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Abstract. The free-fermion condition of the six-vertex model provides a five-parameter sub-
manifold on which the Bethe ansatz equations for the wavenumbers that enter into the eigenfunctions
of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions
arose originally in early field-theoreti§-matrix approaches. Here we provide a combinatorial
explanation for the condition in terms of a generalized Gessel-Viennot involution. By doing so we
extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only,
to a special weighted type oftersectingwalk, and hence express the patrtition functiomva$uch

walks starting and finishing at fixed endpoints in terms of the single-walk partition functions.

1. Introduction

There has been a steady stream of interest in the statistical mechanics of directed walk problems
because of their connections to the physics of polymers and domain walls [1]. Since the
popularization of the field in the seminal article by Fisher [1], vicious walkers, in particular, also
known as non-intersecting walks, on two-dimensional (directed) lattices have been the subject
of much work [2-7]. In the field of combinatorics a very general methodology, useful for any
directed graph and based on a involution, has been developed by Gessel and Viennot [8, 9]
following the work of Lindstom [10], and Karlin and McGregor [11], which expresses the
generating function of configurations 8f walks as the value of a determinant of single-walk
generating functions. In the most general set-up an arbitrary inhomogeneous weight may be
associated with each occupied edge of the lattice.

On the other hand it has been well known for a long time [7, 12] that the square lattice
six-vertex model can be mapped onto a problem of interacting (intersecting) directed walks on
that lattice (see figure 1). Let us call the six weights of that mde) w,, ws, wy, ws, we}:
see figure 1. We can consider = 1 without loss of generality. In order to calculate the
partition function of fixed numbers of walks one needs to consider a particular invariant sub-
space of the associated transfer matrix, the diagonalization of which involves the famous Bethe
ansatz trial solution: the Bethe ansatz is a guess for the eigenvectors of the transfer matrix and
involves a sum over a set of plane wave forms. For a problen ofalks the Bethe ansatz
involves N wavenumbers which are chosen from the solutions of a s€tradnlinear coupled
polynomial equations. To calculate the walk partition function one needs to find, and be able
to sum over, all the eigenvalues and eigenvectors explicitly.
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Figure 1. At the top are the six possible path configurations at a vertex of the lattice. Below each
of these is the associated arrow configuration of the six-vertex model, while below that is the six
weights we associate with each of those configurations.

Recently [13] it has been shown that if one rather considers the combinatorialist’s problem
of N vicious walkers with weights associated with edges, rather than with vertices, this can
be solved using the transfer matrix/Bethe ansatz approach in a completely rigorous fashion.
Here the Bethe ansatz equationsfbwalks decouple and the solution of thewalk problem
is given by the Gessel-Viennot determinant of single-walk generating functions. The walk
problem using edge weights is equivalent teestrictedvertex model (or visa versa) where
the vertex weights must satisfy the equations

W3Wy4 = Ws5We (1)
and

The second condition (2) merely expresses the fact that the weight associated with the meeting
of two walks is set to zero since vicious walkers are being considered. The associated vertex
model with only this second condition necessarily holding is often referred to as the five-vertex
model.

Of central importance here is that taken together the two conditions, (1) and (2), imply
that the less restrictive free-fermion condition of the six-vertex model, which occurs when the
vertex weights satisfy the equation

WiW2 = WsWe — W3W4 (3)

is then automatically satisfied. Hence the edge weight model is equivalent to the free-fermion
case of the five-vertex model. This is not surprising since the free-fermion condition (3) is
precisely the general condition needed to achieve the decoupling of the Bethe ansatz equations
in the solution of the six-vertex model.

This raises the question of whether the Gessel-Viennot methodology can be adapted to the
‘free-fermion’ case (i.e. equation (3) is satisfied), of ‘six-vertex’ or ‘osculating’ walks—here
the walksare allowed to intersedbut not share edges i.e. site-only intersecting.

