analysis does indicate a slightly higher value for the exponent.

3.3. Analysis of polygonal polyominoes by area

For polygonal polygons, we have obtained 40 terms in the generating function Â(y). Our
analysis based on the method of differential approximants strongly suggests that the generating
function Â(y) behaves similarly to its unpunctured counterpart, but with a slightly larger
connective constant. More precisely, we find

Â(y) =
∑
m

âmy
m ∼ Ĉ1(y) + Ĉ2(y) log(1 − κ̂y) (3.4)

with κ̂ ≈ 3.980 503, where we expect the error to be restricted to the last quoted digit. Hence,
our numerical results are consistent with the proven inequality κ < κ̂ < τ .

However, unlike the situation for unpunctured polygons, we were unable to obtain
convincing numerical evidence for the nature of the sub-dominant singularities, except to
find that the situation appears more complex than that for unpunctured polygons, in which
case we found that the asymptotic form of the coefficients satisfied (1.4).

4. Polygonal polyominoes by perimeter

Before giving the results of our series analysis we present some bounds on the number of PPs
and SPPs enumerated by perimeter and associated rigorous results for the dominant asymptotic
behaviour of these numbers.

4.1. Bounds for the number of arbitrarily punctured polygons enumerated by perimeter

Recall that p(k)2n is the number of punctured polygons with k polygonal holes of total perimeter
2n. The polygons and all the holes are taken to be SAPs on the square lattice. Furthermore
all polygons mutually avoid each other. Let p̂2n be the number of punctured polygons with an
arbitrary number of such holes of total perimeter 2n (i.e. polygonal polyominoes). Hence,

p̂2n =
∞∑
k=0

p
(k)
2n . (4.1)

Note, however, the sum (4.1) has only a finite number of terms for any fixed n and there exists
a number kx depending on n such that kx(n) is the maximum number of holes possible for a
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Figure 1. The figure portrays a configuration of the lower bound L(4)52 . Here, m = 4 so a large
square of side 9 makes up the outside polygon while k = 4 so four unit squares have been arranged
on the sparse checker-board that is indicated by the grey shaded faces.

punctured polygon of total perimeter 2n and sop(k)2n = 0 for k > kx . We note thatp(0)2n is simply
the number of SAPs of perimeter 2n. Also, let p̂st

2n be the number of punctured polygons of
total perimeter 2n with an arbitrary number of such holes where all the polygons involved are
staircase polygons on the square lattice (i.e. staircase polygonal polyominoes—SPPs).

In this section we shall accomplish two tasks. Firstly, we construct upper and lower bounds
for p̂2n. Secondly, we shall use these bounds to show that the limit

lim
n→∞

log p̂2n

2n log 2n
(4.2)

exists and is equal to 1/4. Hence, the normal free energy defined as the limit

lim
n→∞

1

2n
log p̂2n (4.3)

is infinite.
To begin, since every SPP is a PP it should be clear that

p̂st
2n � p̂2n. (4.4)

We shall first construct various lower bounds for p̂2n, which we label L(k)2n . Consider a square
of side 2m + 1 on the square lattice and k unit square polygons (each having perimeter four).
The total perimeter for such a collection is

2n = 4(2m + 1 + k). (4.5)

Now consider placing the k unit square polygons inside the larger square to form punctured
polygons. Let us restrict the places where we put the unit squares so they are mutually avoiding
by construction: we shall restrict these placement positions to the sparse-checkerboard
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positions as in figure 1. There are m2 such placement positions inside the larger square.
LetL(k)2n be the number of ways of placing k unit square polygons inside a square of side 2m+1
to give a total perimeter as in (4.5). Each configuration so generated is a valid punctured
polygon since each of the constituents are SAPs (they are all squares) and they have been
constructed to be mutually avoiding. The numbers L(k)2n are given by

L
(k)

4(2m+1+k) =
(
m2

k

)
. (4.6)

Since squares are also staircase polygons we immediately have that

L
(k)

4(2m+1+k) � p̂st
4(2m+1+k) � p̂4(2m+1+k) (4.7)

for allm � 1 and for 0 � k � m2. This gives us lower bounds for all even values of n � 6. To
obtain lower bounds for n odd simply consider enlarging the outer square of our constructed
configurations for n even by two steps: one can do this by adding a face adjacent to and
outside the square to the inside of the punctured polygon (that is, shifting a step in the square
outwards one face of the lattice and adding steps to the other two sides of that face). There
are 4(2m + 1) places to add these steps. This procedure gives a set of configurations that are
punctured polygons of total perimeter

2n = 4(2m + 1 + k) + 2. (4.8)

Hence we can choose L(k)4(2m+1+k)+2 = (8m + 4)L(k)4(2m+1+k). So for any value of total perimeter,
2n � 12, one can always find k and m so that

L
(k)
2n � p̂st

2n � p̂2n. (4.9)

