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Abstract. 'We consider the mathematical properties of the generating and partition functions in
the two-variable scaling region about the tricritical point in some models of polymer collapse.
We concentrate on models that have a similar behaviour to that of interacting partialty-directed
self-avoiding walks (tPDSAW) in two dimensions. However, we do not restrict the discussion to
that model. After describing the properties for a general class of models, and stating exactly
what we mean by scaling, we prove the following theorem: If the generating function of finite-
size partition fuoctions has a tricritical cross-gver scaling form around the &8-point, and the
associated tricritical scaling function, 2, has a finite radius of convergence, then the partition
function has a finite-size scaling form and importantly the finite-size scaling function, Frisan
entire function. In the IPDSAW case we have an explicit representation of the finite-size scaling
function. We point out that given our description of tricritical scaling this theorem should apply
mutatis mutandis 10 a wider class of &-point models. We discuss the result in relation (o the
Edwards model of polymer collapse for which it has recenily been argued that the finite-size
scaling functions are not entire.

1. Introduction

There exist many exactly solvable examples of two-dimensional lattice models in statistical
mechanics [1] where an expression for the thermodynamic-limit free energy and values
for critical exponents at phase transition points can be calculated. However, only a
few representations of either the thermodynamic (temperature~magnetic field), correlation
function {temperature—distance), or finite-size (temperature-system size) scaling functions
are known. The scaling functions for the correlation function [2], and the finite-size partition
function and specific heat [3], of the two-dimensional Ising model are some examples.
Recently, the scaling function of the generating function (grand partition function) around
the tricritical point of the interacting partially-directed self-avoiding walk (IPDSAW) model
[4] of polymer coilapse was caiculatedf. The generating function is written in terms of the
variables temperature and monomer (step) fugacity and is the weighted sum of the finite-
length partition functions. Therefore, it is an obvious task to transform this scaling function
into one for the finite-size partition functions. Another reason to consider this scaling
function is that some of the finite-size scaling functions of the standard continuum model of
polymer collapse have recently [6] been argued to be non-analytic at zero argument, While
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{ In this paper the scaling function for the case of the sernicontinuous version of the model is found. It can now
be demonstrated explicitly, with a straightforward modification of the work in [5] that the fully discrete model has
the same scaling function.
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our analysis will be concentrated on the IPDSAW case we shall state our central theorem in a
general fashion. This is partly because we shall argue later that its conditions should apply
to the more canonical interacting self-avoiding walk (1ISAW) model (at least below the upper
critical dimension}.

We also write down in this paper (section 4) the set of standard tricritical scaling
assumptions. These are translations of each of the physical ideas that characterizes a
tricritical point (in the symmetry plane [7]). This allows us to set up the theorem concerning
the finite-size scaling fiznction that is proven later. It is possible to understand the finite-size
theorem in section 5 without reading section 4, except for the conclusion of theorem 4.5.
Basically, while section 4 is somewhat technical it explains why one can simply substitute
the tricritical scaling form for the full generating function when near the tricritical point,

The outline of this paper is as follows. In the next section we define the IPDSAW model
and follow that with a section on the general description of the scaling in the tricritical
region. In section 4 we provide a precise description of the expected asymptotic properties
of the generating function around the tricritical point. In section 5 we prove a fairly general
theorem relating the analytic properties of the tricritical scaling function, g to the finite-size
scaling function, f. In section 6 we apply the theorem to the [PDSAW model and derive
series and integral representations for /. We end with a discussion of the relevance of these
results to the polymer collapse transition in general.

2. The 1PDSAW model

The 1PDSAW model is a model exhibiting a collapse transition [8, 4]. It consists of a partially-
directed walk with nearest-neighbour interactions. A partially-directed walk on the square
lattice is a self-avoiding walk attached to the origin in which “westerly’ directed steps are
forbidden. The partition function for an n step walk is

Ziw)= ) o™ ¥
Pa€ &,

where @ is the Boltzmann weight exp(8J), J the energy of a single nearest-neighbour
interaction, B the inverse temperature, ¥, is the set of n-step partially-directed walks and
m(p,} is the number of nearest-neighbour interactions in a given configuration ¢,. In the
thermodynamic limit, # — o, the model undergoes a phase transition from an extended
phase for @ < @, 10 a collapsed phase for @ > w,. The free energy per step, given by

Fe) = lim —— log(Za(@)) @
n—rco nﬁ

has a singularity at @ = w,. If the generating function

Glw,v) = i Zn (" 3)

n=]

considered as a fupction of v has a radius of convergence v,(w}, then it can be shown that
BF (w) = log(uc(@)). (4

Mathematically it turns out to be more convenient to introduce the reduced partition
function, @, and study an alternative generating function

G g) =Gl v)=Y Cue)g"  Grl@)=0"Z(w) g=ouv. (5)
n=i
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This essentially allows the simple transformation to scaling variables in the 1PDSAW model.
(In more general models, such as 1SAW, this ransformation should still be analytic if more
complicated—the & becomes some analytic function g (@).) A solution for G expressed
in terms of ¢-Bessel functions has been found [8] (and in terms of Bessel functions for the
semicontinuous case [4]), from which an extensive study of the thermodynamic properties
has been made [9,4].

