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Abstract. The partition function for the problem of an arbitrary number of directed non-
intersecting walks interacting with one or two walls parallel to the direction of the walks is calculated
exactly utilizing a theorem recently proved concerning the Bethe ansatz for the eigenvectors of the
transfer matrix of the five-vertex model. This theorem shows that the completeness of the Bethe
ansatz eigenvectors for theN -walk transfer matrix can be deduced from the completeness of the
one-walk eigenvectors.

1. Introduction

Recently, the problems of one and two directed walks interacting with one and two walls
via contact interactions on the square lattice have been solved exactly [1]. In particular, the
partition functions for fixed length and fixed starting and ending positions have been evaluated.
Another recent development [2] has been the proof of two theorems concerning the evaluation
of the partition function ofN such walks with arbitrary inhomogeneous (with respect to the
direction perpendicular to the directness) weights: these theorems give the answer in terms
of a determinantprovided that the solution of the one-walk problem can be structured in a
particular fashion. In this paper we show that the one-walk solution for the case of surface
contact interactions with homogeneous bulk weights satisfies the conditions of those theorems,
which we write as a single theorem for the purposes of this paper, and hence we give the solution
of N walks in a strip and in a half-plane interacting with their surfaces. In the case of the strip,
one boundary interaction is dependent on the other. The ideas behind this method of solution
originated in the mapping from the five-vertex model (a sub-case of the more well known six-
vertex model) toN non-intersecting walks [3, 4]. It should be noted that with homogeneous
weights away from the boundaries but extra weights at the boundaries the six-vertex model
has been considered previously [5]. However, in [5] and most other studies of the six-vertex
model, only such properties of the model are calculated that are averages over all numbers of
walks,N . Here, in contrast, we find the partition function for a fixed number of walks,N , of a
fixed finite lengtht . Our formulae generalize the ‘master formulae’ of Fisher (equation (5.9)
of [6]) and of Forrester (equation (4) of [7]). Physically, multiple walks near a sticky wall are
a simple model of the adsorption of a polymer network.
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Figure 1. Three non-intersecting directed walks of lengtht = 14 in a strip of widthL =
9. The variablesyi , yf and t are shown. The walk closest to the lower wall has weight
v(1)w(1, 2)w(2, 3)w(3, 2) . . . w(1, 0)w(0, 1) = κ3 with yi

1 = 1 andy
f

1 = 1.

2. The model

A lattice path or walk in this paper is a walk on a square lattice rotated through 45◦ which has
steps in only the north-east or south-east directions, and with sites labelled(m, y) (see figure 1).
A set of walks isnon-intersectingif they have no sites in common. We are concerned with
enumerating the number of configurations ofN non-intersecting walks, starting and ending at
given positions, in two geometries: (1) walks which are confined to the upper half-plane; and
(2) walks which are confined to a strip of a given width,L. In particular, we are interested in
interacting cases where the walks nearest the boundaries are attracted or repulsed by contact
interactions. In this paper we shall focus on case (2) since the other case can be easily derived
from it.

First, we describe the model considered by Braket al [2]: this requires the following
sub-domains ofZN :

o

SL= {y|1 6 y 6 L, y ∈ Z andy odd} (1a)
e

SL= {y|0 6 y 6 L, y ∈ Z andy even} (1b)

SL= {y|0 6 y 6 L, y ∈ Z} (1c)
o

UL= {(y1, . . . , yN)|1 6 y1 < · · · < yN 6 L, yi ∈ o

SL} (1d)
e

UL= {(y1, . . . , yN)|0 6 y1 < · · · < yN 6 L, yi ∈ e

SL} (1e)

UL= {(y1, . . . , yN)|0 6 y1 < · · · < yN 6 L, yi ∈ SL}. (1f)

We will use
p

UL to denote
o

UL or
e

UL. N non-intersecting walks were considered, confined to

a strip of widthL, such that they started aty-coordinatesyi = (yi
1, . . . , y

i
N ) ∈ p

UL in column

m = 0 of the lattice sites and terminated aftert steps aty-coordinatesyf = (y
f

1 , . . . , y
f

N) ∈ p′
UL

in thet th column. Ift is even thenp′ = p or elsep′ = p̄, wherep̄ is the opposite parity top.

