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Abstract. The partition function for the problem of an arbitrary number of directed non-
intersecting walks interacting with one or two walls parallel to the direction of the walks is calculated
exactly utilizing a theorem recently proved concerning the Bethe ansatz for the eigenvectors of the
transfer matrix of the five-vertex model. This theorem shows that the completeness of the Bethe
ansatz eigenvectors for thé-walk transfer matrix can be deduced from the completeness of the
one-walk eigenvectors.

1. Introduction

Recently, the problems of one and two directed walks interacting with one and two walls
via contact interactions on the square lattice have been solved exactly [1]. In particular, the
partition functions for fixed length and fixed starting and ending positions have been evaluated.
Another recent development [2] has been the proof of two theorems concerning the evaluation
of the patrtition function ofV such walks with arbitrary inhomogeneous (with respect to the
direction perpendicular to the directness) weights: these theorems give the answer in terms
of a determinanprovidedthat the solution of the one-walk problem can be structured in a
particular fashion. In this paper we show that the one-walk solution for the case of surface
contact interactions with homogeneous bulk weights satisfies the conditions of those theorems,
which we write as a single theorem for the purposes of this paper, and hence we give the solution
of N walks in a strip and in a half-plane interacting with their surfaces. In the case of the strip,
one boundary interaction is dependent on the other. The ideas behind this method of solution
originated in the mapping from the five-vertex model (a sub-case of the more well known six-
vertex model) taV non-intersecting walks [3, 4]. It should be noted that with homogeneous
weights away from the boundaries but extra weights at the boundaries the six-vertex model
has been considered previously [5]. However, in [5] and most other studies of the six-vertex
model, only such properties of the model are calculated that are averages over all numbers of
walks, N. Here, in contrast, we find the partition function for a fixed number of walkf a

fixed finite lengthy. Our formulae generalize the ‘master formulae’ of Fisher (equation (5.9)

of [6]) and of Forrester (equation (4) of [7]). Physically, multiple walks near a sticky wall are

a simple model of the adsorption of a polymer network.

§ E-mail addressbrak@maths.mu.oz.au
|| E-mail addressessam@vms . rhbnc.ac.uk
€ E-mail addressaleks@ms.unimelb.edu.au

0305-4470/99/162921+09$19.50 © 1999 IOP Publishing Ltd 2921



2922 R Brak et al

y
9 i
8
v, 7
6
5
1
v, 3
2
AN
0

> 111

0123 45 6 78 9 1011 12 13 14

Figure 1. Three non-intersecting directed walks of length= 14 in a strip of widthL =
9. The variablesy’, y/ andr are shown. The walk closest to the lower wall has weight
vDw(d, w2, w3, 2)...w(l, 0)w(0, 1) = «3 with yi =1 andylf =1.

2. The model

A lattice path or walk in this paper is a walk on a square lattice rotated throughtibh has
steps in only the north-east or south-east directions, and with sites labelledl(see figure 1).
A set of walks isnon-intersectingf they have no sites in common. We are concerned with
enumerating the number of configurationg\bhon-intersecting walks, starting and ending at
given positions, in two geometries: (1) walks which are confined to the upper half-plane; and
(2) walks which are confined to a strip of a given widkh, In particular, we are interested in
interacting cases where the walks nearest the boundaries are attracted or repulsed by contact
interactions. In this paper we shall focus on case (2) since the other case can be easily derived
from it.

First, we describe the model considered by Bealal [2]: this requires the following
sub-domains oZ":

St={y1<y<L,yeZandy odd (1a)
Si.={yl0< y <L,y e Zandy even (1b)
St={0<y<L,yeZ (10)
Ur={O1s - y)IL<y1 < - < yw < L,y €81} (1d)
Ur={(1s - YOSy < - < yy < L,y €81) (1e)
U= {1, yWI0< y1 <--- <yny <L,y €81} (1f)