3. General scaling: a brief survey

Of relevance is the radius of convergence, g.(w), of G considered as a function of g, with
w a parameter, which is shown schematically in figure 1. We shall refer to the line g.{(®) as
the ‘critical line’. The most significant feature of figure 1 is the point (e, 1) around which
the generating function behaves mathematically in a tricritical fashion [10].
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Figure 1. The radius of convergence, g.{w), of G(g, @} in the PpsAw model, showing the
tricritical point at {e, 1). For other models the right-hand side of the curve need not run along
¢ = 1. The arrows indicate the paths on which the various exponents are defined.

Before we use the asymptotic symbol *~" please note that by the expression ‘g(x) ~
fx) as x — x> we will glways mean that lim,.,, g/f = 1. This is equivalent to
g = f+o(f)asx = x. Also, the expression g(x,y) ~ F(x,y) as x — x for
fixed z = z(x, y) is equivalent to g(x, y(x,z)) ~ f(x, y(x,z)) considered as functions
of x, and as x — X, with the parameter z fixed. This last definition depends on the
invertibility of z(x, y). Geometrically, this corresponds to approaching x. along a level
curve z(x, y) = constant.

In the neighbourhood of tricritical point one expects [10] the generating function to
have the scaling form

G ~ Gs(w, g) = Al — @) "3(A {1 ~ g} o — w]) (6)

as g 1 1 with the argument of g fixed at some valve, It is however usnal, in some vague
sense, to Jssume that the right-hand side gives a good representation of the left-hand side for
g close to 1 and @ close to w,: this region is sketched in figure 2. (Sometimes ‘=’ or ‘a2’ are
used or the idea of uniformity is mentioned: none of these is correct, as usually quoted—in
fact non-uniformity and non-squality are required to give the various asymptotic regions
correctly.) It is this ‘scaling’ sense we shall explicitly state below in section 4. In fact, we
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propose to introduce a new symbol ‘o’ to cover the assumptions discussed in section 4 as
we believe they can be modified to cover some of the many two-variable cross-over scaling
behaviours seen in various model and real systems.

Ifn
Finite Size
Scaling e-Region
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Figure 2. The region where the traditional scaling form is a good asymptotic representation of
the generating function (a) and pastition function (). The shaded region in {a) is constructed by
considering each level curve As(} — ¢)~%(w; — o) = constant. If the constant is %, then there is
a point £ such that for all values of g closer to 1 the ratio of the generating function to its scaling
form is closer to 1 than some preset error. The carve given by Ag(1 —g)~#(me — &) = x.. is the
place where the scaling form, G;, diverges—note that it does not coincide with the critical line
(where the generating function diverges). The shaded region in (b) is constructed in a similar
way by considering when the ratio of the partition function to the scaling form becomes close
to [ on level curves z == n% (we — w) = constant.

The tricritical scaling function g behaves like

Gilxy —x)™™ asxtx.>0
g~ 4 1 asx - 0 @
G_(—x)y "¢ asx | —oo

where 1, ¥4 and ¢ are universal expogents, and A, Ay, G+ and x, are non-universal
constants. In the 1PDSAW case $(x) has a power-law essential singularity as x | —oo—in
other models there may be a singularity at some finite negative value x_. Note that the
natural scaling variable is one that is linear in the temperature difference to the trieritical
point; in field theoretic discussions the mass gap or inverse cormrelation length often takes
that role and a scaling function written in that variable will usually be manifestly non-
analytic at the origin (for example see [11]). The scaling function Z(x) is universal up to
a multiplicative constant in the argument and an overall multiplicative constant.
In addition one expects [10] the partition function fo have a finite-size scaling form

Qn(@) ~ An™™! f(n®{wc — o) ®)
as b — oo with the argument of f fixed at some value. The function f (z) is the finite-size

scaling function and is universal up to a multiplicative constant in the argument and an
overall factor (we have not shown these explicitly). The finite-size scaling function f(z) is
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expected [10] to behave like

F+z-m—y+)/¢u§” as 7 — 00
F@~1 R asz— 0 9
F——iZI_(M_Y')M#fFN as z — 0o

where o is the surface free energy exponenty and F;, 124 and pt; are non-universal constants.

4. Asymptotic behaviour of the scaling functions

The principal result of the next section is to prove that the finite-size scaling function is
entire. To do this we will reed two results: first an asymptotic form of G that is uniform
throughout some fixed interval containing @, and second, the asymptotic form must have
the same radius of convergence, ¢g.(w) as the generating function itself (this is so we
can apply Darboux’s theorem throughout the fixed interval). Unfortunately, the traditional
tricritical scaling form (6) fails both requirements. However, as shown in this section it
can he expanded by use of two ‘extending’ functions. The purpose of one of the extending
functions is to ensure the extended tricritical form has singularities at the desired places,
whilst the second ensures the correct behaviour on the critical line. These allow a uniform
asymptotic expansion to be constructed.

