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Abstract. The free-fermion condition of the six-vertex model provides a five-parameter sub-
manifold on which the Bethe ansatz equations for the wavenumbers that enter into the eigenfunctions
of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions
arose originally in early field-theoreticS-matrix approaches. Here we provide a combinatorial
explanation for the condition in terms of a generalized Gessel–Viennot involution. By doing so we
extend the use of the Gessel–Viennot theorem, originally devised for non-intersecting walks only,
to a special weighted type ofintersectingwalk, and hence express the partition function ofN such
walks starting and finishing at fixed endpoints in terms of the single-walk partition functions.

1. Introduction

There has been a steady stream of interest in the statistical mechanics of directed walk problems
because of their connections to the physics of polymers and domain walls [1]. Since the
popularization of the field in the seminal article by Fisher [1], vicious walkers, in particular, also
known as non-intersecting walks, on two-dimensional (directed) lattices have been the subject
of much work [2–7]. In the field of combinatorics a very general methodology, useful for any
directed graph and based on a involution, has been developed by Gessel and Viennot [8, 9]
following the work of Lindstr̈om [10], and Karlin and McGregor [11], which expresses the
generating function of configurations ofN walks as the value of a determinant of single-walk
generating functions. In the most general set-up an arbitrary inhomogeneous weight may be
associated with each occupied edge of the lattice.

On the other hand it has been well known for a long time [7, 12] that the square lattice
six-vertex model can be mapped onto a problem of interacting (intersecting) directed walks on
that lattice (see figure 1). Let us call the six weights of that model{w1, w2, w3, w4, w5, w6}:
see figure 1. We can considerw1 = 1 without loss of generality. In order to calculate the
partition function of fixed numbers of walks one needs to consider a particular invariant sub-
space of the associated transfer matrix, the diagonalization of which involves the famous Bethe
ansatz trial solution: the Bethe ansatz is a guess for the eigenvectors of the transfer matrix and
involves a sum over a set of plane wave forms. For a problem ofN walks the Bethe ansatz
involvesN wavenumbers which are chosen from the solutions of a set ofN nonlinear coupled
polynomial equations. To calculate the walk partition function one needs to find, and be able
to sum over, all the eigenvalues and eigenvectors explicitly.
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Figure 1. At the top are the six possible path configurations at a vertex of the lattice. Below each
of these is the associated arrow configuration of the six-vertex model, while below that is the six
weights we associate with each of those configurations.

Recently [13] it has been shown that if one rather considers the combinatorialist’s problem
of N vicious walkers with weights associated with edges, rather than with vertices, this can
be solved using the transfer matrix/Bethe ansatz approach in a completely rigorous fashion.
Here the Bethe ansatz equations forN walks decouple and the solution of theN -walk problem
is given by the Gessel–Viennot determinant of single-walk generating functions. The walk
problem using edge weights is equivalent to arestrictedvertex model (or visa versa) where
the vertex weights must satisfy the equations

w3w4 = w5w6 (1)

and

w2 = 0. (2)

The second condition (2) merely expresses the fact that the weight associated with the meeting
of two walks is set to zero since vicious walkers are being considered. The associated vertex
model with only this second condition necessarily holding is often referred to as the five-vertex
model.

Of central importance here is that taken together the two conditions, (1) and (2), imply
that the less restrictive free-fermion condition of the six-vertex model, which occurs when the
vertex weights satisfy the equation

w1w2 = w5w6− w3w4 (3)

is then automatically satisfied. Hence the edge weight model is equivalent to the free-fermion
case of the five-vertex model. This is not surprising since the free-fermion condition (3) is
precisely the general condition needed to achieve the decoupling of the Bethe ansatz equations
in the solution of the six-vertex model.

This raises the question of whether the Gessel–Viennot methodology can be adapted to the
‘free-fermion’ case (i.e. equation (3) is satisfied), of ‘six-vertex’ or ‘osculating’ walks—here
the walksare allowed to intersectbut not share edges i.e. site-only intersecting.