We will use zf}L to denoteﬁL or z)L. N non-intersecting walks were considered, confined to
a strip of widthLZ, such that they started atcoordinateg)’ = (y, ..., yy) € z,’}L in column
m = 0 of the lattice sites and terminated afteteps ay-coordinatey’ = (y{, ..., yl) €,
in therth column. Ifz is even therp’ = p or elsep’ = p, wherep is the opposite parity tp.
e o 1
The strip widthZ was considered to be odd only so that; | = | ¢/, | = (24"): we dothe

same in this work. Paths were considered such that if 1, y), with y € Sy, is the position
of a path in columnn — 1 the only possible positions for that path in columrare (m, y’)
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with yY = y £ 1 andy’ € S;. The non-intersection is defined through the constraint that if
there areV distinct sites occupied at = 0 then in each column of sites €Q m < ¢) there

are exactlyN occupied sites. Hence thyecoordinates of the occupied sites in any column are
restricted to satisfy € LF{L with the parityp depending on whether is even or odd. The walk
problem associated with the five-vertex problem [8, 4] was generalized byeBah|2] by the
assigning of aweighb (y, y’) to the lattice edge from siten — 1, y) to (m, y ) withy’ = y£1
(see figure 1). Notice that, sine®(y, y') is assumed independent of the column indedue

to the square lattice structure the weights are periodic im theection with period two: note

that if y e§L theny’ e§L, and in generalv(y, y') # w(y’, y). An arbitrary weightv(y")
was also associated with each of the sites occupiedat0. The weight associated with a
given set of walks is the product af weights over all edges occupied by the walks multiplied
b)//vthe product of the weights for each of the initial sites occupied. The partition function,

Z, (y' — y'), of N walks of lengthr starting aty = ¥’ in columnm = 0 and finishing at
y = y/ in columnm = ¢ is the sum of these weights over all sets of walks connegfirand

y/
N ) N t
Z, @ >y =) [ve;0) [[wem—1).y;m) @)
Yy j=1 m=1
wherey;(m) is the position of thgth walk in columrnm and the sed’ is given by
YV={yjmI1<j<NO<m<t,1<yi(m) <ya(m) <--- <yyim) <L
yj(m) = y;(m — 1) £ 1 andy,(0) = yi. y; (1) = y/}. €)

=S .
WhenN = 1 we denote this partition function ag (y' — y/).
In this paper we shall only consider the cdsedd and fory € S,

K for y=0
1
v(y) = K1 D or y 4
1 otherwise
and
w(y, y) =v(") for y,y' esSe. (5)

It should be noted that while we have a model where weights are associated with edges
the model chosen is readily seen to be exactly equivalent to one where a wigtsisociated
with every occupied site at = 0 and a weighi is associated with every occupied site at
y = L. A (1,0) step weight is ‘transferred’ to & = 0 site weight and &L — 1, L) step
weight is transferred to a = L site weight with the initial weights(0) andv(L) taking care
of the first site of the paths possibly in contact with either of the boundaries (ie=f0 or
yy = L respectively).
In the limit L — oo with ¢ andy/ fixed and finite, the partition function fav walks
near a single wall is obtained

o N
ZNy -y = lim z, ' — y’). (6)

WhenN = 1 we denote the one-wall partition functionéﬁ(y" — yh).
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3. BEO theorem

We summarize the work of Brakt al [2] in one theorem, which we refer to as the BEO
theorem. First, we define the requisite transfer matrices.

Transfer matrix definitions. Lety eéL and y’ eéL. For N = 1 the one-step transfer
matrices are defined as

0y = | ° Pl (72)
Ty, y) it ly—yl=1
and
oe 0 if |y —yl>1
(T1)y,y = , . , (7b)
YT wg i y=y =1

The N-walk one-step transfer matrices fof > 1 are constructed from sub-matrices of a
direct product of the abov& = 1 matrices:

N
(TV)yy = ((X) T1 ) yeu, and y ey (8a)
i=1 y.y
and
eo N eo e o
(TW)y.y = <® Tl> y ey, and yeu;. (8b)
i=1 vy
The two-step transfer matrices for &¥l are defined as
Tn=TnTn (9a)
Ty=TnTh. (9b)

In the normal fashion th&/-walk transfer matrices can be used to calculateNhealk
partition functions. The BEO theorem describes under what conditions avi thel transfer
matrices the partition function fay walks can be computed from these matrices using a Bethe
ansatz.