4.1. Tricritical scaling

In the following definition we describe mathematically our understanding of a tricritical
point and the traditional scaling that is expected to hold (for an asymmetric model [10]
such as the IPDSAW). Note, all the limits are taken through real values and any constants
used are agsumed to be non-zero. Also, all functions of @ andfor ¢ are real valued for real
values of their arguments. The partition function O,(w) and G(e, ¢g) are positive valued
for all physical values of their arguments.

Definition 4.1 {tricritical scaling). Let G{w, g} generate the functions @.(w),

G,9) = Onlw)g". (10)

n=I1
Let I, be the open interval (wo, @), I be the open interval (we, en}and I = L U{w JUI_,
for some wy, wt for which 0 < ap < w, < w). Consider G{w, g) a function of g with @
a real, positive valued parameter. If the following conditions hold tricritical scaling is said
to occur at (e, 1):
(i) G(w, g) has a radius of convergence, ¢.(w) > 0, with
gelw) =1 for @ € I_ U {w,} (11)
go(w) < 1 and analytic forwe I, (12)

and g.(ew) monotonically increasing for w € I
(i) for D, ¢ € BT,

1 -g(@)~ Do ~)? aswte (13)
@iif) for y, e R* and A, (w) an analytic function of w for @ € 1., and for fixed o,
G, q) ~ Ar{w)(g.(w) — g)™" as g t g(w),wel, (14)

1 Note, the z — —oc0 behaviour may be slightly different depending on whether the model is ‘symmetric’ or not
{101,
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@iv) for A, y € R,

G(@,q) ~ Al —g)™" as g T ge(w), 0= (15)
(v) for A~ (e} an analytic function of w for w € I_, and for fixed w,

Glw, g) ~ A_(w) asgthowell (16)
(vi) for Sy, S— € R and y, = y/¢ the amplitudes

A_(w) ~ S_(w— )™ as @ | o an

A4 (@) ~ Sy(we — oyH/Pn as @t o (18)
{vii) for all fixed x € (~o0, x;), with x, > 0,

G (wc - fﬂi@i Q) ~ A1 —g)™ asg 11 (19

where A; = x,. D%,

(viii) and the ‘tricritical scaling function® g(x) is an analytic function for x € {—c0, x..)
with the radius of convergence R of § equal to x, and a singularity on its radius of
convergence at x = x;, and behaves as

g(x) ~ Gylxy —x)™h as x t x4 (20)
#x) ~ G(—x)™" as x | —o0 (21
and §(0) = 1, G4 = Sy DV (xy@)* [Ay, G- = S_D¥x [ Ar.
We note that the asymptotic relation (19) can be rephrased into the implicit form: for
fixed x = Ay(1 — g)~% (e, — ©)
6@, q) ~ Gilw, @) = Al =) g Al ~ g} Pwe — @) asgt L. @2)

We make three further points about this definition: ope is that neither expression (14) nor
(16) are uniform in the variable w. They must, in fact, be manifestly non-uniform to cross-
over into the form (15) at @ = w.. Secondly and similarly, the asymptotic expression (19)
is not uniform in the parameter x. Finally, this definition concerns models like the IPDSAW
which have an asymmetric tricritical transition [10]; it can be easily modified for the
symmetric case. It can also be modified if say ¥ < 0 with some work.

4.2, Extended tricritical scaling function

Lemma 4.2. Let the function G(w, g) have a tricritical scaling behaviour as stated in the
definition 4.1, then there exist real valued functions d{e) and k{w) such that G{w, g} ~ G,
as ¢ 1 g.(w) for all fixed w € 7 where
Gu(@,9) = Ad(@)(1 = @) "E(A(1 - ) *h(w)). (23)
The ‘extending’ functions 4 and A are analytic for all w € I except possibly at w = w,
continuous for all w € {, and
diw) ~ 1 as @ ~ @, (24)
hiw) ~ we —w as w — we. (25)
The proof of the theorem is straightforward as it is possible to give explicit expressions

for i and d. Using these expressions and the properties of § essentially give the required
result,



Scaling functions of polymer collapse 4715

Proof. Let
DH1—g@)® wel

We — @ @ € {we} U T 26)

o) = {
then A is analytic for @ € 1., I since g (@) is analytic for w € [, I.. Using (13) shows
h ~w; — w as w. — « and hence h is continuous in [.

The principal function of 4 is to ensure that the argument of § reaches x.. on the critical
line. As g tends to g.{w) the argument of § increases until it reaches the singularity at
x+. Unless the argument of § is given by As(1 — ¢)~%h(w) (this being the equation of the
critical line of G) the scaling function will reach its singularity at a different point in the
wg-plane to that of G. Hence, by introducing £ as in (23) the argument of g is controlled
to ensure that the value x.. is reached on the critical line whatever its shape, as is readily
verified by direct substitution. Note that k(w) is invertible in both I, and I_ since g.{w)
is monotonic.

Let
) AT G = ge(@) M Ay (@) we Iy
diwy= {1 ® = o @n
AVATTGZ (0 — @) A (w) wel_

then, in a2 manner similar to the # argument, using (13}, (17) and (18) shows that d has the
required behaviour (24).