In this paper we demonstrate that free-fermion osculating walks can indeed be counted with
a generalization of the Gessel–Viennot methodology and we hence explicitly calculate their
generating function. Because the Gessel–Viennot involution is involved the result is again a
determinant of single-walk generating functions. We restrict our discussion to the square lattice
but the ideas can be easily generalized to any directed (acyclic) graph. In order to understand
the combinatorial interpretation of the osculating free-fermion walks we briefly discuss the
case of non-intersecting walks for those unfamiliar with the Gessel–Viennot method. For the
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case ofnon-intersectingwalks the Gessel–Viennot theorem gives the generating function ofN

such paths starting and ending at some fixed sets of sites as the determinant of the generating
functions of independent single walks where the walks start and end at all permutations of
those endpoints. That is, the generating function,N (N)

t (yi → yf ), for N non-intersecting
walk configurations where thej th walk starts atyij and arrives atyfj after t steps is given by
the following determinant:

N (N)
t (yi → yf ) = det‖N (1)

t (yiα → y
f

β )‖α,β=1...N (4)

whereyi = (yi1, . . . , yiN ) andyf = (yf1 , . . . , yfN). Hence the generating function ofN walks
is given as the signed sum over products ofN single-walk generating functions where the sign
of the contribution is the signature of the permutation of the endpoints. This signed sum is
interpreted as a signed sum over the elements of a ‘signed’ set,�, the elements of which are
configurations ofN , possibly intersecting, walks,

F (N)t (yi → yf ) =
∑
X∈�

εX

N∏
α=1

M(1)
t (Xα) (5)

whereXα is a single walk fromyiα → y
f

β , εX is the sign of the configuration andM(1)
t (Xα) the

weight of a particular configuration of asinglewalk—see section 2 for more precise definitions
of the terms referred to in this section. Note that theN single walks in elements of� may be
edge as well as site intersecting, as they are completely independent of each other.

The method introduced by Gessel and Viennot [8, 9] shows that pairs of opposite signed
terms of (5) corresponding to configurations with at least one intersection cancel leaving only
positively signed terms corresponding to non-intersecting configurations—precisely the sum
required to giveN (N)

t (yi → yf ). This pairing rule is an ‘involution’.
In order to interpret the free-fermion condition for osculating or six-vertex walks we apply

the same type of methodology but now require an extended pairing rule, one for which the
pairs of terms in the signed sum donotnecessarily cancel out. We now consider three different
disjoint subsets of�: �n the subset containing configurations that do not intersect at all,�s

the subset containing configurations that only share sites (and not edges) and�e the subset
containing configurations that share at least one edge.

The involution now pairs oppositely signed terms from�e which cancel out, but the pairs
of oppositely signed terms from the subset�s have different weights anddo notcancel out,
rather the weight difference is precisely given by the free-fermion condition (3). This idea is
expressed schematically by the case for (example) paths in the subset�s as

P( )− P( ) =W( ) (6)

and for walks in the subset�e as

P( )− P( ) = 0 (7)

whereP(X) is theproductof the vertex weights of the two single paths of the configuration
X, whilstW(X) is the vertex weight of the paths,X, taken as a whole.

Thus the free-fermion condition arises as a natural consequence of summing over a signed
set ofN -walk configurations each of whose weight is aproductof single-path vertex weights.
The intersecting configurations in the signed set which do not cancel combine to create the
correct vertex weight for theN -walk configuration.

2. Free-fermion walk generating function

Definitions and notations. We will consider walks on the directed square lattice,L rotated
through 45◦. Each vertex of the lattice is labelled by the ‘time’ coordinate,t and a heighty
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Figure 2. An example of three osculating paths.

and represented by the pair(t, y) or functiony(t)—see figure 2. AnN vertexis anN -tuple
of vertices ofL each of which has the same time coordinate and is represented by theN -tuple
of their height coordinates,y = (y1, . . . , yN). An N vertexy is non-intersectingif yβ 6= yα,
α, β = 1, . . . , N , α 6= β. A walk of length t , X(yα, yβ) = y(0)y(1)y(2) . . . y(t), where
y(0) = yα andy(t) = yβ , is a sequence oft adjacent edges from vertexy(0) to vertexy(t).
An N walk,X(yi ,yf ) is anN -tuple of equal length walks,(X1(y

i
1, y

f

1 ), . . . , XN(y
i
N , y

f

N)),
with yi andyf non-intersecting.

