Equivalence of the Bethe Ansatz and Gessel-Viennot Theorem for

Non-intersecting Paths

R. Brakf, J. W. Essam} and A. L. Owczarek{*
fDepartment of Mathematics and Statistics,
The University of Melbourne,
Parkville, Victoria 3052, Australia
{Department of Mathematics,

Royal Holloway College, University of London,
Egham, Surrey TW20 0EX, England.

April 13, 1999

Abstract

We show how the problem of non-intersecting lattice paths on the directed square lattice
can be formulated as difference equations. The difference equations are encoded by the
action of various “transfer matrices”. We state several theorems that demonstrate how the
coordinate Bethe Ansatz for the eigenvectors of the transfer matrices, given certain conditions
hold, is equivalent to the Gessel-Viennot determinant for the number of configurations of N
non-intersecting lattice paths on the directed square lattice. Another way of viewing this
result is that it is a linear algebra proof of the Gessel-Viennot theorem for the particular
case considered in this paper. This is significant as the Bethe Ansatz is potentially capable
of solving various lattice paths problems, such as osculating lattice paths, which are beyond
the scope of the Gessel-Viennot theorem.
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1 Introduction

Non-intersecting paths have been extensively studied in various contexts [1, 2, 3, 4, 5, 6], cul-
minating in the Gessel-Viennot theorem {7, 8]. All these studies express the number of config-
urations as the value of a determinant. Non-intersecting paths arise in another context, that
of vertex models in statistical mechanics [9], where it was noticed [10, 6], that if the vertices
of the “six-vertex” model are drawn in a particular way they could be interpreted as lattice
paths. If one of the vertices had weight zero, giving a five-vertex model, the resulting paths
were non-intersecting. The vertex models are traditionally solved by expressing the partition
function (a generating function) in terms of transfer matrices. The partition function is then
evaluated by either of two very powerful techniques, that of commuting transfer matrices [11]
or by direct diagonalisation of the transfer matrices using the coordinate Bethe Ansatz [12, 13].

In this paper we will show that the Bethe Ansatz and the Gessel-Viennot Theorem are
equivalent so long as the eigenvectors of the N = 1 path transfer matrix span its row (or
column) space.

The connection between the two methods is potentially significant as preliminary work on
osculating lattice paths and their relation to alternating sign matrices [14] has shown that the
Bethe Ansatz has the potential to solve lattice paths problems which are beyond the scope of

the Gessel-Viennot theorem.

Definitions and Notation The & be a square lattice rotated 45° directed in the North-
East and South-East directions. Label the vertices of S with orthogonal coordinates (z,y). A
N-vertex is an N-tuple of distinct vertices of S all of which have the same z coordinate. If

= (4i,...,9y%) and y/ = (vf,... ,yf) are N-vertices of S, a N-path from y* to y/ is a
N-tuple w = (wy,... ,wn) such that w; is a path from ¥l to y,’;. The N-path is non-intersecting
if the paths w, are vertex disjoint. Assign a weight to every edge of S and a weight to each of
the vertices of the N-vertex y*. We define the weight, w(w,) of a path w, as the product of the
weights of its edges and the weight of the initial vertex. The weight W (w) of the N-path is the
product of the weights of its components.

We shall only consider the following special case of edge weights: the weights of all edges of
S above the line y = L > 0, and below the line y = 0 are set to zero. This restricts the paths
to a strip of width L — see figure 1. By controlling the width of the strip we can still obtain
paths in the half plane and full plane. Let QJLV be the set of all non-intersecting N-paths with
non-zero weights from y* to y/. Note, all the paths are necessarily the same length, say t. We

are interested in computing the the strip generating function

N
Z; oy =D W) (1.1)
weny

Note, the double bar above the Z denotes the strip.
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We require the following sub-domains of Z~

§L={y]1§y§L,y€Zandyodd}, (1.2a)
Sp= {y|0<y< L,y €Z and y even}, (1.2b)
S1={yl0<y<Lyez}, (1.20)
Ur = {1, uw) 1<y <...<yn < L, % €81} (1.2d)
)
)

