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Interacting partially directed walks:
A model of polymer collapse

Aleksander L. Owczarek and Thomas Prellberg'

Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052,
Australia

A survey of the results that have been obtained to date on the partially directed walk model
of the polymer collapse transition is presented.

We take this opportunity to present a brief history of partially directed walks
as a solvable version of the more profound problem of self-avoiding walks and
concentrate on them particularly as a model of polymer collapse. Models of
polymer collapse in dilute solution have been explored since Flory [1]
described his mean field theory of the #-point in monodisperse solutions of a
single polymer species. This 6-point is the temperature below which the
polymer is in a collapsed state. Whereas, the configurations of polymers at high
temperatures are dominated by the excluded volume effect. One focus of
interest has been the scaling of properties with the length of the polymer. The
idea that the large length limit of polymers is a critical phenomenon (some
would say a self-organised one) was exploited by de Gennes [2] and des
Cloizeaux [3] to provide scaling analyses of the quantities of interest. Lattice
statistical mechanics has traditionally utilised self-avoiding walks to mimic the
configurational complexity of polymers and added appropriate Boltzmann
weights to introduce effective interactions between monomers. A single self-
avoiding walk is then a model of a single polymer (that is, equivalent to a very
dilute solution). Without interactions it is believed to reproduce the scaling
behaviour of such a lone polymer in a good solvent or at high temperatures.
However, because of the complexity it is difficult (if not impossible) to obtain
rigorous results. In contrast, Duplantier and Saleur [4] have conjectured the
6-point exponents in two dimensions using sophisticated mappings.

Another line of attack has been to consider a subset of self-avoiding walk
configurations which leads to manageable mathematics. Partially directed self-
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Fig. 1. A typical PDSAW with interactions in light grey between non-consecutive nearest-
neighbour sites on the walk. Moving from left to right there are no steps in the negative x-direction
and this property defines a PDSAW. The end-to-end distances (L, and L ) are marked.

avoiding walks (PDSAWSs) are one such subset. Here we concentrate also on
two dimensions. A partially directed walk is shown in fig. 1 where it can be
seen that a PDSAW is a self-avoiding walk without any steps in the negative
x-direction. These walks have been utilised in several contexts [5] since they
can be conceived as domain walls in spin systems (solid-on-solid approximation
[6]) as well as polymer configurations. The interactions are attractive nearest-
neighbour ones between non-consecutive sites along the walk as shown in fig.
1.

This review is divided as follows. First, we give a concise history of the
relevant works. Next we define, and state the solution of, the generalised
partition function for the discrete and semi-continuous interacting PDSAW
problem. Third, we sketch the behaviour of these functions and explain the
phase diagram. The relevant exponent definitions are given and then the values
calculated catalogued. We also state the connection between the generating
functions of this model and a model previously examined by Zwanzig and
Lauritzen and state further the results for the collapsed phase partition
function scaling.

Without interactions PDSAWs have been studied extensively and this has
been reviewed well by Privman [5]. This includes PDSAW in the presence of
an attractive surface [7,8] that was examined by Privman, Forgacs and Frisch.
The corresponding SOS model of wetting [9,10] has also received attention
[11]. Work on the PDSAW model with self-interactions effectively goes back to
Zwanzig, Lauritzen and Nordholm [12-14] as models of protein folding.
However, they did not consider PDSAWs but walks that must fold back on
themselves at every step. The SOS (semi-continuous) model related to
PDSAWs with interactions was examined by Abraham and Smith [15] in the
context of wetting. The discrete version was recently examined [16]. The
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wetting problem, however, considers a different ensemble to the polymer
problem, and so results from both systems mentioned above are not directly
applicable to interacting PDSAWSs (IPDSAWs). The problem of IPDSAWs was
introduced simultaneously by Yeomans [17] where the interest was in the
competition with an attractive surface, Klein and Seitz [18] and Brak,
Guttmann and Whittington, who examined the pure problem. Veal et al. [17]
made some accurate numerical transfer matrix calculations and sketched a
possible phase diagram in the presence of a surface. Klein and Seitz also made
careful numerical transfer matrix calculations. Binder et al. [19] solved the
transfer matrix problem along one line of the temperature—fugacity plane to
obtain several exact results (without a surface). Brak et al. [20] rigorously
proved the existence of the thermodynamic limit and the existence of the phase
transition (@-temperature). They solved for the generating function using a
method introduced by Temperley [21] in terms of basic hypergeometric
functions.