An osculationbetween walksXα andXβ at times occurs ifyα(s) = yβ(s), and either
yα(s−1) < yβ(s−1)andyα(s+1) < yβ(s+1)oryα(s−1) > yβ(s−1)andyα(s+1) > yβ(s+1)

occur i.e the configuration appears. PathsXα andXβ switchat times if yα(s) = yβ(s),
and eitheryα(s − 1) < yβ(s − 1) andyα(s + 1) > yβ(s + 1) or yα(s − 1) > yβ(s − 1) and

yα(s + 1) < yβ(s + 1) occur, i.e. the configuration appears. Since the initial and finalN
vertices are non-intersecting we do not define any osculations or switches associated with these
vertices. A pair of walks isosculatingif all common vertices are osculations—see figure 2. An
N walkX is osculating if all the vertices in common with any of the walks form osculations.

Let Xα = yα(0)yα(1)yα(2) . . . yα(t) andXβ = yβ(0)yβ(1)yβ(2) . . . yβ(t) intersect at
time s, i.e.yα(s) = yβ(s), then the pairXα andXβ areexchangedat times if

Xα → X′α = yα(0) . . . yα(s)yβ(s + 1) . . . yβ(t)

Xβ → X′β = yβ(0) . . . yβ(s)yα(s + 1) . . . yα(t).
(8)

Define [N ] = {1, . . . , N}. Let PN be the set of permutations of [N ], then for
σ = (σ1, . . . , σN) ∈ PN , andy = (y1, . . . , yN) anN vertex, thenσ(y) = (yσ1, . . . , yσN ).
The signature of a permutation is denotedεσ .

We will associate weights with the walks on the lattice as follows. Associate a set of
six-vertex weights,

V(v) = {w1(v), . . . , w6(v)} (9)

with each vertexv ∈ L. Without loss of generality we only consider the situation wherefiveof
the weights are not equal to one. The vertex weight,W(X) of a particularN walk,X, is the
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product of the vertex weights of all the vertices ofL that are traversed by the walks ofN walk.
For each vertex traversed by theN walk, only one of the six possible vertex weights associated
with the vertex ofL is used. Which of the six possible weight used depends on which of
the four edges adjacent to the particular vertex are traversed by theN walk as illustrated in
figure 1. No vertex weights are associated with the initial and finalN vertices of theN walk.

Remark. Note that with the above definition of osculating walks the set includes non-
intersecting walks also.

Remark. The vertex weightW(X) is only defined for osculating paths, i.e. if the paths of the
N walk do not cross or ifX contains only one path.

Remark. This way of associating weights with the walks is a generalization of the situation
dealt with by the Gessel–Viennot theorem where the weights are associated with the edges
of the graph and are independent of theN -walk configuration. The problem of finding the
generating function for osculating walks with arbitrary weights requires a rather complicated
involution [14], however, in the special case where the vertex weights satisfy the free-fermion
equation the osculating walk generating function can be expressed as a determinant, as we
demonstrate here.

Theorem (free-fermion walks).Let�∗ be the set of all osculatingN walks of lengtht starting
at yi and ending atyf with yiα < yiα+1 andyfα < y

f

α+1, α ∈ [N − 1]. If, for v ∈ L, the vertex
weights satisfy

w5(v)w6(v)− w3(v)w4(v) = w2(v) (10)

then the osculating lattice walk generating function,

F (N)t (yi → yf ) =
∑
X∈�∗

W(X) (11)

whereW(X) is the vertex weight of theN walkX, is given by

F (N)t (yi → yf ) = Det‖F (1)t (yiα → y
f

β )‖α,β=1...N (12)

whereF (1)t (yiα → y
f

β ) is the generating function for asinglelattice walk fromyiα → y
f

β .

The theorem is proved by an extension of the Gessel–Viennot involution whichdoes not
preserve theN -walk weight.

Proof. Consider the signed set� = �+ ∪�−,�+ ∩�− = φ, whereφ is the empty set. The
positive and negative sets are

�+ = {X(yi , σ (yf ))|σ ∈ PN andεσ = +1} (13)

�− = {X(yi , σ (yf ))|σ ∈ PN andεσ = −1}. (14)

Let,X ∈ �, then the sign ofX is defined as

εX =
{

+1 if X ∈ �+

−1 if X ∈ �−.
(15)

For theN walks of� we donot use the vertex weight of theN walk as a whole, but rather
define a ‘product’ weight,P(X) in terms of its individual walks. In particular,

P(X) =
∏
Xα∈X

W(Xα). (16)
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We construct a sign reversing involution†,ψ on�.
Let X = (X1, . . . , XN) ∈ �. The involution is an extension of the Gessel–Viennot

involution and splits into three cases:

1. No intersections(X ∈ �n). If none of the walks ofX intersect, thenψ(X) = X.
2. Edge intersections(X ∈ �e). If any of the walksXα ∈ X has an edge ofL in common

with another walk,Xβ ∈ X then letα be the least integer for which a walkXα shares an
edge with another walkXβ . Of all the vertices adjacent to the edges in common withXα
andXβ choose the one with the smallestt coordinate and denote it byv, thenX ′ = ψ(X)
is defined as theN walk obtained by exchangingXα andXβ atv.

