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Abstract. – The coil-globule transition of an isolated polymer has been well established to
be a second-order phase transition described by a standard tricritical O(0) field theory. We
provide compelling evidence from Monte Carlo simulations in four dimensions, where mean-field
theory should apply, that the approach to this (tri)critical point is dominated by the build-up
of first-order–like singularities masking the second-order nature of the coil-globule transition:
the distribution of the internal energy having two clear peaks that become more distinct and
sharp as the tricritical point is approached. However, the distance between the peaks slowly
decays to zero. The evidence shows that the position of this (pseudo) first-order transition is
shifted by an amount from the tricritical point that is asymptotically much larger than the
width of the transition region.

An isolated polymer in solution is usually argued to be in one of three states depending on
the strength of the inter-monomer interactions which are mediated by the solvent molecules
and can be controlled via the temperature T . Let us define the radius of gyration exponent ν
as

RN ∼ Nν as N → ∞, (1)

where RN is the radius of gyration. Note that confluent logarithmic factors may also appear
in this form. At high temperatures and in so-called “good solvents” a polymer chain is
expected to be in a swollen phase (swollen coil) relative to a reference Gaussian state so that
the average size of the polymer, as measured by the radius of gyration, scales with chain
length faster than it would if it were behaving as a random walk. In dimensions 2 and 3 it is
expected that the swollen value of ν = νs > 1/2. At low temperatures or in poor solvents the
polymer is expected to be in a collapsed globular form with a macroscopic density inside the
polymer: this implying an average size that scales slower [1] than a random walk, in particular
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ν = νg = 1/d < 1/2. Between these two states there is expected to be a second-order phase
transition (sharp in the infinite chain length limit). The standard description of the collapse
transition is that of a tricritical point related to the n → 0 limit of the φ4–φ6 O(n) field
theory [1–3]. One then might expect that above the upper critical dimension (du = 3) some
type of self-consistent mean-field theory based upon a suitable tricritical Landau-Ginzberg
Hamiltonian [1, 4] would give a full description of the transition, and hence conclude that in
all dimensions d > 3 there is a collapse transition from a swollen state to the globular state
with classical tricritical behaviour. The classical theory predicts that at the transition point
the polymer actually behaves as if it were a random walk (ν = νθ = 1/2), and this point
T = Tθ has been known as the θ-point.

Around the transition (T → Tθ and N → ∞) a tricritical crossover scaling form [5]
describing the rounding of the transition is generally predicted to be

RN (T ) ∼ Nνθ F((Tθ − T )Nφ) , (2)

where the scaling function F(z) is a strictly positive analytic function of z (note that F(0) >
0). The exponent φ is known as the crossover exponent. Moreover, the asymptotic behaviour
of F(z) for z → ±∞ is expected to “match” the asymptotic behaviour of RN (T ). For example,
consider fixing T such that T < Tθ so that RN (T ) obeys (1) with ν = 1/d. It follows that the
scaling function F(z) must satisfy

F(z) ∼ z(1/d−νθ)/φ as z → ∞ . (3)

Generically, it is expected that forms such as (2) provide all the information needed about the
scaling around the tricritical point. In particular, if one measures the “shift”, Tc,N − Tθ, of
the transition at finite lengths by, say, finding the position of a peak in the specific heat, Tc,N ,
or other appropriate derivative of the free energy, then the associated exponent ψp, defined
by

Tc,N − Tθ ∼ N−ψp as N → ∞, (4)

should obey the relation ψp = φ.
The application of the mean-field theory of a tricritical point to polymer collapse predicts a

weak transition in the thermodynamic limit, with a jump in the specific heat, that is, α = 0. In
three dimensions the application of various self-consistent mean-field–like approaches predicts
that the second-order transition is rounded and shifted on the same scale of N−1/2, that is,
φ = ψp = 1/2, though strictly the power laws involved are modified via renormalisation group
arguments by confluent logarithms. In four and higher dimensions no confluent logarithms
should be present and one may expect pure mean-field behaviour with a crossover exponent of
1/2. However the following simple scaling argument may be invoked. Consider the tricritical
scaling form (2) with νθ = 1/2, and especially consider the behaviour of (2) for T < Tθ and T
fixed. As stated above, to match the fixed-T behaviour of RN (T ) the scaling function F(z)
must obey (3). Now define the internal density of a polymer chain ρ as ρ = N/Rd since Rd is
the approximate volume the polymer assumes. In the thermodynamic limit ρ = 0 for T > Tθ

and it is expected that ρ ∼ a(Tθ − T )β as T → T−
θ . In mean-field theory the exponent β = 1.