Inthis paper we demonstrate that free-fermion osculating walks can indeed be counted with
a generalization of the Gessel-Viennot methodology and we hence explicitly calculate their
generating function. Because the Gessel-Viennot involution is involved the result is again a
determinant of single-walk generating functions. We restrict our discussion to the square lattice
but the ideas can be easily generalized to any directed (acyclic) graph. In order to understand
the combinatorial interpretation of the osculating free-fermion walks we briefly discuss the
case of non-intersecting walks for those unfamiliar with the Gessel-Viennot method. For the
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case ohon-intersectingvalks the Gessel-Viennot theorem gives the generating functityh of

such paths starting and ending at some fixed sets of sites as the determinant of the generating
functions of independent single walks where the walks start and end at all permutations of
those endpoints. That is, the generating functj&sfﬂ,”(yi — y/), for N nonvintersecting

walk configurations where thgh walk starts ay;. and arrives ay{ afterr steps is given by

the following determinant:

Ny — yf) = det NP L > ¥ lap1..n @)

wherey’ = (yi,...,y\) andy’ = (y/, ..., y}). Hence the generating function dfwalks

is given as the signed sum over product®adingle-walk generating functions where the sign

of the contribution is the signature of the permutation of the endpoints. This signed sum is
interpreted as a signed sum over the elements of a ‘signed2s#te elements of which are
configurations ofV, possibly intersecting, walks,

N
FVY -y =) ex[[ M (Xo) (5)
XeQ a=1
whereX, is a single walk fromy}, — v/, ex is the sign of the configuration aci{” (X.,) the
weight of a particular configuration ofsinglewalk—see section 2 for more precise definitions
of the terms referred to in this section. Note that Ahsingle walks in elements @& may be
edge as well as site intersecting, as they are completely independent of each other.

The method introduced by Gessel and Viennot [8, 9] shows that pairs of opposite signed
terms of (5) corresponding to configurations with at least one intersection cancel leaving only
positively signed terms corresponding to non-intersecting configurations—precisely the sum
required to giveV\™ (y' — y/). This pairing rule is an ‘involution’.

In order to interpret the free-fermion condition for osculating or six-vertex walks we apply
the same type of methodology but now require an extended pairing rule, one for which the
pairs of terms in the signed sum dot necessarily cancel out. We now consider three different
disjoint subsets of2: Q" the subset containing configurations that do not intersect a2all,
the subset containing configurations that only share sites (and not edgeQy #mel subset
containing configurations that share at least one edge.

The involution now pairs oppositely signed terms fr@fiwhich cancel out, but the pairs
of oppositely signed terms from the subSEthave different weights andio notcancel out,
rather the weight difference is precisely given by the free-fermion condition (3). This idea is
expressed schematically by the case for (example) paths in the Sfbast

PX) = P(X) = W) (6)
and for walks in the subsé&t¢ as
PCR) —P(x¥RQ) =0 (7

whereP(X) is theproductof the vertex weights of the two single paths of the configuration
X, whilst W(X) is the vertex weight of the path¥,, taken as a whole

Thus the free-fermion condition arises as a natural consequence of summing over a signed
set of N-walk configurations each of whose weight israductof single-path vertex weights.
The intersecting configurations in the signed set which do not cancel combine to create the
correct vertex weight for th&/-walk configuration.

2. Free-fermion walk generating function

Definitions and notations. We will consider walks on the directed square lattiCeaotated
through 48. Each vertex of the lattice is labelled by the ‘time’ coordinatand a heighty
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Figure 2. An example of three osculating paths.

and represented by the pa&it y) or functiony(¢)—see figure 2. AnV vertexis an N-tuple
of vertices of£ each of which has the same time coordinate and is represented Nyttige
of their height coordinateg; = (y1, ..., yn). An N vertexy is non-intersectingf yz # ya,
o, =1...,N,a # B. Awalk of lengthz, X(ys., ys) = y(O)y(D)y(2)...y(r), where
y(0) = y, andy(t) = yg, is a sequence afadjacent edges from vertex0) to vertexy(z).
An N walk, X (y', y/) is anN-tuple of equal length walkg.X1(y}, y{), o XN, y{,)),
with ¢’ andy/ non-intersecting.