For sufficiently large n there are many allowed values of k and m.
Next we construct an upper boundU2n, and then bound this number by an easily calculated

value Ū2n. Consider an area on the square lattice inside a square of side n − 1 including the
boundary of this square, but do not place a square polygon on the boundary as we did for the
lower bound above. Any SAP of perimeter less than or equal to 2n can be placed inside such a
square by simple translation since the maximum horizontal or vertical extent of such a polygon
is n−1 lattice units. Since any punctured polygon of total perimeter 2n has an outside polygon
of perimeter less than or equal to 2n they can always be fitted inside this ‘imaginary’ bounding
square. The bounding square’s area has b = 2n2 − 2n lattice bonds. Now observe that any
SAP can be constructed from the concatenation of a number of four-step oriented self-avoiding
walks with perhaps the inclusion of a single six-step oriented self-avoiding walk. Hence all
punctured polygons of total perimeter 2n can be constructed by placing a number of four-step
oriented self-avoiding walks and six-step oriented self-avoiding walks on the square lattice
inside the bounding square. Let us now consider the sets of all four-step oriented self-avoiding
walks and six-step oriented self-avoiding walks which are unique up to translation and rotation
by π/2. Denote their cardinality by c4 and c6 respectively. Choose /0 such four-step walks
and /1 such six-step walks such that

4/0 + 6/1 = 2n. (4.10)

In this way we have chosen walks whose total length is 2n. Let / = /0 +/1 be the total number
of objects chosen at any one time. Place these walks on the square lattice such that the first
step of each walk is inside the bounding square described above and such that these first steps
are on different bonds of the lattice. By considering all possible placements of all possible sets
of 4 and six-step walks chosen with all values of /0 and /1 obeying (4.10) we have constructed
a set of configurations that is a superset of the set of punctured polygons of total perimeter 2n.
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Note that we have ignored the mutual avoidance of the walks. Let U2n be the number of four-
and six-step walks so placed. Hence

p̂st
2n � p̂2n � U2n (4.11)

for all n � 2. The numbers U2n are given as

U2n =
∑
/0

c
/0
4 c

/1
6

(
b

/

)
(4.12)

with (4.10) always satisfied. We now note that /0 � n/2, /1 � n/3 and n/3 � / � n/2.
Using these inequalities one can bound U2n as

U2n � c
n/2
4 c

n/3
6

n/2∑
/=n/3

(
b

/

)

� c
n/2
4 c

n/3
6

n

6

(
b

n/2

)
. (4.13)

Hence if we define

Ū2n = c
n/2
4 c

n/3
6

n

6

(
2n2 − 2n

n/2

)
(4.14)

we have

p̂st
2n � p̂2n � U2n � Ū2n for all n � 2. (4.15)

Now we come to the second part of our work in this section and analyse the dominant
asymptotics of p̂2n using our bounds. We make extensive use of the following result: let
a(n) � n � 1 such that limn→∞ n/a(n) = 0, then

log

(
a(n)

n

)
∼ n log

(
a(n)

n

)
as n → ∞ (4.16)

and the asymptotic error is of order O(n). Using this we can show that

lim
n→∞

log Ū2n

2n log 2n
= 1

4
. (4.17)

Demanding that k = o(m2) and k > αm for some α > 0 we also have

logL(k)2n

2n log 2n
∼ k

4k + 8m
as m → ∞. (4.18)

Hence, by choosing k = m log2 m� (which is always possible), for any even (odd) value of n
one solves (4.5) (respectively (4.8)) for m, and noting that m → ∞ as n → ∞, we have

lim
n→∞

logL(k
∗)

2n

2n log 2n
= 1

4
(4.19)

where k∗ is the sequence of k values chosen according to the algorithm above. Using the
Sandwich theorem for limits we have the existence of the limit (4.2) and the value

lim
n→∞

log p̂2n

2n log 2n
= 1

4
. (4.20)

This result is also true for SPPs. Our results immediately imply that the free energy, defined
by (4.3), is infinite for both staircase and regular self-avoiding punctured polygons. We note
in passing that the above bounds also hold for full polyominoes counted by perimeter since in
the upper bound mutual avoidance is ignored.
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4.2. Analysis of SPPs and PPs by perimeter

We have enumerated all SPPs up to and including those of perimeter 130, and all PPs up
to and including those of perimeter 86. The bounds obtained in the previous section imply
that we should analyse not the ordinary generating function, but rather a modified exponential
generating function. The results above imply that the leading asymptotic term is pn ∼ (n/4)!
for either a PP or an SPP of perimeter n.

Accordingly, we first divided by this factor, and studied the resulting generating functions
with coefficients qn = pn/(n/4)!. For SPPs, the coefficients qn obtained in this way increase
up to terms corresponding to polygon perimeter 86, and then decreased. For PPs, the
corresponding coefficients are monotonically increasing for all coefficients to hand. However
the ratio of coefficients is decreasing, and the sequence of ratios extrapolates to a value less than
1, which implies that, for n sufficiently large, the coefficients qn will also reach a maximum
and then decrease.