The purpose of d is to ensure the correct amplitudes A, (®) and A_(w) are obtained.
Substituting (26) and (27) into (23) and for fixed @ € I and g sufficiently close to the
critical line enables us to use (20) and (21), which gives the right-hand sides of (14), (15)
and (16) directly. Since, by definition 4.1, G is also asymptotic to the right-hand sides of
(14), (15) and (16) we have that G ~ G, 2s g 1 g.(w) for @ € I and fixed. Note that d(w)
and k() in 1. are not unigue as we are free to choose any monotonic function #(w) that
has the property (25) after which d(w) is then determined. O

The above theorem gives us a single function, G,, representing the asymptotic behaviour
of G as the critical line is approached from below for fixed @. However, this does not
completely specify the asymptotic behaviour of G. For example, what happens if the
wicritical point is approached along some curve in the @g-plane rather than from directly
below? In fact, G ~ G, for fixed y = A;(1 — ¢)~%a(w) as ¢ 1+ 1. This is a simple
consequence of the above definition and lemma.

Corollary 4.3. Let the function G{w, ¢} have the tricritical scaling behaviour as stated in

the definition 4.1, and that the functions #{w} and d(w) are those defined in lemma 4.2 and
its proof. Let £~'(z) be the inverse function of &, then

G(@{g),q) ~ Ad(@B{gN(1 —g)y ™"&(y) aagti (28)
where

alg) = b~ (Fg)) (29)
with

oyl —-g)f

Hg) = T (30)

for all fixed y € (—o00, x4).

We omit the proof of this result as it is a straightforward application of the properties
(24) and (25} and the condition (19), and is unenlightening.
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4.3. Uniform asymptotics

We wish to find a uniform asymptotic form for the generating function valid throughout
the interval I as the critical line is approached along any curve. To establish this will
require the introduction of one farther assumption. It is based on the notion of ‘asymptotic
completeness’. We introduce this notion to describe the general, but somewhat vague, belief
that around a tricritical point the asymptotic behaviour of G is fully represented by a fixed
set of critical exponents and hence a corresponding set of functions.

In the following theorem we show that (23) is uniformly valid for all @ € I. This
is based on the results of lemma 4.2 (that G, gives the correct asymptotic behaviour for
each fixed w € I), on the corollary 4.3 (that it also gives the correct asymptotic behaviour
for each fixed y € (—o0,x,) as ¢ 4 1 with y = A;(1 — g)~%~(w)), and on the added
assumption of ‘asymptotic completeness’.

Asymptotic completeness is required for a particular technical reason. The asymptotic
behaviour of lemma 4.2 and traditional scaling give rise to several domains in which the
various asymptotic statements are valid. For G, to hold uniformly it is necessary that
these domains overlap. Without asymptotic completeness it is in general possible for thin
‘wedges’ to separate these various domains. It is then in principle possible for G to have
an additional asymptotic form, and hence critical exponents, along a curve that lies within
a wedge. Since it is generally believed that around a fricritical point no such ‘additional’
behaviour occurs we make it a condition that it does not. For any given model it may
be possible to show that these wedges do not exist (i.e. the domains overlap) and so the
invocation of asymptotic completeness would be unnecessary. However, as the theorems
do not refer to any particular model we need to make this assumption.

The discussion is simplified if we first introduce the following definition.

Definition 4.4 (g-asymptotic region). If u(x) ~ p(x) as x 1 xp then the g-asymptotic
region A;(e) is defined as the interval below xg for which Ju(x)/p{x) — 1} € £. This
interval is given as xp > x > xo — 87(¢). If the functions depend on another parameter,
 say, the regicn is an area in the wx-plane and the value §5(e, w) depends generically on
that parameter.

The assumption of asymptotic completeness translates technically to the assumption
that close to the tricritical point the s-asymptotic region where the generating function is
asymptotic to its (fixed) high/low temperature behaviour becomes small (as @ — w,) no
faster than one of the level curves y = Ag(] — ¢)~%h(w) = constant. Basically this patches
the high/low temperature asymptotic forms with the tricritical one. By construction G, gives
both these forms and so can be shown to be uniform.

Theorem 4.5 (Tricritical uniformity). Let G(w, g) be a generating function satisfying the
conditions stated in definition 4.1, letnma 4.2 and corollary 4.3. For @ € I (resp. @ € 1-)
and fixed, denote the g-asymptotic region for which G ~ A.{(g.(w) — g)~"*(resp. G ~
A_{w)) by 35(5)(resp. Ag(e)) and the e-asymptotic region for which G, ~ A{(gc.(w) —
g)7P+(resp. Gy ~ A_(w)) by Af (e)(resp. A, ().

() If for all w € I there exists y(g) € (0, x;) such that

Ash(a)))”" _ (Agh(w))1/¢
¥ Xy

85 (e, @) > ( (31)

and
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{i1) if for all @ € I_ there exists §(g) € (—o0, §) such that

_ Ash(@)\'*
85 0) > (%;"— (32)
then
G ~ Ad(@)(1 — ) "B (A} — @)% h(w)) as ¢ 1 ge(w) (33)

uniformly for all @ € 1.