Using this and νθ = 1/2 one can deduce that φ = (d/2− 1). Of course this is in contradiction
to the assumption above that φ = 1/2 and leads one to suspect that there may be something
unexpected happening in dimensions d > 3.

To consider such issues we have simulated interacting self-avoiding walks, the canonical
lattice model of polymer collapse, on the four-dimensional hyper-cubic lattice using the PERM
algorithm [6] over a wide range of temperatures with surprising results. Because this algorithm
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Fig. 1 – Internalenergy density distributions for lengths N =2048and16384,eachattheirrespective
transition temperatures. The more highly peaked distribution is associated with length 16384.

is based upon kinetic growth it works well around the collapse region as well as throughout
the swollen phase. Asaconsequence, we areable toobtain reasonable data upto length
N = 16384 (a more complete discussion of our simulations is available in [7]). Now, firstly,
our resultssuggest that there is indeed a collapse transition in four dimensions at a finite
temperature. However, the character of that transition is particularly intriguing! In d = 4our scaling argument above predictsφ= ψ

p

=1 while the mapping to the tricritical theory
predicts φ = 1/2: wefindneither! Infactwefindaroundedtransition withadivergentspecific
heat, and near the transition the distribution of internal energy is clearly bimodal.This
“double-peaked”distributionbecomesmorepronouncedas thechain length is increased(seefig. 1). As we vary the temperature through the transition region both peaks are essentially

stationaryandonegrowsas theotherdecreases in size: classicfirst-orderbehaviour. Onthe
other hand, we also wereable to finda candidate θ-point (a critical state) where R ∼ N

1/2

wellabove the transition region. Wethenconsidered the shiftofthe roundedfirst-order–like
transitiontothe θ-point: thebestscalingproducedashiftexponentof about1/3(seefig.2).

By studying the position where the universal ratio of the mean square distance of a
monomer from the end-point to the mean square end-to-end distance takes on its Gaus-
sian value we find that the θ-point is shifted much less and may scale as 1 /N . Hence there
seemtobe t w oshiftexponents! Whiletheseresultsseematvariancewithstandardtricritical
ideas there is a mean-field–type theory that describes the first-order transition region well.
This framework was explained some time ago in a paper by Khokhlov [8], who applied the
mean-field approach ofLifshitz,GrosbergandKhokhlov [9–11]toarbitrarydimensions. Here
we argue that the conclusions ofthese works may be valid for d ≥ 4. The theory is based

onaphenomenological free energy inwhich the competitionbetweenabulk free energyof a
dense globule and its surface tension drive the transition. The consequences ofthis surface
freeenergy were largelyignored in the polymer literatureuntilrecently,when its effect onthe
scaling formofthefinite-sizepartition function wasproposedandconfirmed [12–15].

Lifshitz theory [9] is based on several phenomenological mean-field assumptions. Firstly,
thereexistsa θ-state. Secondly,forlowertemperaturesthereexistsaglobularstatewherethe
polymerbehavesasa liquiddrop. Theresultsofthetheoryarebasedonaphenomenological
free energy of that globularstaterelativeto the free energy of the pure Gaussian state of
the θ-point at T

θ. The starting point ofthis analysis is a bulk free energy with a quadratic
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Fig. 2 – Scaling of the shift of the transition: we show the scaling combination N1/3(ωc,N − ωθ)
vs. N−2/3, where ωc,N and ωθ are the Boltzmann weights associated with the monomer-monomer
interaction at Tc,N and Tθ.

dependence on the distance to the θ-point and so an exponent α = 0, implying that a second-
order phase transition occurs in the thermodynamic limit. From the theory one finds a rounded
transition for finite N occurring at temperature Tc,N < Tθ with shift exponent

ψp = 1/(d − 1) , (5)

so that the collapse occurs at finite length at a temperature that scales towards the θ-point
quite slowly and is below the θ-point. This then concurs with our finding that ψp ≈ 1/3 in
d = 4. The width of this transition ∆T at finite N can be found and has crossover exponent

φ = (d − 2)/(d − 1). (6)

All the exponents are derived from the assumptions of mean-field thermodynamic behaviour
and using νg = 1/d. Hence all the exponents quoted here are related to each other (only
one independent exponent). Our simulations show just such a narrow crossover region with
a crossover exponent that is certainly larger than the shift exponent (the data is compatible
with exponent 2/3).