A difficulty in any further analysis is that we have no reasonable expectation as to the
sub-dominant asymptotic form. The fact that the terms at first increase and then decrease
implies that the sub-dominant form is going to be complicated, involving the interplay of at
least two different terms. A plausible first guess is that the next term is of the form qn ∼ µn.
If so, ratios of coefficients rn = qn/qn−1 should converge to µ. The observed behaviour of the
coefficients rn implies that we are quite far from the asymptotic regime. Applying a variety
of standard extrapolation procedures [9] is inconclusive. For PPs we have some evidence that
µ(PP) ≈ 0.6, while for SPPs it appears that µ(SPP) ≈ 0.4. These estimates come from
combining the results of five different extrapolation schemes, where the spread of estimates
implies that we can only quote one significant digit, and even this is uncertain. In both cases
errors of about ±01 would encompass most estimates. We remark in passing that a functional
form of the type qn ∼ µnλ

√
nng is one of a number of possible forms that can give rise to

sequences that behave as observed, but our attempts to fit to this form have not been successful.
In an attempt to confirm these tentative extrapolations we studied the ratio of the

coefficients of the SPP and PP generating functions. That is, we studied the sequence {rn}
where rn = pn(PP)/pn(SPP) = qn(PP)/qn(SPP). In this way the leading asymptotic part of
course cancels, and hopefully any sub-sub-dominant terms, such as log n or ng , are weakened.
Extrapolating the sequence {rn} should then provide an estimate of the ratio µ(PP)/µ(SPP).
This study gave results that were reasonably consistent across several extrapolation techniques,
all giving rise to the estimated limit 1.25 ± 0.02. This is consistent with, but more precise
than, the individual estimates given above, whose ratios are 1.5 ± 0.5.

Thus we conclude this section with the rather tentative conclusions that the first sub-
dominant term appears to be µn, where µ(PP) ≈ 0.6 and µ(SPP) ≈ 0.4. Further, we find
evidence from the behaviour of the coefficients that the sub-sub-dominant term is stronger than
ng .

5. Critical point renormalization

We have noted [1] that for a k-punctured polygon, the coefficients of the area generating
function grow like κn, with κ = 3.9709 . . . , while PPs (which can have any number of
punctures), have coefficients which grow like κ̂n where κ̂ = 3.9805 . . . .

One mechanism for the renormalization of the growth constant is given by the k-
dependence of the amplitudes of the generating function of k-punctured polygons. The
proposed mechanism is illustrative rather than definitive. That is to say, we propose a plausible
mechanism, but there are others.
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Let A(k)(y) be the generating function of k-punctured polygons by area. It was found [1]
that

A(k)(y) ∼ C(k)(y)y3+/k(1 − κy)−k (5.1)

for k > 02. The generating function for PPs is clearly obtained by summing A(k)(y) over k,
so that

Â(y) =
∑
k

A(k)(y) ∼ A(0)(y) + y3
∑
k�1

C(k) (1/κ) y/k(1 − κy)−k

= A(0)(y) + y3
∑
k�1

C(k)(1/κ) θk (5.2)

where θ = y/

1−κy .

Now if C(k)(1/κ) ∼ c−k/kn, then

Â(y) ∼ A(0)(y) + y3
∑
k�1

(
θ

c

)k /
kn = A(0)(y) + y3Lin

(
θ

c

)
. (5.3)

That is, the singular behaviour is given by an nth-order polylogarithm. The polylogarithm
function is singular when its argument is unity, hence it is singular at c = y/

1−κy , that is, when

1 − κy − y//c = 0, so that the growth constant is increased. In the special case n = 1, the
polylogarithm is a simple logarithm, and we find

Â(y) = A(0)(y)− y3 log
(
(1 − κy − y//c)/(1 − κy)

)
(5.4)

which is just the behaviour we observe for PPs: that is to say, a renormalized critical point,
and an (unchanged) logarithmic singularity, as is observed numerically.

6. Conclusion

We have investigated polygonal polyominoes and staircase polygonal polyominoes enumerated
both by area and perimeter.

We have shown that the perimeter generating functions have zero radius of convergence
and asymptotic growth p̂2n = (2n)n/2+o(n). Analysis suggests that the sub-dominant term isµn.
Estimates of µ of limited precision are given.

For the area generating function we have proved that η < η̂ < ζ for staircase polygons,
SPPs and staircase polyominoes, and κ < κ̂ < τ for polygons, PPs and polyominoes.
Numerically we have found

Ŝ(y) =
∑
m

ŝmy
m ∼ E (1 − η̂y)−θ (6.1)

where η̂ = 2.365 ± 0.005, and θ = 1.25 ± 0.25, for SPPs, and

Â(y) =
∑
m

âmy
m ∼ Ĉ1(y) + Ĉ2(y) log(1 − κ̂y) (6.2)

with κ̂ ≈ 3.980 503, for PPs.

2 Here / ≈ 5, and just reflects the fact that the lowest-order non-zero coefficient of the generating function is clearly
an increasing function of k. The exponent / is in fact k-dependent, but takes the quoted value on average. For k = 0
the singularity is logarithmic and the pre-factor power of y is absent.
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E-mail or WWW retrieval of series

The series for the various generating functions studied in this paper can be obtained via e-mail
by sending a request to I.Jensen@ms.unimelb.edu.au or via the world-wide web on the URL
http://www.ms.unimelb.edu.au/˜iwan/ by following the instructions.
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