Ur = {,---,yn)|0<y <...<yn <L, yi €81} (1.2¢
UL ={(y,---yn) |10 <...<yn <L, y; €S} (

We will use Ij 1 to denote Zj L or I,; L. We will only consider the case that L is odd so that

e o 1
U | = UL | = (5(5’:1)). (If L is even a null space enters the subsequent analysis of the

transfer matrices leading to a distracting complication.)
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Figure 1: Three non-intersecting paths
The variables z, y:, and yc{ shown.
v(1w(1,2)w(2,3)w(3,2)--- w(l,0)w(0,1).

> m
6 7 8 9 10 11 12 13 14

of length t = 14 in a strip of width L = 9.
The path closest to the lower “wall” has weight

=N .
We will show that Z, (y*—y'), is given by the following Gessel-Viennot determinant:

=S . f =5 . f =5 . 7
Zs (Y1 —v1) Zfs(yi—*yz) ‘e Zg(yi—*yzv)
Z, Wiy Z =yl ... Z,(wh—yk)
=N i f
Z; (y'—=yl)= (1.3)
=S R f =S . f =S " f
Z: (W —yi) Z:(Wn—v2) oo Zi (Wv—un)
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=5 .
where single path the generating function, Z, (y} —%y,{ ) is defined as
=s
Zs (vt ——)y Z W(w (1.4)
weﬂl

Remark. Note, the determinant (1.3) can be obtained directly from the Gessel-Viennot the-
orem, however the point of this paper is that the same result can also be obtained from an

eigenvector Ansatz.

2 From Bethe Ansatz to determinant

2.1 Transfer matrix formulation

The generating function z\/(yi — yf) can be written as the matrix element of a product of
“transfer matrices”. The calculation of the generating function via the transfer matrices then
requires we diagonalise the matrices. We will show that if this can be done for the N =1 case
then the N-path problem is given by (1.3). First we define the matrices and show how E’t can

be expressed in terms of the transfer matrices.

Definition 1. Lety € S randy € S 1. For N = 1 the two one-step single path transfer matrices
are defined as

(% ) _ 0 if |y - y'] >1 (2 5a,)
1 —_ .
wo | w(y,y) ifly-y|=1 ‘
and
oe 0 if |y —y|>1
(T.), = (2.5b)
vy |w(y,y) fly—-9|=1

where w(y, y') is the weight of the edge of S from (z,y) to (z,y'). The N-path transfer matrices

for N > 1 are sub-matrices of the direct product of the above N = 1 matrices:

oe N oe ] I} e
TN)yy = ® Th YE€EUrand y €UL (2.6a)
' v,y
and
N €o e o
y = (@ Tl) y €Urandy €lUr (2.6b)
= vy
The two “two-step” transfer matrices are then defined as
ee €0 oe
Tn=T~nTnN (2.7a)
00 o€ €0
Ty =Tn~nTn. (2.7b)
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Remark. (1) Note that only “nearest neighbour” steps are allowed in all cases, and that in

o€
general (Tl)
vy
are square matrices.

#* (%’1) . Since we are only considering L odd we have that 'OIC; ~N and 'eI‘o N
vy
- - =N ” - -
The generating function Z; (y° — y’) of non-intersecting N-paths of length ¢ in a strip is
related to Z,_;(y* —y) by recurrence, the coefficients of which are the elements of one of the

two one-step transfer matrices defined above. This relationship is given by the following lemma.

=N
Lemma 1. For t > 0, the generating function Z, (y*—y?) is given by

=N i €0 f o
N Zyesz Zt—-l(y _)y)(TN)y,yf for Y €eUL
Z; (v’ -yl) = . (2.8)
=N ; oe P
Eyeg, 21V =Y)(TN)yys  for ¥y UL
and for t =0,
Zo (Y =yT) = by 31V (¥"), (2.9)
where

N
vy =[] v@h), (2.10)
a=1

i

and v(y}) is the weight of vertez (0,v%)-
A simple proof of this Lemma can be constructed using induction on ¢.