BEO theorem. Let {(Z,'f}ke;cl and {é,f‘}ke;cl, wherek; is some index set, be maximal sets of
independent vectors satisfying

eo o0 oe e
R R

SR IR
T19; = M P} and T19; = A @y (20)

with 4, € C. Let i_lfN and (’ii“()N for all N be given by equations (9). By imposing an arbitrary
ordering on the elements @&f; define
/CN = {k: = (kl, kz, ey kN)|k,' € IC]_ andkl < k2 << kN} (11)

and
N
Ap = l_[ Ay (12)
a=1

0:0 e-e

(a) Ifthe sefCy is non-empty theé,? andé?,'f are right eigenvectors af'; andT'; respectively
with eigenvalue.?.
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b) If for p € {e, 0} the sets{(Z Rliex, Span the column spaces %ﬁ‘l and OT'ol respectively,
k 1 p p p y
then:

(i) corresponding setsz,';}ke,gl and{é?,';}ke,c1 of row vectors may be found such that

Pl P A4 AR
oL R =8 and Y Ry OGN =5, (13
kekKq

for eachp € {e, 0}, where thex denotes complex conjugation, and

e, eo o
L

OL oe EL L
Or T1= M 95 and Y T1= Ak 9 (14)

and furtherc?),'; and(f?,'; are left eigenvectors &? 1 and%‘el respectively with eigenvalue
A2

(ii) for C e {L, R} andp € {e, o} the vectors{cIf)%}kEKN given by the Bethe ansatz,

N N
p P P »
P =Y &[[9C 0= e&[]?00)  welr (15)
oePy a=1 oePy a=1
wherePy is the set ofV! permutations of1, 2, ..., N}, 0 = (01,02, ...,0n) € Py
ande, is the signature of the permutatien satisfy
oe e R o R eo o R e R
and
o LO(Z e L e Leo o L
O T =D Ay O T =D Ay (17)

(iii) the sets{cllg Clkeicy given by (15) are maximal sets of independent vectors that span
the column ¢ = R) and row C = L) spaces OE—?N (p=o) anda“e,v (p =e);

(iv) the N-walk partition function is given by
N

=N . X . P . Pl f
z, @ =y =]]v0d D eR@HAL o5 @)
a=1 keky
y ey, and y' ey, (18)

where ift is even,p’ = p but otherwisep and p’ are of opposite parity, and

=N =S . f
(v) Z, (4 >y =det|Z, 0 = Y llapr..n- (19)

.....

It was shown also that i, > (r — |y, — y|)/2 + maxy’,, y}) then

=S . _ .
Z, 0L =y =Z°0L - ) (20)
and hence

ZN ' =y = detl ZE (L = YD) lapot...- (21)

4. Results

In the next section we demonstrate that with the weights given by (5)the 1 transfer
matrices satisfy the conditions of the BEO theorem and hence show that the partition function,
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ZN(y' — y’), of N non-intersecting walks with weights (5) and (4) for which thie walk
starts aty;'. and arrives ay‘{ afters steps is given by the following determinant:

Z2O0i =) ZEOL -y - ZR0h - o)
Z5Gh =y ZEOh— v ... Z5Gh — v

Ny -y = ' ‘ ' ' (22)
Z5Gh = D) ZEON = ¥ o ZEOh = v

whereZ;S(yj. — y,'f) is the generating function for configurations of a single walk starting at
y; and ending ajz,jr in the presence of a wall or two walls. In the former case, with « — 1,
Z5(y! — y/)isreplaced by

1o o) oo
FO =) Lt —yi+yh) 3t —yi—y/ =2

! t
+) (" _ '
,;K {<%(t—2n—yi—yf+2)) (%(Z—Zn—yi—yf_Z))}

(23)
When there are two walls a width > 0 apartZ®(y* — y/) must be replaced by

(k — 21

,;%(t+y"+.vf+2){1 — kL

0 [ (RPN B (PR
3=y +yh+Lm) \3(—y —y/ —2)+Lm
B t

+ n

;K [(%(I—Zn—y"—yf+2)+Lm>

t
_(%a—zn —yi—yf —2>+Lm)“ (24)

which is not a polynomial ir, but rather a Laurent polynomial in

=S . ’
Z, O =y =

5. Solution of NV non-intersecting walks interacting with a wall

To solve theN-walk problem we establish that the conditions of the BEO theorem hold. To

accomplish this we must examine the one-walk case. We point out that we examine the one-

walk problem not to solve this problem per se, as it has been solved previously [1] using a
different method, but rather to establish the technical conditions of the BEO theorem. Once

we have demonstrated that the one-walk transfer matrix problem satisfies the conditions of the

BEO theorem the determinantal result (22) for the partition functiomvferalks then follows
from the conclusions of the theorem.
5.1. Establishing the conditions of the BEO theorems

In order to use the BEO theorem we first need a set of one-walker left and right eigenvectors
of 5“61 and%ll that span the row and column spaces respectively of these matrices. To do this

we consider the equations (10) which allows us to use part (a) of the theorem to establish the

conditions of part (b).
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For the right vectorsi),'f, we first solve the sets of equationebgiéf =X é,f‘ meaning