An osculationbetween walksX, and Xy at times occurs ify, (s) = yg(s), and either
Ya(s—1) < yp(s—1)andya(s+1) < yg(s+1) 0ryu(s—1) > yg(s—1) andy(s+1) > y(s+1)

occur i.e the configuratiOﬁ\< appears. Pathg, and Xy switchat times if y,(s) = yg(s),
and eithery,(s — 1) < yg(s — 1) andy,(s +1) > yg(s + 1) or y,(s — 1) > yg(s — 1) and

Ya(s +1) < yg(s + 1) occur, i.e. the configuratio?f< appears. Since the initial and final
vertices are non-intersecting we do not define any osculations or switches associated with these
vertices. A pair of walks issculatingf all common vertices are osculations—see figure 2. An
N walk X is osculating if all the vertices in common with any of the walks form osculations.
Let Xo = y2a(0)ya(Dya(2)...y.() and Xg = yp(0)yg(Dyp(2) ... yp(t) intersect at
times, i.e.y,(s) = yg(s), then the paiX, andX areexchangedt times if

Xo = Xi = 2(0) ... ya($)yp(s + 1) ... yp(0) ®)
Xp— X5 =yp(0)...y5(s)ya(s + 1) ... 34 (2).
Define [N] = {1,...,N}. Let Py be the set of permutations ofV], then for
o = (01,...,0n) € Py, andy = (y1, ..., yn) an N vertex, thero (y) = Voys - -+ Yoo )-
The signature of a permutation is denotgd
We will associate weights with the walks on the lattice as follows. Associate a set of
six-vertex weights,
V() ={wi(v), ..., we(v)} )
with each vertex € £. Without loss of generality we only consider the situation wHieesof
the weights are not equal to one. The vertex weightX) of a particularN walk, X, is the
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product of the vertex weights of all the verticestothat are traversed by the walksgfwalk.

For each vertex traversed by tiewalk, only one of the six possible vertex weights associated
with the vertex ofL is used. Which of the six possible weight used depends on which of
the four edges adjacent to the particular vertex are traversed by thialk as illustrated in
figure 1. No vertex weights are associated with the initial and fihaertices of thev walk.

Remark. Note that with the above definition of osculating walks the set includes non-
intersecting walks also.

Remark. The vertex weightV(X) is only defined for osculating paths, i.e. if the paths of the
N walk do not cross or ifX contains only one path.

Remark. This way of associating weights with the walks is a generalization of the situation
dealt with by the Gessel-Viennot theorem where the weights are associated with the edges
of the graph and are independent of tivewalk configuration. The problem of finding the
generating function for osculating walks with arbitrary weights requires a rather complicated
involution [14], however, in the special case where the vertex weights satisfy the free-fermion
equation the osculating walk generating function can be expressed as a determinant, as we
demonstrate here.

Theorem (free-fermion walks). Let2* be the set of all osculating walks of length starting
aty’ and ending ay/ with y/, < yi,, andyd < v/, a € [N — 1]. If, for v € £, the vertex
weights satisfy

ws(V)we(v) — w3(V)wa(v) = w(v) (10)
then the osculating lattice walk generating function,
FVG -y =D wx) (11)
XeQ*
whereW(X) is the vertex weight of th&¥ walk X, is given by
FV4' — y") = Det| FY (vl = v llaper.n (12)

where7 " (v, — y}) is the generating function for singlelattice walk fromy!, — y7.

The theorem is proved by an extension of the Gessel-Viennot involution wbihnot
preserve thev-walk weight.