Remarks. (1) The restriction of ’?i‘) N and ’OI‘e N~ to submatrices of the direct product eliminates
the possibility of two paths arriving at the same lattice vertex.

(2) The condition that the single path transfer matrix with elements that vanish for [y’ —y| > 1
prevents the generation of configurations in which pairs of paths “cross” without without having
a lattice vertex in common. This the analogue of the non-crossing condition of the Gessel-
Viennot Theorem. This “non-crossing” condition is unnecessarily restrictive in the single path

case, but necessary for V > 1.
Corollary. For t = 2r, r a positive integer,
. €-e . e e
V(y') ((TN)") _ for yieur andyf €Uy
:N . y‘yy‘f -
Zop(y' —y!) = (2.11a)
. o0 . ] o
V(y') ((TN)T) ot for yieur andyf €ur
Ly

»

and fort =2r +1,

o€ ‘ . e o
., (TN)yysr for y* €Ur and vyl eur

y!

V), s ((Ta7)
N yeur
Zow i1 (V' =y)) =

V)T, o (Bn)  (Fnlyyr for v etls andy! €tls

YEUL yiy
(2.11b)
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2.2 From transfer matrices to determinants

The theorems proven below show that the equivalence of the Bethe Ansatz for the eigenvectors
of (2.7), in the form of equation (2.17) and the result of the Gessel-Viennot Theorem in the form
(2.33) rests on showing that for any given set of weights that the resulting one path eigenvectors
(conditions of Lemma 2) span the row (or column) space of the corresponding two-step transfer
matrix.

In particular, the first theorem states the conditions under which the N-path transfer ma-
trices can be diagonalised: the major condition is that the one-path transfer matrices can be
diagonalised — see Lemma 2. The second theorem states that if the Bethe Ansatz gives a
complete set of eigenvectors for the N-path problem for N > 1, then the N-path generating

function is a determinant of one-path generating functions.

Lemma 2.
e-e o0 . ) o e
(a) Let T1 and T be defined by (2.7) then if there exist vectors ¥f and P§ such that
€eo [ oe
TiPR =X\ @8 and  Ta9R = A OF (2.12)
o e . I3 o.o e.e 3 . .
then ©F and ¥; are right eigenvectors of T1 and T1 respectively with eigenvalue A

(b) Let {‘/’k}kel& and { *Ykek,, where Ky is some indez set, be marimal sets of independent
vectors satisfying (2.12). If these sets span the respective column spaces (in which case they
are said to be complete) of T and 2,[“)1, then corresponding sets {Q%i}kelcl and {é’,’;}ke’cl

of row vectors may be found such that

GOt =gy and Y BR) PEW) = dyy (2.13)

kekKy

for each p € {e,0}, where the * denotes complex conjugation.

(c) Let{ *Yrek, and {‘Pk}kelcl satisfy (2.13) then
o€ eo
‘;II; Ti= Ak ‘;]I;, and ‘;i Ti= A S%]Ic' (2.14)
0 e . 00 ee i . .
and also Y} and @i are left eigenvectors of T1 and T respectively with eigenvalue )\%.

The proof of the lemma is elementary linear algebra and we omit it.

Remark. Notice that if Ay is a solution of (2.12) then so is —A; with vector 921,:‘ replaced by
- é,‘: These vectors are clearly not independent and normally sufficient independent vectors to

form a spanning set are obtained by taking only the positive values of A.
Remark. The reader should observe that K; is a set of cardinality (L + 1)/2.

From the above left and right one-path vectors we now construct the N-path vectors and

e-e o0
hence eigenvectors of Tnx and Tn-
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Theorem 1. Let %N and (’)FN, N > 1, be given by equations (2.7). By imposing an arbitrary

ordering on the elements of K1 define
Kn = {k = (kl,kz,.. -kN)Iki eKiandki<ky<---< kN} (2.15)

and
N
A = [T M- (2.16)

(a) If for C € {L,R} and p € {e, o}, {‘:%f}ke)cl satisfy the conditions of Lemma 2 then the
vectors {‘%ﬁ}kelcn given by the Bethe Ansatz,

P 4
b= X o I Ht= T o %00 et (2.17)
oc€Py a=1 ccPy a=1
satisfy
oe e, op €0 o0, €n
Ty & = Ay Iy and Twv & = Ax & . (218)

where Py is the set of permutations of {1,2,...,N}.
(b) Moreover Lemma 2 holds with ?1 and 'ofl replaced by si’,N and 'of‘N, K1 replaced by Kn, and
Ar replaced by Ay.