The strip widthL was considered to be odd only so that| e

UL | = | o

UL | = ( 1
2 (L+1)

N

)
: we do the

same in this work. Paths were considered such that if(m − 1, y), with y ∈ SL, is the position
of a path in columnm − 1 the only possible positions for that path in columnm are(m, y ′)
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with y ′ = y ± 1 andy ′ ∈ SL. The non-intersection is defined through the constraint that if
there areN distinct sites occupied atm = 0 then in each column of sites (06 m 6 t) there
are exactlyN occupied sites. Hence they-coordinates of the occupied sites in any column are

restricted to satisfyy ∈ p

UL with the parityp depending on whetherm is even or odd. The walk
problem associated with the five-vertex problem [8, 4] was generalized by Braket al [2] by the
assigning of a weightw(y, y ′) to the lattice edge from site(m−1, y) to (m, y ′) with y ′ = y±1
(see figure 1). Notice that, sincew(y, y ′) is assumed independent of the column indext , due
to the square lattice structure the weights are periodic in thet direction with period two: note

that if y ∈ p

SL theny ′ ∈ p̄

SL, and in generalw(y, y ′) 6= w(y ′, y). An arbitrary weightv(yi)

was also associated with each of the sites occupied atm = 0. The weight associated with a
given set of walks is the product ofw weights over all edges occupied by the walks multiplied
by the product of thev weights for each of the initial sites occupied. The partition function,
=
Z

N
t (yi → yf ), of N walks of lengtht starting aty = yi in columnm = 0 and finishing at

y = yf in columnm = t is the sum of these weights over all sets of walks connectingyi and
yf :

=
Z

N
t (yi → yf ) =

∑
Y

N∏
j=1

v(yj (0))

t∏
m=1

w(yj (m − 1), yj (m)) (2)

whereyj (m) is the position of thej th walk in columnm and the setY is given by

Y = {yj (m)|1 6 j 6 N, 0 6 m 6 t, 1 6 y1(m) < y2(m) < · · · < yN(m) 6 L

yj (m) = yj (m − 1) ± 1 andyj (0) = yi
j , yj (t) = y

f

j }. (3)

WhenN = 1 we denote this partition function as
=
Z

S
t (yi → yf ).

In this paper we shall only consider the caseL odd and fory ∈ SL

v(y) =


κ for y = 0

µ = 1 +
1

(κ − 1)
for y = L

1 otherwise

(4)

and

w(y, y ′) = v(y ′) for y, y ′ ∈ SL . (5)

It should be noted that while we have a model where weights are associated with edges
the model chosen is readily seen to be exactly equivalent to one where a weightκ is associated
with every occupied site aty = 0 and a weightµ is associated with every occupied site at
y = L. A (1, 0) step weight is ‘transferred’ to ay = 0 site weight and a(L − 1, L) step
weight is transferred to ay = L site weight with the initial weightsv(0) andv(L) taking care
of the first site of the paths possibly in contact with either of the boundaries (i.e. ifyi

1 = 0 or
yi

N = L respectively).
In the limit L → ∞ with yi andyf fixed and finite, the partition function forN walks

near a single wall is obtained

Z̄N
t (yi → yf ) = lim

L→∞
=
Z

N
t (yi → yf ). (6)

WhenN = 1 we denote the one-wall partition function asZ̄S
t (yi → yf ).
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3. BEO theorem

We summarize the work of Braket al [2] in one theorem, which we refer to as the BEO
theorem. First, we define the requisite transfer matrices.

Transfer matrix definitions. Let y ∈ e

SL and y ′ ∈ o

SL. For N = 1 the one-step transfer
matrices are defined as

(
eo

T 1)y,y ′ =
{

0 if |y − y ′| > 1

w(y, y ′) if |y − y ′| = 1
(7a)

and

(
oe

T 1)y ′,y =
{

0 if |y ′ − y| > 1

w(y ′, y) if |y − y ′| = 1.
(7b)

TheN -walk one-step transfer matrices forN > 1 are constructed from sub-matrices of a
direct product of the aboveN = 1 matrices:

(
oe

T N)y,y′ =
( N⊗

i=1

oe

T 1

)
y,y′

y ∈ o

UL and y′ ∈ e

UL (8a)

and

(
eo

T N)y′,y =
(

N⊗
i=1

eo

T 1

)
y′,y

y′ ∈ e

UL and y ∈ o

UL. (8b)

The two-step transfer matrices for allN are defined as
e·e
T N= eo

T N

oe

T N (9a)
o·o
T N= oe

T N

eo

T N. (9b)

In the normal fashion theN -walk transfer matrices can be used to calculate theN -walk
partition functions. The BEO theorem describes under what conditions on theN = 1 transfer
matrices the partition function forN walks can be computed from these matrices using a Bethe
ansatz.