By considering the difference of the density ρs of the swollen state to the globular state ρg

relative to the density of the swollen state at Tc,N , Khokhlov [8] concluded from its divergence
that “the coil-globule transition is first-order”, though we now interpret this to mean that
the finite-size corrections to the thermodynamic second-order transition are first-order–like.
We point out that the terminology of Khokhlov was presumably that explained in sect. I.C.2
of [11] but may be misleading to the modern reader. However, both ρg(Tc,N ) and ρs(Tc,N )
tend to zero as N → ∞ and it is simply that ρg(Tc,N ) tends to zero asymptotically slower
than ρs(Tc,N ) that makes the relative difference diverge. The analysis can be used to deduce
the scaling of RN at Tc,N with an exponent νc = 1/(d − 1). Note that νθ > νc > νg, so that
this scaling is in between the scaling fixed at the θ-point and at any temperature fixed in
the collapsed phase. Following the work of Lifshitz, Grosberg and Khokhlov [11] one can also
calculate the change in the internal energy over the crossover width of the transition ∆T as the
latent heat ∆U from the free energy expression. The latent heat decays as N increases with
exponent 1/(1 − d). The corresponding height of the peak in the specific heat diverges with
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exponent (d− 3)/(d− 1). From our data we were unfortunately unable to extract reasonable
estimates for νc or the exponents of the latent and specific heats.

To interpret our results, we can take the understanding of this mean-field theory further.
Let us consider the distribution of internal energy, which we measured in our simulations, as
a function of temperature and length. For any temperature above the θ-point and well below
Tc,N one expects the distribution of internal energy to look like a single-peaked distribution
centred close to the thermodynamic limit value: a Gaussian distribution is expected around the
peak with variance O(N−1/2). In fact this picture should be valid for all temperatures outside
a range of order O(N−(d−2)/(d−1)) centred on Tc,N . When we enter this region we will expect
to see a double-peaked distribution as in a first-order transition region. For any temperature in
this transition region there should be two peaks in the internal energy distribution separated
at the order of O(N−1/(d−1)) (the value of the gap being the latent heat). Each of these
peaks should be of Gaussian type with individual variances again of the order O(N−1/2).
Hence as N increases the peaks will become more and more distinct and relatively sharper
but the peak positions will be getting closer together. Hence we refer to this scenario as a
pseudo–first-order transition or, more correctly, as first-order–like finite-size corrections to a
second-order phase transition. If there were a real first-order transition then the distance
between the peaks should converge to a non-zero constant. A comprehensive interpretation of
our computer simulations in d = 4 [7] is most consistent with just such a scenario and leads us
to conjecture that this theoretical picture is indeed correct for the coil-globule transition for
d ≥ 4. Preliminary simulational results for d = 5, and for another model (interacting lattice
trails) in d = 4, demonstrate similar behaviour.

Let us return to the question of crossover scaling forms and our finding of two shift expo-
nents from our computer simulations. While we cannot ascertain either with great accuracy,
let us assume that we have a region around the θ-point that is approximated well by a form like
(2) with crossover exponent φθ = (d/2− 1). Now, despite the fact that this does not describe
the collapse transition region, we notice that substituting t ∼ N1/(d−1), and using the asymp-
totics derived from our matching argument above, leads to R ∼ N1/(d−1), which is precisely
the correct scaling for the real transition region! Hence we conjecture a phenomenological
product scaling form: (for T < Tθ)

RN ∼ N1/2 F((Tθ − T )Nφθ )G((Tc,N − T )Nφ) , (7)

with Tc,N ∼ Tθ − aN−ψp and where G(y) ∼ 1 for y → ±∞. This form will then correctly
describe both the region around the θ-point and the rounded transition around Tc,N and
will match with the behaviour of the collapsed phase for fixed T < Tθ. Such a form is not
dependent on the finding of pseudo–first-order behaviour and may be useful for analysing data
whenever two shift exponents are found.

In conclusion, Monte Carlo simulations of lattice polymers in four dimensions show that
for finite length the rounded coil-globule transition appears to be first order but we argue that
the tricritical predictions may well reappear in the infinite length limit as our results fit best
the predictions of Lifshitz-Grosberg-Khokhlov (LGK) theory applied to high dimensions. We
suggest that the crossover scaling forms are more complicated than at low dimensions and
suggest a generalisation that may be heuristically useful.
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