PRI =1 9R(0) (25)
PR+ PRG+2 =2 0%y +D)  1<y<L-4 and yed, (26)
GR(L—2)+p ORL) =1 PR~ 1) 27)

oe e R 0 R .
andT19; = A ¢ meaning

K 9RO+ PR =1 9R(D) (28)
ORI+ PR+ =2 éf(+D  2<y<L-3 and yes (29)
OR(L —1) = A PR(L). (30)

Once we have found the right vectors the BEO theorem guarantees us solutions for the left
vectors which satisfy the following equations (14): thatﬁb,&gl: A &,& meaning
PLOFPE(Y+D =2 9L(y+1)  0<y<L-3 and yes, (31)
poLL—1) =1 PL(L) (32)
and¢l T1= 1 ¢} meaning

K 9L =2 ¢L0) (33)
PL+ oLy +2) =2 9L(y+1)  1<y<L-2 and yes,. (34)

We only consider the special cagse- 1 = 1/(u — 1) for which the equations above can be
explicitly solved to give the following. Foy € §L

P () =0, () (35)
OR() =0, /v(y) (36)
where
ui -2 172 2 :
L= = | k=D if k=0
[ 1—(u—DF
1 _ o .
9, (y) = ﬁ[exp(lky) +exp(—ib; — iky)] if kek/ (37)
. q1/2
Tﬂ%—%ﬁ (=1 (k — 1)/ if k=m
L1—(n—DE
and
1
+4/k—1 if k=0
Ve —1
e = { 2cosk) if kek/ (38)
—\/1_1 -k =1 if k=nx
p—

where ex|if;) is given by
A — Kk exp(—ik)

expf) = = M — k explik)

(39)
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and
K/l = ﬂ
L

Note thaty , (y) can be made real by taking out a phase factor. Thus, there arkdistinct
values ofy, butif « — & — k theni, changes sign and hence there are @hly 1)/2 distinct
eigenvaluesj?. Note, sinceL is assumed oddy is never equal to zero (if is even this
happens fok = /2 which gives rise to a null space—a distracting complication we do not

address). Since the dimension of the space upon vﬁicandlﬁ'“ul actis(L +1)/2 we have a
spanning set of eigenvectors labelled by the index(gethich is given by

l
Klz{sz

Thus we have satisfied the conditions of the BEO theorem and hence

j:l,...,L—l}. (40)

L-1
=0,...,—1. 41
t=0,..., > } (41)

=N ) =5 . f
Z, ¢y =y =det|z, v, = Y)lap=t..n (42)
where
=S . : p : P
Z, &' =y =v0) ) eROHM 0O, (43)
kE/Cl

5.2. Evaluation of the one-walk partition function from the spectral decomposition

For the sake of completeness (as it has not appeared previously) we briefly demonstrate how
the expression (43) for the partition functions required can be evaluated. This method differs
from that previously used to obtain a ‘constant term’ solution [1]. First note that the partition
function is zero ift + y' + y/ is odd. Fort + y' + y/ even, substitution from (36) gives

=S . .
Z, 6=y =" 06O er () (44)
kE/Cl

and using (37),

=5 w(x —2) (i 1
26—y = ke = DT 2 S T 0+ Q) (45)
(=1 keki—{0}
where
O = K0T 4 gROTRD o, (46)

Since Qo = O, Ay, OQry = (—1)’*»"i+>’f)L;{Q_k and Qg = Q, = 0 the range ok
values summed over can be extended to give,

=5 . (k — 2)«! i 1
i fy— HEZ R ez = N e 47

20" >y == 2L,; L O (47)

where we have used (38) and
£

IC+:{7%£:O,...,2L—1}. (48)

Hence, if we now use the result that, fare Z,
1 %] n 1 if A €{0,+2L, +4L, ...}
— explimn—A) = 49
2L ; p( NL ) io otherwise (49)

we get, after expanding the denominator 6f valid for |« — 1| < 1), the result (23).
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Returning to (45), the summand is a continuous function $# 2 (expi6;) has a zero

in the denominator forx = 2), and thus in the limi. — oo the sum becomes a Riemann
integral which can be evaluated by residues to give (24). This can also be obtained directly
from (23). Since (23) and (24) are Laurent polynomialg ifsince the binomial coefficients

are assumed to vanish outside there natural domain of definition) the results are valid for all
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