As mentioned above the proof is based on showing that the z-asymptotic regions arising
from the various asymptotic statements overlap in such a way as to give rise to a common
region adjacent to the critical line. Most of these regions are illustrated schematically in
figures 3 and 4 which we shall refer to throughout the following proof. We shall use
Ag =1—g and Aw = w. — w. The function y{w, g) = A;(1 — g)~h(w).

/{,‘/ ' Y

vy 1q

Figure 3. A schematic illustration of the various g-asymptotic boundaries. The lines labelled by
values of y are level curves of y = Ag(1 — g)~%k(w). In this case we have chosen j < y—it
could of course be the case that ¥ > y;. However, whatever the case, the maximum of y and
¥2 is less than x, (that is, the critical Yine). The y; value is chosen so that it is above the ¥
line and the 5, line,

Proof. We begin by showing that the A}; {(£) region contains the region that lies between
the level curve y(w, g} = constant = y; < x4, a line of constant (g.(w) — q) > 0 and
the critical line. From (20) we have an £-asymptotic region x, — y < 6&‘3‘“ (e") for which
I8 — 8+ < €18+ ()| = £'84.(3), where 2,.(¥) = G(x4 — y)7"*. Thus

G = AAgTE() — 8400 + AlAg Mg () (34
< A ATV 4 + O] + AAagHET () (35)
= (1 + NAL{g®) — @)™ + (1 + )0{ge(@) — g} ™ h) (36)

where we have used AAg~7"§.(y) = Ay (q(@) — g)77 + O({ge(w) — g} "+*1), hence
Cu/As(ge(w) —g) ™ — 1 <&’ + (1 +&)0(g.(w) — 9). (37)
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1-q

The wings are the regions boonded by the y; line (and jts » 2 w; counterpart), while the
middle is the scaling region defined by the locus of values E—g“ (¥) which are sirictly posttive
for y & [0, y3]. The intersection of these two regions defines the point P (and for & 2 @, the
point P’), These points are below the eritical ling by construction and so allow us to choose the
uniform value ag". The region defined by the ag- curve and the critical line is then certainly
contained in Ag".

Fig:xre 4. A schematic illastration of the region that is contained in the g-asymptotic region
A
b

Thus, if we choose &' = (¢ — O(g.(@) — g))/ (1 + Olg.(w) — q)) and ¢ sufficiently close
to ge(w), say golw) — q = &, s0 that &' > 0, then G, ~ Ay (qelw) — ¢) ™ as ¢ 1 q(w)
with an e-asymptotic region given by the intersection of ¢ € (g.(w) — 8,,, gc.(®)) and
x4 — y(@,q) < 85*(¢"), for each w € L. Given that I, is a fixed interval in w it is easy
to see (figure 3) tghat one can now choose some y; € (y1,x.) such that the region lying
between y{w, ¢) = y2 and the critical curve is certainly contained in Aé‘u(a).

From (31) we have that the £-asymptotic region for G ~ A (g.(w) — )% is at Jeast
the region defined by the critical curve and the curve y{w, g} = ¥, @ € I.. One can now
simply choose (see figure 3) the maximum of y, and y, say y3, so that the region defined
by the area between the critical curve and the curve y(w, g) = y; is certainly contained in
the Ag" (3¢) e-asymptotic region.

Now, the g-asymptotic region Ag“ (¢) is also defined by considering the asymptotics
at fixed y. From corollary 4.3, for each fixed y € [0, x;) there exists a 52“ (g, ¥) such
that |G/G, — 1} < & for |]1 — g] < Eg"(s, ¥). The value Sg"(a, ¥) is non-zero for all
y € (0, x,) by definition. The worst that can happen is that it tends to zero as ¥ 1 x4+
{see figure 4). It is however strictly positive for y € [0, y1]. By considering figure 4 it is
clear that the two different regions described above, both of which are contained within the
g-asymptotic region Ag" (£}, share a common neighbourhood. It is then clear that one can

choose some 35" (€) independent of w such that the region defined by |g.{w) — g| < gg" &)

is wholly contained in the Ag" () region for I,.. (If there is another line y4 = y(w, ¢), with
Y4 € [0.%3], whose £ regior begins closer to the critical line one simply chooses that point
to give 3" (£).) Hence the asymptotic relation G(w, g} ~ Gulew, q) as g 4 g.(w) is uniform
inwe L.

These arguments apply mutatis mutandis for w € I_, a
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We can now summarize all the scaling behaviour described above in definition 4.1,
lemma 4.2, corollary 4.3 and theorem 4.5 by introducing the symbol ‘s’. We then read

Glw, )oAll — ) ME(ASL — g} e, — 0] (38)

ag ‘Glw, g) scales as A,(1 — ) " §(A{1 — g}~*{w. — w})’ which means that extending
functions can be found to make a uniform asymptotic expansion; that is, asymptotic
completeness is assumed.