Remark. Note, if further neighbour steps are allowed then the crossing condition would be
violated and in general, it is not possible to use the Bethe Ansatz to obtain a complete set of

eigenvectors.
The proofs of part of this theorem and Theorem 2 require the following result.

Proposition 1. Fork€ Ky andy € I}L let

N
&y)= > €& || tko(va) and =Y eanm (¥a)- (2-19)
ocEPNn a=1 c€Pn a=1
Also let
N
f) =] (ka) (2.20)
a=1
then
N
3 fEy)ny)= Y & 1] ( > f(ka)qska(ya)«pka(y;a)) (2.21)
keXn oEPN a=1 \kq€ K1
and
N
Y e =D @ [T D tr(e)¥n. () (2:22)
YElgL o€Py a=l Yo €§L

114



Proof.

T F0BMTG) =Y D D & H f(ka)k., (Vo) ¥k, (Vo) (2.23)

keKn ocPn ke Ky 7€PN a=1
N
=S e Y > I £ ke, (Wa)dnn, (6, ) (2:24)
o' €PN keKy 7€PN a=1

The double sum over permutations, 7 and k € Kn is equivalent to summing each k, indepen-
dently over K; (terms for which two or more components of k are equal make zero contribution)
and the first result follows. The second result follows in the same way by interchanging the roles
of k and y. O

Proof. (of Theorem 1) (a) We first obtain the cyclic property (2.18) as follows.

(OTeN éﬁ)y = Z Z € (%N) H ‘180}?,“ (2.25a)

y EIjL o€Pn a=1
=3 € 2 H ('1‘1) ” & (4 (using (2.6)) (2.25b)
oEPN e q=1 Yo

Y'eUur

=Y | X (B),, RG] | T (R, RG] @2

. A YNy
o€Py |y €SL YNESL o
= Y e My B )] o [y R o)) (wsing (212) (2.25d)
oc€Py i
(4
= Ak B%(y) (2.25¢)

The critical step, and the whole reason for introducing the Bethe Ansatz, is to enable one to go
from the restricted sums of (2.25b) to the unrestricted sums in (2.25¢c). This is justified for two

reasons,

1. since &ﬁ(y’ ) is a determinant, if any of the yo’s are equal then éﬁ = 0 - this allows the

restriction 3, < yh-.. < ¥ on the sum to be relaxed to v <vh...<yy

2. the yq are in strictly increasing order combined with the fact that the matrix elements of
%1, are only non-zero if [y, — y5| < 1 (the “non-crossing” condition) allows the restriction

on the sum to be removed altogether.

The second part of (2.18) follows mutatis mutandis.

Also, c%ﬁ is a right eigenvector of ile‘z ~ with eigenvalue A2, since
€0 OR 2 CR
TN<I>k TNTN <I>k = TnAx & = Aic Bk

which follows from (2.18). Similarly %ﬁ is a right eigenvector of "}?N with eigenvalue AZ which

completes (a).
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(b) First consider orthogonality and normalisation. Using (2.22), for k, k' € Ky

Y aeHE=Y eaH Y B we) B (ve)

=Y & Hdka, K (using (2.13))

U'EPN a=1

=H%%
a=1

since the components of k and k' are in the same order only the identity permutation gives a

non-zero delta function product. Thus
P, P
D" Dk = O - (2.26)

Our derivation of the “completeness condition” closely parallels the previous derivation but
using (2.21). For y,y' €1

N
S EOF=S ][ 3 B ”k:(yi.a>)

keKn o€Py  a=1 \kq €K1
=Y & H Syawre  (using (2.13))
dePN a=1

= H 53/0 Wa
a=1

SO

3 ) ) = by (2.27)

keKy

Notice that |Ky| = (% IJ’VH)) which is the row (and column) space dimension, as it should be for

completeness.