BEO theorem. Let { o
ϕ R

k }k∈K1 and { e
ϕ R

k }k∈K1, whereK1 is some index set, be maximal sets of
independent vectors satisfying

eo

T 1
o
ϕ R

k = λk

e
ϕ R

k and
oe

T 1
e
ϕ R

k = λk

o
ϕ R

k (10)

with λk ∈ C. Let
e·e
T N and

o·o
T N for all N be given by equations (9). By imposing an arbitrary

ordering on the elements ofK1 define

KN = {k = (k1, k2, . . . , kN)|ki ∈ K1 andk1 < k2 < · · · < kN } (11)

and

3k =
N∏

α=1

λkα
. (12)

(a) If the setK1 is non-empty then
o
ϕ R

k and
e
ϕ R

k are right eigenvectors of
o·o
T 1 and

e·e
T 1 respectively

with eigenvalueλ2
k.
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(b) If for p ∈ {e, o} the sets{p
ϕ R

k }k∈K1 span the column spaces of
e·e
T 1 and

o·o
T 1 respectively,

then:

(i) corresponding sets{ o
ϕ L

k }k∈K1 and{ e
ϕ L

k }k∈K1 of row vectors may be found such that
p
ϕ L∗

k · p
ϕ R

k′ = δk,k′ and
∑
k∈K1

p
ϕ R

k (y)
p
ϕ L∗

k (y ′) = δy,y ′ (13)

for eachp ∈ {e, o}, where the∗ denotes complex conjugation, and
o
ϕ L

k

oe

T 1= λk

e
ϕ L

k and
e
ϕ L

k

eo

T 1= λk

o
ϕ L

k (14)

and further
o
ϕ L

k and
e
ϕ L

k are left eigenvectors of
o·o
T 1 and

e·e
T 1 respectively with eigenvalue

λ2
k;

(ii) for C ∈ {L, R} andp ∈ {e, o} the vectors{ p

8
C
k }k∈KN

given by the Bethe ansatz,

p

8
C
k(y) =

∑
σ∈PN

εσ

N∏
α=1

p
ϕ C

kσα
(yα) =

∑
σ∈PN

εσ

N∏
α=1

p
ϕ C

kα
(yσα

) y ∈ p

UL (15)

wherePN is the set ofN ! permutations of{1, 2, . . . , N}, σ = (σ1, σ2, . . . , σN) ∈ PN

andεσ is the signature of the permutationσ , satisfy
oe

T N

e

8
R
k = 3k

o

8
R
k and

eo

T N

o

8
R
k = 3k

e

8
R
k (16)

and
o

8
L
k

oe

T N = e

8
L
k3k

e

8
L
k

eo

T N = o

8
L
k3k (17)

(iii) the sets{ p

8
C
k }k∈KN

given by (15) are maximal sets of independent vectors that span

the column (C = R) and row (C = L) spaces of
o·o
T N (p = o) and

e·e
T N (p = e);

(iv) theN -walk partition function is given by

=
Z

N
t (yi → yf ) =

N∏
α=1

v(yi
α)
∑
k∈KN

p′

8
R
k (yi )3t

k

p

8
L∗
k (yf )

yi ∈ p′
UL and yf ∈ p

UL (18)

where ift is even,p′ = p but otherwisep andp′ are of opposite parity, and

(v)
=
Z

N
t (yi → yf ) = det‖=

Z
S
t (yi

α → y
f

β )‖α,β=1,...,N . (19)

It was shown also that ifL > (t − |yi
N − y

f

N |)/2 + max(yi
N , y

f

N) then

=
Z

S
t (yi

α → y
f

β ) = Z̄S
t (yi

α → y
f

β ) (20)

and hence

Z̄N
t (yi → yf ) = det‖Z̄S

t (yi
α → y

f

β )‖α,β=1,...,N . (21)

4. Results

In the next section we demonstrate that with the weights given by (5) theN = 1 transfer
matrices satisfy the conditions of the BEO theorem and hence show that the partition function,
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ZN
t (yi → yf ), of N non-intersecting walks with weights (5) and (4) for which thej th walk

starts atyi
j and arrives atyf

j aftert steps is given by the following determinant:

ZN
t (yi → yf ) =

∣∣∣∣∣∣∣∣∣∣∣

ZS
t (yi

1 → y
f

1 ) ZS
t (yi

1 → y
f

2 ) . . . ZS
t (yi

1 → y
f

N)

ZS
t (yi

2 → y
f

1 ) ZS
t (yi

2 → y
f

2 ) . . . ZS
t (yi

2 → y
f

N)

. . . .