5. Analyticity of the finite-size scaling function

In the theorem proven below we show that the finite-size scaling function of the partition
function exists and moreover is entire given that the tricritical scaling function of the
generating function exists and has a finite radius of convergence. To complete the list
of sufficient conditions that we have compiled we add the singularity structure of & and
G, in the complex g plane. This condition is one of the usual Darboux conditions which
would normally hold so that it was possible to find the behaviour of the coefficients of a
power series from an asymptotic representation. It is possible that this condition could be
weakened without changing the consequences.

Theorem 5.1. Let Glw,q) be a generating function satisfying the conditions stated in
definition 4.1 and theorem 4.5. Let G, be the uniform asymptotic behaviour of G in the
interval @ € I. Let G and G be the mth derivatives. If on the circle {g] = g.(w) in the
complex ¢-plane, G¥ — G has a finite number of singularities and at each singularity ¢;
say,

G -G =0Ug —a¥"™  qa—4g 39
for some m 2 1, where g; is some assignable posifive constant, then
0:@) = == § Gu(0. DL 4 olqe@)"n ™) asn—>oo  (40)
"w_ZTricuw’qq"“ olge\w) 'n as
where C encircles the origin and contains no singularities of G,.
Furthermore, the finite-size scaling function

5 . Ol — Zn_¢)

f(Z) = uliﬂolo—z'n—h_'l—"— (41)
for any z € R, exists, and is given by

_ MO A
m!  T(m¢+n)

f@ " (42)

m=0
where §<’”)(0)‘ is the mth derivative of tricritical scaling function 3(x) at x = 0. Finally,
the function f is entire.

An outline of the proof is as follows. There are essentially three parts of the proof. The
first part invokes Darboux’s theorem to prove (40). After a rearrangement of the contour
integral and the use of the definition of the finite-size scaling function, the second part relies
on interchanging a sum and an integral, whilst the third part relies on interchanging a limit
and a sum. For each of the latter two parts we need to prove a uniformity condition. These
allow us to then use two theorems which are given in the appendix (see (A.2) and (A.3)).
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Proof. To prove (40) we need to satisfy the conditions of Darboux’s theorem (given
in the appendix (A.1) for convenience). First, G, and G are amalytic in the annulus
0 < lg] < q.{w). G is analytic because 4.(w) is the radius of convergence of G and G, is
analytic because the uniforming function A(w}), as given in theorem 4.2, was constructed
to ensure the radius of convergence of G, coincided with g.(@) for @ € I. The remaining
condition is satisﬁed by assumption (i.e. equation (39)).

Let 1 — g = t/n, then equation (40) gives
—n o
Orr@) = ‘d(‘”) ot e (1= 202 (40 (3 1)) 0+ otactar e
Cn n !
(43)
as n — oo, where C, is a contour encircling the integer n, and hence
Qne1 (@) = Ad(@)(n — D' T,(2) + 0(ge(@)"n ™) (44)
where
1 N z
——d {12 (sl — n?
LO=5:9" (1 n) () a z=n*hio). (45)

By noting ge(w. — zn™%)™" — constant as n — o it is not too difficult to see that the
finite-size scaling function, f f(z), is given by
f@)= lim Za(z). (46)

z fixed

Now, we have assumed that the tricritical scaling function, 3(x), has a radius of convergence
R = xy, where 0 < R < o0, and so the Taylor series

fe 2]
2% (47)
m=0)
converges for [x] € R. Here g0 = % (0)/m!. Substituting into (45) gives
: -n o0 zN\m
— — bt 4 —— 50 —
I”(z)_znifffgf (1 n) mgogm (a5} o (48)

The sum and the integral can cnly be interchanged if the sum is uniformly convergent with
respect to ¢, and the function r~? is continuous on the path of integration. The latter is
true as the contour does not pass through or around the origin. We now prove the former
condition using the Weierstrass M-test.

‘We need to show that the sum is uniformly convergent in a compact domain containing
the contour; that is, parametrizing the contour by ¢t = n + gexp(if), we need to show
uniform convergence in the domain [t — n| £ £ Now, choosing a number r such that

0 < g <r<nwehave
~0 i ml ~0 Z "
les (a5) | < Jas (Asm——_ r)¢) ' (49)
in this domain. Hence, the sum in (48) is bounded by the sum Y > o 18, 0 {Asz(n — r)~*7}
which, by assumption, converges for |z| < |R(n — r)®/A;]. As this bounding series is
independent of ¢, by the Weierstrass M-test the sum in (48) is uniformly convergent so long
as lz) < |R(n —r)® A J Thus the sum and the integral may be interchanged giving

Zn(2) = 5— Z m (AsZ)™ % ymmme (1 - %)_ dt. (50)
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The integral can now be evaluated explicitly by a residue calculation, giving