3. Vertex only intersections(X ∈ �s). If any of the walks ofX share vertices and none
share edges, then letα be the least integer for which a walkXα intersects another walk
Xβ . Of all the vertices in common withXα andXβ choose the one with the smallestt
coordinate and denote it byv, thenX ′ = ψ(X) is defined as theN walk obtained by
exchangingXα andXβ atv.

Call the vertex,v at which the involution exchange takes place, the ‘involution’ vertex. The
difference in the product weight ofX andψ(X) is then

P(X)−P(ψ(X)) =


(w5(v)w6(v)− w3(v)w4(v))P{v}(X) if v is an osculation

(w3(v)w4(v)− w5(v)w6(v))P{v}(X) if v is a switch

0 otherwise

(17)

whereP{v}(X) is the product weight ofX with the contribution of the weight associated with
v divided out.

Since�s ⊂ � is defined as the set ofN walks for which the involution vertexv exists
and arises from the ‘vertex only intersections’ case ofψ , this means that all theN walks in�s

have walks which only intersect at vertices—there are no shared edges. Define twoN walks
to be related,X ∼ X ′ iff X can be obtained fromX ′ by the interchange of any number of
osculations with switches (or visa versa). This relation is easily seen to be an equivalence
relation and hence partitions�s into disjoint subsets,̂�sα, α ∈ I whereI is some index set
for the partitions. Define the canonical element,Xcα of each partition,̂�sα, as theN walk for
which all the intersections are osculations. LetE(Xcα ) be the set of vertices ofXcα ∈ �̂sα in
common with at least two walks ofXcα . Note, the cardinality of̂�sα is 2|E(X

cα )|.
For theN walks in�̂sα we have,∑

X∈�̂sα
εXP(X) = PE(Xcα )

∏
z∈E(Xcα )

(w5(z)w6(z)− w3(z)w4(z)) (18)

wherePE(Xcα ) is the product weight ofXcα with all the vertex weights associated with the
vertices inE(Xcα ) divided out. This follows since

∏
z∈E(Xcα )

(
w5(z)w6(z) − w3(z)w4(z)

)
allows for each vertex inE(Xcα ) to be a switch (i.e. weightw3w4) or an osculation (i.e. weight
w5w6). The sign,εX is correctly obtained since it is just−1 to the number of occurrences of
a switch i.e. the number of factors of−w3w4. Thus we have the following:

Det‖P(yiα → y
f

β )‖α,β=1...N =
∑
X∈�

εXP(X) (19)

=
∑

X∈�−�s
εXP(X) +

∑
X∈�s

εXP(X) (20)

† A sign reversing involution,ψ is a permutation of� such thatψ2 = Identity and it has the property that whenever
ψ(X) 6= X, thenX ∈ �+, if and only ifψ(X) ∈ �−.
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and since, by (17) theN walks in�−�s (= �n ∪�e) with any intersections cancel in pairs
we get

=
∑
X∈�n

W(X) +
∑
X∈�s

εXP(X) (21)

=
∑
X∈�n

W(X) +
∑
α∈I

∑
X∈�̂sα

εXP(X) (22)

where�n ⊂ � is the set of non-intersectingN walks, using (18) gives,

=
∑
X∈�n

W(X) +
∑
α∈I
PE(Xcα )

∏
z∈E(Xcα )

(w5(z)w6(z)− w3(z)w4(z)) (23)

now, using the free-fermion relation, (10) we get

=
∑
X∈�n

W(X) +
∑
α∈I
PE(Xcα )

∏
z∈E(Xcα )

w2(z) (24)

=
∑
X∈�n

W(X) +
∑
α∈I
W(Xcα ) (25)

and since all the canonicalN walks,Xcα are osculating we get

=
∑
X∈�∗

W(X) (26)

as required. �
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