Using basic linear algebra gives

o oe e, e, €o o,
S TN =P Ak & TN =P Ax (2.28)
and
e ee e o 00 o .4
‘I’k TN=<I>kA & TN=3 Ay (2.29)
O

Lemma 3. If the conditions of Theorem 1 hold then
=N . . p' . P . !
Z =y =vE) Y ML G v elrand ¥ el (2-30)
keKn

where if t is even, p' = p but otherwise p and p' are of opposite parity.
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Proof. If the conditions of Theorem 1 hold then equation (2.13) implies (2.26), (2.27), (2.28)
and (2.29) are valid. Using (2.28) and (2.27) it follows that

(TN)yy = D A B(y) 87 (y)  and  (Talyy = 2. M F(y) B (y).  (2.31)
keXnN kekn
Also, using (2.29) and (2.27) it follows that
e-e € [ 00 [« ]
Nyw = 3 MY &)  and  (Trlyy = ) Aok a'() (232)
keXn keKy

Substituting these into (2.11) and using (2.26) gives the result immediately. O

Theorem 2. If the conditions of Theorem 1 hold then

. =5 .
Z; (v' —y!) = det||1Z; (Wh =) llasp=1..v. (2.33)
Proof. Using (2.10), (2.21) and (2.30) (which follows from (2.13) by Lemma 3)

=N .
z: (Y =y =) faH (v(ya > ML E P (v <Pka(y.§a))

cEPy a=1 ko€ Ky

N _s .
= > e 1] 2 el (2.34)

0‘€PN a=1

which is an expansion of the required determinant. O

2.3 One wall and no wall geometries

=5 .
When L sufficiently large the path closest to the wall at y = L cannot touch it and so Z; (y4, —
yZ_) become the generating function for paths that are affected by only one wall Z3 (4, —)y[f,).
Hence taking the limit L — oo gives the corollary,

Corollary. For y! Elj L and yf EIf{ 1, the N-path generating function with only one wall at
height y = 0 is given by,

ZV (v = y") = 1128 (= y)llap=1..7 - (2.35)

If we also condition the path closest to the wall at y = 0 so that it cannot touch that wall

we will end up with the “no boundary” results.

Acknowledgements

Financial support from the Australian Research Council is gratefully acknowledged by RB and
ALO. JWE is grateful for financial support from the Australian Research Council and for the
kind hospitality provided by the University of Melbourne during which time this research was

begun.

117



References

[1] S. Karlin and G. McGregor. Pacific Journal of Mathematics, 9:1141, 1959.
[2] M. E. Fisher. J. Stat. Phys., 34:667, 1984.
(3] P. J. Forrester. J. Phys. A., 22:1L.609, 1989.
[4] P. J. Forrester. J. Stat. Phys., 56:767, 1989.
(5] P. J. Forrester. J. Phys. A., 23:1259, 1990.
(6] A.J. Guttmann, A. L. Owczarek, and X. G. Viennot. To appear in J. Phys. A., 1998.
[7) I M. Gessel and X. Viennot. Advances in Mathematics, 58:300, 1985.
[8] I. M. Gessel and X. Viennot. Determinants, paths, and plane partitions. preprint, 1989.
[9] A. L. Owczarek and R. J. Baxter. J. Phys. A, 20:5263-5271, 1987.
[10] F.Y. Wu. Phys. Rev., 168:539, 1968.

[11] R. J. Baxter. Ezactly Solved Models in Statistical Mechanics. Academic Press, London,
1982.

[12] H. A. Bethe. Z. Phys., 71:205, 1931.
[13] E. H. Lieb. Phys. Rev., 162:162, 1967.

[14] See the Proceedings of the “Formal Power Series and Algebraic Combinatorics” Conference
(1997).

118