Many exact results have been deduced and numerical work accomplished in
the surface problem by Foster [22-24] and Igloi [25]. Recently, we have
studied the IPDSAW on a fully infinite lattice (no surface) and found the length
scale exponents associated with each phase and the critical exponents of the
9-point [26,27]. The semi-continuous version has been solved exactly and the
exponents calculated [26]. In the discrete case, the exponents have been
calculated using a plausible asymptotic expansion. The results for the length
scale exponents have also been understood using physically appealing argu-
ments at the §-point [24]. Numerical work [27] has led to the conjecture of the
scaling in general collapse problems [28]. Also, a different scaling form for the
collapsed phase partition function of polymers was conjectured [29] and
subsequently found to hold exactly for the IPDSAW model [30].

We shall now briefly describe the solutions of the discrete and continuous
IPDSAW problems. Due to the directed nature of this problem, these
configurations can be described in a natural way through the length r; of
vertical segments between two horizontal steps, measured in the positive
y-direction. Thus, we associate to each configuration an N-tuple (r,
¥5,...,ry) corresponding to a configuration of total length L = N |r|+ N.

The energy due to the nearest-neighbour interactions for each of these
configurations is then

N-1

Ury, 7oy s ry)=—J 2 min(|r,|, [7,5.]) O(=rr,_1) (1)

where O(x) is the Heavyside step function and we set J =1 for convenience.
The canonical partition function as a sum over all possible configurations of
fixed length L is then
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L
Q.(B)= E < E exp[—BU(rl,rz,...,rN)]>. (2)
N=1 Mr [+]ryl+--+|ryl=L—=N

We get the generalised partition function by summing over all possible lengths,

G(z, B) = E 2"Q,(B), (3)

so that we have

1 d
0.(8) =5 § Gle, B) 17 )

The generating function G(z, B) can be further generalised to include
weights for horizonal x and vertical y steps. The expression for such a
K(x, y, B) can be derived by considering the generalised partition functions
K =K (x, y, B) for walks that start with a vertical segment of height r, so that

K@y, B)= 2 K,. (5)

Then concatenating these walks gives a recursion relation for K, as follows:

K, = xy"! {1 + > exp[B min(|r|, |s|) O(—rs)] Ks} : (6)

It also follows that
K0:x{1+K(xay,B)}' (7)

The solution can then be found [20] by solving this recursion relation as

1+K(x,y,B)
1w

= 2H(x, xe, xy*o(w — D) /H(x, xo, xy(@ — 1)) = (1 + @) = (1 - @)x’

(8)

where w = exp(B) and G(z, B) = K(z, z, B). The functions H are defined as

_ < g%y
H(y, q. ) _Z‘o (s D959, ©)

where we have used the standard notation
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(s q),= [ (1=xq""). (10)
The function H is directly related to a basic hypergeometric function [31]

H(y,q.t)=,4,(0,y;4q,1), (11)

which can be seen as the g-deformation of the more familiar hypergeometric
function ,F,.

In the semi-continuous model the vertical segments are allowed to take on
real values (r, € R) and the partition function is

QL(,[_%):[é1 _I drl--'_j dry 6 (E}r|— )exp —BU(r,,...,ry)],

(12)

where the Dirac delta function restricts the ‘counting’ to fixed length (equal to
L) walks. The generating function is given analogously to the discrete case as

[

G B) = [ e 0u(B)dL . (13)

0

where z = exp(—¢). In this variant of the model the generating function can
also be found via a similar route to the discrete case where one now must solve
a differential equation. It is expressed [26] as a ratio of Bessel functions:

1+G(z,B)=¢"" V,(( )) (14)
where
4 1/2
£= <E> (15)
and
__B_
v = B (16)

The critical value of B is 8, = 4 and for low temperatures, B > f3,, the radius of
convergence is simply given by {. = B. We note that the continuous model and
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the discrete model can be directly related by taking the continuum limit. If the
size of the edges of the lattices, a, is put explicitly into the equations of the
discrete model, and the limit a— 0 is taken then the semi-continuous model is
obtained.