2. gy L — 1+ mg + 1)
L) = 0 (A g)"n!—mb—n . 5
@ ,;:og”’( o (e + W () (51)
We need to evaluate
lim Z(z) (52)

z fixed

which can be done if we can interchange the limit and the sum. To do this interchange
we first note that using the ‘root test’ one can show that for any |z| < |R(n — r)®/A4| the
right-hand side of (51) is absolutely convergent. One can also show using the Weierstrass
M-test that the series is convergent uniform in 7 > N for {z] < |R(N — r)¢/A,|. It can
also be shown that

FTr—1+mg+n)

t—mp—n
& T(n)

— 1 as n — oo (53)

and that the sum

_ = o (As2)”
Too(2) = E,}gm————r(m o (54)

converges for any value z (see below), Hence for any value of [z] < |R(N — r)?/A,] we
can now use the theorem (A 3) of the appendix: a sequence of uniformly convergent series
will converge to a sum of limiting terms given that the limit series is also convergent. Note
that as the bound on z can be made arbitrarily large we have shown that we can accomplish
the interchange for any z.

Thus we can indeed interchange the limit and the sum in (52}, and hence

Fn—14+méd+w)

= lim 7, Asz)™ lim nl—mén . (55
fay= lim T,(2) = ’; g (A" lim n Tt O
Evaluating the limit gives
f Tw ™. 56
f@) =TI = ngr(m¢+y) (56)
Finally, considering 3} oo 4 182 (As2)™/ T (m¢ + y)l =: 3 o oamz™ as a power series

in z then the radius of convergence, R, is given by 1/R; = lim supm_,ma,ﬁ,/ . We now

show that this limit is zero and hence R, is infinite. Since any convergent power series

also converges absolutely and g(x) = Y or, 285%™ is assumed to converge with radius of
convergence R, we have that
1/R = lim sup |82|"/™. (57)
m=oc
Thus

1/R, = lim sup |3° A%/ (m¢ + y)]"/™
M=+ 00

= lim sup |82 |"™ tim sup | AT/ T(mg + y)}/ ™

=00 M= 0G

=0 (58)

and hence R, = co. Since the right-hand side of (56) has an infinite radius of convergence
it is an entire function. O
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6. Finite-size scaling and the IPDSAW

For the (semi-continuous) IPDSAW model it has been shown [4] that the generating function
is indeed of the form (6}, with

1 2 AN i
=3 o5 w=(5) camm @
remembering that @ = ef/, and the tricritical scaling function 3, is given by
N Ai(=x)
§r(x) = AT (60)

where Ai(-) is the Airy function. The only differences in the fully discrete case are the
non-universal constants A, and A;. Given that the semicontinuous model has been studied
more extensively we use it for convenience (the corresponding theorem is a straightforward
modification and gives the same result).

As the Airy function and its derivative are entire functions and non-zero in a
neighbourhood of the origin, it implies that g; has a finite radius R = ap where
ag = 1.01879.. . is the closest zero to the origin of Ai’(—x). Thus by the above theorem,
f: must be an entire function, given by

. 21 /a7 "
0= m (?i_mg’(") "“") TR ey ML

‘We shall now deduce the asymptotic behaviour of f, in the two cases z — Z0o. First
however, we see that for z = 0 it is simple to find f;{0)} = Fy =373/ (2/3).

For z <« 0 it is not useful to work directly with (61) but we can deduce the z - —00
behaviour from the results already obtained in [12] where it has been shown that, for fixed
W > an,

Zn(w) ~ H " exp(—Hyn'/2yn=34 B — 0O, > X (62)

where Hy = QBJh/a*pV4, Hy = J8BJTh, h = log({l + p)//B/B) — p with
= /T—B./B. For small Aw we can rearrange the right-hand side of (62) into the

form
Awn?? \7B Awn?? Y
~2/3

Kan (wcmﬁc.f)'ﬁ) i (wc(4ﬁca')”3) ©)

where
2%/3 16\"2

K= (3,:2)1/4(&: Ty Ky=- (?) . (64)
Comparing (63) with (8) implies

Fir@)y ~ Foje Bl (65)

with pts = exp[K2(4B:.Jw}) ] and F_ = (8. JwD)/ (K1 /A).
For z >» 0 we use the integral representation (valid for all z)

i) == f 11 (A;,:)dt (66)

where C is a Hankel contour from —oc around all the singularities and back in the upper
half plane to —oo. This is obtained by using the integral representation of the inverse
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of the gamma function. The large positive z behaviour can now be related to that of the
Mittag~Leffier function

E (u)—ifﬂdr 3 exp(u¥?) 67

2/3 - 2?Ti ¢ t2/3 —u 2 XP(H ( )
(see [13]) by considering the poles of $;(x). The constants F; = 3A;/2a} and p, =
exp[(As/ao)*?]. This agrees with the work of Louchard [14, 15] where a similar problem

arises in the problem of Brownian excursion area.
Putting these results together gives

F.kz‘u.if/2 asz —» o0
f~ 43712 12/3) as 7 — 0 (68)
F_lz] 18l as z = —oo

which agrees with ().