. . . .

. . . .

ZS
t (yi

N → y
f

1 ) ZS
t (yi

N → y
f

2 ) . . . ZS
t (yi

N → y
f

N)

∣∣∣∣∣∣∣∣∣∣∣
(22)

whereZS
t (yi

j → y
f

k ) is the generating function for configurations of a single walk starting at

yi
j and ending atyf

k in the presence of a wall or two walls. In the former case, withκ̄ = κ − 1,
ZS

t (yi → yf ) is replaced by

Z̄S
t (yi → yf ) =

(
t

1
2(t − yi + yf )

)
−
(

t
1
2(t − yi − yf − 2)

)
+
∑
n>1

κ̄n

{(
t

1
2(t − 2n − yi − yf + 2)

)
−
(

t
1
2(t − 2n − yi − yf − 2)

)}
.

(23)

When there are two walls a widthL > 0 apartZS
t (yi → yf ) must be replaced by

=
Z

S
t (yi → yf ) = (κ − 2)κt+1

κ̄
1
2 (t+yi+yf +2){1 − κ̄−L}

+
∑
m∈Z

{(
t

1
2(t − yi + yf ) + Lm

)
−
(

t
1
2(t − yi − yf − 2) + Lm

)
+
∑
n>1

κ̄n

[(
t

1
2(t − 2n − yi − yf + 2) + Lm

)
−
(

t
1
2(t − 2n − yi − yf − 2) + Lm

)]}
(24)

which is not a polynomial inκ, but rather a Laurent polynomial in̄κ.

5. Solution ofN non-intersecting walks interacting with a wall

To solve theN -walk problem we establish that the conditions of the BEO theorem hold. To
accomplish this we must examine the one-walk case. We point out that we examine the one-
walk problem not to solve this problem per se, as it has been solved previously [1] using a
different method, but rather to establish the technical conditions of the BEO theorem. Once
we have demonstrated that the one-walk transfer matrix problem satisfies the conditions of the
BEO theorem the determinantal result (22) for the partition function forN walks then follows
from the conclusions of the theorem.

5.1. Establishing the conditions of the BEO theorems

In order to use the BEO theorem we first need a set of one-walker left and right eigenvectors

of
e·e
T 1 and

o·o
T 1 that span the row and column spaces respectively of these matrices. To do this

we consider the equations (10) which allows us to use part (a) of the theorem to establish the
conditions of part (b).
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For the right vectors,
e
ϕ R

k , we first solve the sets of equations:
eo

T 1
o
ϕ R

k = λ
e
ϕ R

k meaning

o
ϕ R

k (1) = λ
e
ϕ R

k (0) (25)
o
ϕ R

k (y)+
o
ϕ R

k (y + 2) = λ
e
ϕ R

k (y + 1) 1 6 y 6 L − 4 and y ∈ o

SL (26)
o
ϕ R

k (L − 2) + µ
o
ϕ R

k (L) = λ
e
ϕ R

k (L − 1) (27)

and
oe

T 1
e
ϕ R

k = λ
o
ϕ R

k meaning

κ
e
ϕ R

k (0)+
e
ϕ R

k (2) = λ
o
ϕ R

k (1) (28)
e
ϕ R

k (y)+
e
ϕ R

k (y + 2) = λ
o
ϕ R

k (y + 1) 2 6 y 6 L − 3 and y ∈ e

SL (29)
e
ϕ R

k (L − 1) = λ
o
ϕ R

k (L). (30)

Once we have found the right vectors the BEO theorem guarantees us solutions for the left

vectors which satisfy the following equations (14): that is,
e
ϕ L

k

eo

T 1= λ
o
ϕ L

k meaning

e
ϕ L

k (y)+
e
ϕ L

k (y + 2) = λ
o
ϕ L

k (y + 1) 0 6 y 6 L − 3 and y ∈ e

SL (31)

µ
e
ϕ L

k (L − 1) = λ
o
ϕ L

k (L) (32)

and
o
ϕ L

k

oe

T 1= λ
e
ϕ L

k meaning

κ
o
ϕ L

k (1) = λ
e
ϕ L

k (0) (33)
o
ϕ L

k (y)+
o
ϕ L

k (y + 2) = λ
e
ϕ L

k (y + 1) 1 6 y 6 L − 2 and y ∈ e

SL . (34)