Given the expressions for G(z, 8) for the two variants, the phase diagram
can be understood with the help of a singularity diagram of the temperature—
fugacity (B-z) plane. Fig. 2 plots the radius of convergence z,.(B) of the
discrete model (the continuous model is similar). This is interesting because the
radius of convergence of the generating function is related to the thermo-

dynamic free energy (f.(T)=1im,_,, — (BL) 'In Q,(B)) as

z.(B) = exp[Bf.(T)] . (17)

It has been proved that there exists exactly one non-analyticity in the function
z..(B) and hence a phase transition point. This point can be identified as the
9-point by considering the scaling of the average size of the walk for large L.

0.6 \
\ 2= exp(-B))
\
0.5 \ . i
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(0,0.453...)
\
(1,0.414..) \\

0.4 \
B\ \\ Tricritical point,
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=
B
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N
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Fig. 2. The singularity diagram calculated from a continued fraction representation of the solution
illustrating the radius of convergence (z..(8)) of the generating function in the discrete model. The
location of the critical (8) point is shown and the dashed line indicates the analytic continuation of
the low temperature manifold. Exponents are extracted by considering the singular part of the
generating function on approaching the radius of convergence from below. The region z <z, can
be identified as a finite length region in the generalised ensemble.
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Three different scalings occur: one at high temperatures (8 <f,), one at S,
and one at low temperatures. Moreover, the horizontal length scale decreases
as the temperature decreases. It follows from the solution that the generating
function satisfies a tricritical scaling form near B,. In both the discrete and
continuous models the low temperature radius of convergence is particularly
simple (z..(B8)=exp(—pB)) and it was on this curve that Binder et al. [19]
solved the transfer matrix problem.

We will now discuss the values of the exponents for the IPDSAW problem.
In anticipation, we reiterate a few known definitions. The asymptotic scaling
form, in the length L of the chain, of the partition function, Q, , for models of
polymer collapse (6-point) has usually been assumed to take the following form

[3]:
QL'\'qu“LLy_I > (18)

where In u(8) is proportional to the temperature (8~ ') dependent free energy
(also, u(B)=1z.(B)"'). The exponent y takes on a different value at the

6-temperature (y') to that at high temperatures (y ).
At low temperatures, following fluid analogies, a Fisher droplet model type
scaling has been suggested [29], which gives, in contrast,

QL ~qomopy L7 71, (19)

where o and y are expected to be universal exponents. Note that work on
Hamiltonian walks [32,33] as models of dense polymers show a similar form in
a different context.

Next, we give the definition of the size exponents via the end-to-end distance
and radius of gyration. Because this is a directed problem, there are two length
scale exponents that can be defined, each measuring the divergence of the
average size of walks in the horizontal v, and vertical directions v, . These
exponents are defined via the radius of gyration ((R, y)2> Y2(L), itself being an
average (denoted by (-)) over the configurations of length L, as

((R,,)")~L"+. (20)

However, it is much easier to calculate the end-to-end distance (see fig. 1)
exponents which are defined as

<Lx’y> ~ L%y, (21)

One can, however, calculate the average fold length associated exponent v, as
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a check on the vertical since one expects v, =v,. This is crucial at low
temperatures. The horizontal exponents always satisfy v = v,.

The critical or 6-point yields additional exponents. The two most important
are the thermal exponent a and the crossover exponent ¢. Since the shape of
the radius of convergence directly gives information about the canonical free
energy, an exponent a describing the singular part of the free energy near 7,
can be calculated from the definition

:ngular parl(T) e ’ (22)
where ¢t = (T - T,)/T,. We define the crossover exponent such that quantities
of interest near the #-point depend on the scaling combination tL?. This
exponent is equal to the ratio of any pair of exponents derived from the same
quantity in the two scaling directions. A shape exponent ¢ can be immediately
deduced since y =2 — a. A critical exponent for the surface free energy can be
defined as

|1 _Ml(B)l ~ const. X |B - ,Be|X . (23)

Exponents can be found from a thermal correlation length on approaching the
critical point along the thermal scaling axis and these are denoted with a
superscript u as opposed to the fixed temperature exponents that gain a
superscript t at the 6-point.