Proof. Consider the signed s& = Q* U Q~, Q* N Q™ = ¢, whereg is the empty set. The
positive and negative sets are

Q= {X(y',o@)))|o € Py ande, = +1} (13)

Q ={X®',oy))lo € Py ande, = —1}. (14)
Let, X € Q, then the sign ofX is defined as
+1 if XeQ

XT)lr i xeq (19)

For the N walks of 2 we donot use the vertex weight of th¥ walk as a whole, but rather
define a ‘product’ weightP(X) in terms of its individual walks. In particular,

PX) = [] WX (16)

XoeX
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We construct a sign reversing involutiong,on €.
Let X = (Xq,...,Xny) € Q. The involution is an extension of the Gessel-Viennot
involution and splits into three cases:

1. No intersectiongX € Q"). If none of the walks oiX intersect, theny(X) = X.

2. Edge intersectionéX e Q¢). If any of the walksX, € X has an edge of in common
with another walkXg € X then leta be the least integer for which a wakk, shares an
edge with another wallz. Of all the vertices adjacent to the edges in common With
andX g choose the one with the smallestoordinate and denote it by thenX’ = v (X)
is defined as th&y walk obtained by exchanginkj, andXg atv.

3. Vertex only intersectiongX € Q*). If any of the walks ofX share vertices and none
share edges, then letbe the least integer for which a walkk, intersects another walk
Xg. Of all the vertices in common witlX, and Xz choose the one with the smallest
coordinate and denote it hy, then X’ = ¥ (X) is defined as the&v walk obtained by
exchangingX, andXg atv.

Call the vertexp at which the involution exchange takes place, the ‘involution’ vertex. The
difference in the product weight & andy (X) is then

(ws()we(v) — wz(V)wa(v)) Py (X) if v isan osculation
PX)=P (X)) = § (ws(v)wa(v) — ws(v)we(v)) Py (X) if visaswitch  (17)
0 otherwise

wherePy,,(X) is the product weight aX with the contribution of the weight associated with
v divided out.

SinceQ*® c Q is defined as the set &f walks for which the involution vertex exists
and arises from the ‘vertex only intersections’ casé pthis means that all th¥ walks inQ2*
have walks which only intersect at vertices—there are no shared edges. Defivevialixs
to be related X ~ X' iff X can be obtained fronX’ by the interchange of any number of
osculations with switches (or visa versa). This relation is easily seen to be an equivalence
relation and hence partitiorf3* into disjoint subset@;, « € Z whereZ is some index set
for the partitions. Define the canonical elemeXty of each partitionfzg, as theN walk for
which all the intersections are osculations. E€X ‘) be the set of vertices oX“ ¢ fz-; in
common with at least two walks €. Note, the cardinality of2?, is 28I,

For theN walks in<2, we have,

D exPX) =Pe(X) [] (ws(x)ws(z) — wa2)wa(2)) (18)

XGQ; z€€(Xca)

whereP: (X ) is the product weight oX “ with all the vertex weights associated with the
vertices in€(X ) divided out. This follows since}'[zeg(xm)(ws(z)we(z) - wg(z)w4(z))
allows for each vertex ifi (X ) to be a switch (i.e. weighbsw,) or an osculation (i.e. weight
wswe). The signex is correctly obtained since it is justl to the number of occurrences of
a switch i.e. the number of factors efwsw,. Thus we have the following:

Det| Py, = ) lap=1.v = Y exP(X) (19)
XeQ
= Y xPX)+ ) exP(X) (20)
XeQ-QF XeQs

t A sign reversing involution/ is a permutation of2 such thaty2 = Identity and it has the property that whenever
¥(X) # X, thenX € Q*, ifand only if ' (X) € Q™.
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and since, by (17) th& walks in©Q — Q* (= Q" U Q¢) with any intersections cancel in pairs
we get

= Z W(X) + Z exP(X) (21)
XeQn XeQs

= Y WX +Y Y exP(X) (22)
XeQ" ael Xl

whereQ" c Q is the set of non-intersecting walks, using (18) gives,

= Y WX+ Pe(X) [] (ws@wez) — wa2)wa(z)) (23)
XeQn ael ze€(Xcw)
now, using the free-fermion relation, (10) we get
= Y WX+ Pe(X«) [] w2 (24)
XeQn ael ze€(Xcee)
= ) WX+ W(X) (25)
XeQn ael
and since all the canonical walks, X are osculating we get
= Y W(X) (26)
XeQ*
as required. O
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