We only consider the special caseκ − 1 = 1/(µ − 1) for which the equations above can be

explicitly solved to give the following. Fory ∈ p

SL

p
ϕ L

k (y) =ϕ
k(y) (35)

p
ϕ R

k (y) =ϕ
k(y)/v(y) (36)

where

ϕ
k(y) =



[
µ(κ − 2)

1 − (µ − 1)L

]1/2

(κ − 1)−y/2 if k = 0

1√
L

[exp(iky) + exp(−iθk − iky)] if k ∈ Kf[
µ(κ − 2)

1 − (µ − 1)L

]1/2

(−1)y(κ − 1)−y/2 if k = π

(37)

and

λk =


1√

κ − 1
+

√
κ − 1 if k = 0

2 cos(k) if k ∈ Kf

− 1√
κ − 1

− √
κ − 1 if k = π

(38)

where exp(iθk) is given by

exp(iθk) = −λk − κ exp(−ik)

λk − κ exp(ik)
(39)
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and

Kf =
{

πj

L

∣∣∣∣j = 1, . . . , L − 1

}
. (40)

Note thatϕ k(y) can be made real by taking out a phase factor. Thus, there areL + 1 distinct
values ofλk, but if k → π −k thenλk changes sign and hence there are only(L+1)/2 distinct
eigenvalues,λ2

k. Note, sinceL is assumed odd,λk is never equal to zero (ifL is even this
happens fork = π/2 which gives rise to a null space—a distracting complication we do not

address). Since the dimension of the space upon which
e·e
T 1 and

o·o
T 1 act is(L + 1)/2 we have a

spanning set of eigenvectors labelled by the index setK1 which is given by

K1 =
{
k = π`

L

∣∣∣∣` = 0, . . . ,
L − 1

2

}
. (41)

Thus we have satisfied the conditions of the BEO theorem and hence
=
Z

N
t (yi → yf ) = det‖=

Z
S
t (yi

α → y
f

β )‖α,β=1,...,N (42)

where
=
Z

S
t (yi → yf ) = v(yi)

∑
k∈K1

p
ϕ R

k (yi)λt
k

p′
ϕ L∗

k (yf ). (43)

5.2. Evaluation of the one-walk partition function from the spectral decomposition

For the sake of completeness (as it has not appeared previously) we briefly demonstrate how
the expression (43) for the partition functions required can be evaluated. This method differs
from that previously used to obtain a ‘constant term’ solution [1]. First note that the partition
function is zero ift + yi + yf is odd. Fort + yi + yf even, substitution from (36) gives

=
Z

S
t (yi → yf ) =

∑
k∈K1

ϕ
k(y

i)λt
k

ϕ ∗
k(y

f ) (44)

and using (37),
=
Z

S
t (yi → yf ) = µ(κ − 2)

1 − (µ − 1)L
λt

0(κ − 1)−(yi+yf )/2 +
1

L

∑
k∈K1−{0}

λt
k(Qk + Q−k) (45)

where

Qk = eik(yf −yi ) + eik(yf +yi )eiθk . (46)

SinceQ2π−k = Q−k, λt
π−kQπ−k = (−1)t+yi+yf

λt
kQ−k andQ0 = Qπ = 0 the range ofk

values summed over can be extended to give,

=
Z

S
t (yi → yf ) = µ(κ − 2)κt

1 − (µ − 1)L
(κ − 1)−(t+yi+yf )/2 +

1

2L

∑
k∈K+

λt
kQk (47)

where we have used (38) and

K+ =
{

π`

L

∣∣∣∣` = 0, . . . , 2L − 1

}
. (48)

Hence, if we now use the result that, for1 ∈ Z,

1

2L

2L−1∑
n=0

exp
(
iπ

n

L
1
)

=
{

1 if 1 ∈ {0, ±2L, ±4L, . . .}
0 otherwise

(49)

we get, after expanding the denominator of eiθk (valid for |κ − 1| < 1), the result (23).
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Returning to (45), the summand is a continuous function ifκ 6= 2 (exp(iθk) has a zero
in the denominator forκ = 2), and thus in the limitL → ∞ the sum becomes a Riemann
integral which can be evaluated by residues to give (24). This can also be obtained directly
from (23). Since (23) and (24) are Laurent polynomials inκ̄ (since the binomial coefficients
are assumed to vanish outside there natural domain of definition) the results are valid for allκ.
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