We shall now summarise the exponents as calculated or deduced from
scaling. At high temperatures the exponents are those of free PDSAWs [5].
The expected results v, =, and v, = v, >y, hold. Table I gives the values of
the exponents.

At the #-temperature, thermodynamic exponents arising from the thermal
critical point also exist and hence there is an extended set of exponents. These
are given in table II and can be understood with reference to the definitions
above. Here also v, =, and in addition these are equal to »,.

Table 1
High temperature exponents.
Exponent 04 v, Y, v
Value 1 1 1/2 0
Table 11
Tricritical exponents.
Exponent v v v v v, v, v a b Y X

Value U3 12 23 U3 13 1 12 1/2 23 32 3/4
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At low temperatures the size exponents are difficult to compute exactly but
can be found to high numerical accuracy. The point worth mentioning is that
here the radius of gyration and end-to-end distance exponents differ. Since
vy, <v,, the model does have some pathological behaviour. However, this can
be understood in terms of a bubble picture [27] as y, = v,.

As mentioned above, the collapsed phase partition function scaling can be
calculated exactly [30] in a straightforward application of the methods of
Abraham and Upton [34,35]. Here we note the illuminating work of these
authors on the bubble model (an SOS model) of ferromagnetic correlations
and the essential singularity at first order transitions in such systems. Returning
to walks, the calculation of the collapsed phase partition function confirms the
conjecture made in [29] at least for this directed model. The asymptotics of the

continuous solution below the critical temperature give

Q.(B)~qoeP ul "L, (24)
with
B 233f 1/4
8= 25 247 25)
and
m(B) = exp[—(881)""°], (26)

where f(B) is given as

(o)

We can then compare this directly with the conjectured form (19) to give the
values quoted in table III.

Finally, when the IPDSAW model was studied previously, the similarity of
the models discussed by Zwanzig and Lauritzen [12,13] to the IPDSAW was

Table II1
Low temperature exponents.

Exponent g 04 v, v, v,
Value 1/2 1/4 1/2 1/4 1/2
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noticed. The models can be formally written down in similar fashion and it is
clear that due to the different set of configurations considered the models differ
somewhat. It has been shown that some of the exponents are the same and in
fact while solving the continuous version the same differential equation occurs.
The tantalising similarities can be explained by showing that one set of
problems follow from the other using a necklacing [36,37] argument. The
major difference between the models is that in the Zwanzig and Lauritzen
(ZL) models the configurations are such that at each horizontal step the walk is
constrained to fold back onto itself. For the discrete model it can be shown [26]
that the generating functions of the ZL model (G*') and that of the IPDSAW
model (G®°) are related as

2G%(x, y; B) —x[1+ G"(x, y; B)]
1-{G"(x, y; B) —x[1+ G"(x, y; B)I}

G™(x, y; B) = (28)

A similar expression exists for the continuous model.

We have seen in this review that many results have been obtained for the
PDSAW model of an interacting polymer and indeed it is a rich model. The
thermodynamic limit exists and the free energy has been computed. There
exists the analogue of the 6-point where the polymer collapses by undergoing a
continuous transition. This point is mathematically equivalent to a tricritical
point in accordance with the de Gennes scheme and the well-known exponents
can all be calculated (or at least found to high accuracy) in each phase.
Progress has been made by Yeomans, Foster and colleagues towards the
clucidation of a multicritical system when surface interactions are introduced as
well as internal attractions. Here, however, no exact generating function is
known. It would be fascinating to find such a function. In any case, since the
thermodynamic limit is not known to exist even for infinite temperature
isotropic walks this directed model has yielded much useful information to

date.
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