7. Conclusions

‘We have shown that in the case of the IPDSAW model in two dimensions that the finite-size
scaling function is entire. Furthermore we have explicit representations of that function in
terms of a Taylor series and a contour integral, To apply the above theorem to other models
we need to remember that the scaled partition function O, (w) was obtained from the original
partition function Z,{w) by changing variables in the associated generating functions so that
one scaling axis lies along the line g = ! (with ¢ conjugate to » for Q,). Depending on
the value of the cross-over exponent ¢ this should be a polynomial transformation and it
gives rise to the function u,(w) mentioned in section 2. This allows us to move onto
the guestion of when the conditions of the theorem should hold. We would expect that
50 long as the thermodynamic fransition is dominated by fluctuations, so that hyperscaling
holes and there is ‘only one (thermal) length scale’ (see for example [16-18] and references
therein), such as is understood to occur below the upper critical dimension (d < 3 in this
case), then the tricritical scaling form for the generating function should exist, and hence
our theoremn holds, We note that the upper critical dimension d = 3 is a special case and
strictly speaking scaling breaks down [19] (due to the presence of logarithmic corrections)
at tricritical points—this also seems to be the case in De Gennes three-dimensional 8-point
description [20].

Another way to look at the scaling hypothesis is through the Yang-Lee mechanism for
phase transition. The approach of the zeros of the partition function to the real temperature
axis (also known as Fisher zeros) should be described by scaling [21,22] in this case,
through the cross-over exponent. That means the position of the closest zeros to the critical
point should scale as

Wyere — W ~ Cn™® 69

{cf equation (2.17) in [21] and equation {2.11} of {22] noting that 1/ = 2 — ). This
implies that in the limit of large n the zeros of the associated scaling function stay a fixed
distance from the real axis. This also implies that the singularities of the free-energy scaling
function stay a fixed distance away from the real axis. Hence, one way to test scaling (and
hence the analyticity of the scaling function) is to consider the approach of the complex-
temperature-plane partition-function zeros at the critical point. We also mention that Glasser
et al [22] have caleulated some finite-size scaling functions at the multicritical points of
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infinite-range spin models (here the size is the volume, rather than the length of walk) and
furthermore that these are entire. Implicitly we assume that the free energy exists for all
temperatures around the tricritical point. We note that this may not be that case for the
Domb-Joyce model [23] with attractive interactionsy.

The results of our theorem can be compared to the prediction [6] that, for the (two-
parameter) Edwards model in dimension d > 2, and also for the scaling theory for the
collapse transition (argued by Sokal (6] to be given by the (two-parameter) Edwards model
[6], at least for repulsive interactions, in 3 < d < 4), there are singularities in the finite-size
scaling functions of various quantities on the real axis. Given that the (two-parameter)
Edwards model is not a model of collapse for 4 < 3, where we argue our theorems should
hold, there is no immediate contradiction in these dimensions.

We point out that our theorem holds not only for the partition functions of the IPDSAW
model but also for the horizontal end-to-end displacement (see equation (3.46) of [4]) in
that model. We conclude by finding that the analyticity properties of scaling functions for
polymer collapse in general dimensions is an interesting open question,
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Appendix A. Auxiliary theorems

We state Darboux’s theorem as given in Olver {24].
Theorem A.l (Darboux 1878), Let w(t) be a given analytic function and

o0
w@)= ) al” (70)
a=—g0
its Laurent expansion in an annulus 0 < |¢| < r. Let ¢(t) be a function with the following

properties:

(i) ¢(t) is analytic in 0 < jtf < r.

(ii) On the circle {t] = r, the difference of the mth derivatives (m > 0), 0™ () — (1)
has a finite number of singularities and at each singularity #;, say,

™ (1) — ™) = O(ft — 4}%™hH t— (71)

where o; is an assignable positive constant.
(iii) The coefficients b, in the Laurent expansion

cty= Y bt"  O<ft]<r (72)

n==00

have known asymptotic behaviour, then
ay, = b, +a(r ™" n™") n— 00, (73)

+ The Domb-Joyee model with attractive interactions is characterized by a "dot’ or ‘trapped’ phase where the
average extent of the associated walks are bounded in space, so that v = 0 (this phase is somewhat misleadingly
called collapsed in the literature: collapse is used for 15Aw and real polymers at low temperatures where v = 1/d).
Hence, the Domb-Joyce model with attractive interactions describes the transition from a random walk to a trapped
phase—this clearly has noshing to do with poiymer physics in any finite dimension.
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Theorem A.2 (Interchanging an integral and a sum). Let
o0
@)=Y un() (74)
m=0

be an infinite series. If the terms of (74) are continuous functions of z in some compact
domain, D of the complex plane, and the series converges uniformly in D then

fc s@d=3 fc un(@dz  CeD. (75)

The proof may be found in any standard textbook (e.g. [25]).

Theorem A.3 (Interchanging a limit and a sum). Let S, = Y5 o be a convergent
series, convergent uniformly in n, and n an integer, such that limy..q af') = ag® exists, and
Soo = Y32 o limy, s 00 al™ = 32 a is a convergent series. Then it can be shown

lim S, = S (76)

R—>00

The proof is a straightforward extension of the theorem on continunity of uniformly
convergent series in some parameter which can also be found in standard textbooks.
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