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Crossover in smart kinetic growth walks
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By extending the study of smart kinetic growth walks on the honeycomb lattice we are able
to extract a value for the crossover exponent, 0.44 +0.02, which is consistent with the
conjectured value of 2=0.428 for interacting walks at the 6-temperature. This work
corroborates similar results on the oriented Manhattan lattice.

The sharp change of the conformational properties a polymer undergoes in a
dilute solution as the temperature or solvent quality is lowered is seen as a
critical phenomenon [1-3]. The study of this system in lattice statistical
mechanics [1-3] is based upon the self-avoiding walk which possesses the
excluded volume interaction important in physical polymers. The complex
monomer—solvent interactions that cause the collapse transition are modelled
by associating an energy with (non-consecutive) nearest neighbour sites on the
walk.

This collapse transition, known as the 8-point in polymer physics, has been
argued to be described by the standard ¢ tricritical behaviour of an O(n) field
theory in the limit n— 0 [4]. In two dimensions, where many exact solutions [5]
exist for lattice models and the sophisticated techniques of conformal in-
variance [6] and the Coulomb gas [7] can be used to predict the critical
properties of these models, the §-point has been the subject of intense debate.
Much of this debate [8—16] has centred on a model of loops on the honeycomb
lattice with annealed vacancies put forward by Duplantier and Saleur (DS)
[17]. When considered as a model of collapse it possesses a particular subset of
next-nearest neighbour interactions as well as the canonical nearest neighbour
monomer—monomer attraction. This has led to doubts over the relevance, in
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the renormalisation group sense, of these unusual interactions. While it is
generally accepted that the values of the radius of gyration exponent, »,, and
the partition function exponent vy, most likely take on their DS values, which
are 2 and & respectively, in interacting self-avoiding walks with only nearest
neighbour attraction (ISAW), the crossover exponent has been more con-
troversial. Numerical estimates [18-20,16,21] of the crossover exponent, ¢,
have consistently failed to be close to the exact conjecture of 2 ~0.428 and
have ranged from 0.48 to 0.90 [22,20]. It is usually acknowledged that this
exponent is the most difficult to estimate [23]. The collapse transition in the DS
model is connected to the percolation of the vacancies. The loops of the DS
model at the critical temperature are indistinguishable from the hulls of the
percolating vacancies [17]. The temperature of the more standard ISAW system
is argued to map to the percolation probability of the vacancies. This mapping
is important in identifying the crossover exponent and has been questioned as
the possible source of the crossover exponent discrepancies [15]. In this paper
we shall present numerical evidence that confirms the predicted value of the
crossover exponent, ¢ =2, for the closely related 6’-model of Coniglio et al.
[24].

An intimate relationship between 6-point-like walks and percolation had
already been noticed [24] prior to the description of the DS model and
involved models of dynamic polymerisation as intermediaries. These models
are smart Kinetic growth walks [25-27], because they are constructed in a way
that prevents trapping other than by loop formation. This crucial property
allows the identification of kinetic growth walks (KGWs) on the honeycomb
lattice [28] with the hulls of percolation clusters at threshold. The length of the
walk is associated with the number of sites in the perimeter of the cluster. The
percolation probability of the cluster controls the relative probability of turning
left rather than right in the KGWs. These smart KGWs were found to also map
to the static problem of interacting self-avoiding walks on that lattice with a
particular subset of next-nearest neighbour interactions [24] (the 6'-point).
This connection between some static walk problem and the percolation
transition inspired Duplantier and Saleur to write down their model [17]
where, as mentioned above, the percolation probability was now associated
with the walk model temperature. Ziff has examined the critical properties of
percolation hulls [29] and confirmed a set of exponents for this problem. Saleur
and Duplantier [30] obtained the exact fractal dimension () of the hulls of
percolation clusters by using Coulomb gas methods. Hence, the mapping
between the KGWs, percolation, and 0’-walks allow the identification of the
size exponent, v, = %. Studies of kinetic growth walks have previously focussed
on this exponent and the partition function exponent v,. In this paper we shall
extract the thermal crossover exponent for the static collapse problem of
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interacting walks on the honeycomb lattice derived from kinetic growth walks
in the manner of Coniglio et al. [24].

This supplements a study [31] on the oriented Manhattan lattice where
complementary and further results have been found, including an exact
solution, concerning a model isomorphic to a KGW. In addition, we shall
provide precise estimates of v, and , to illustrate the accuracy of this method.

As stated above, the collapse transition in the '-problem is brought about
by preferentially weighting a set of nearest neighbour and next-nearest
neighbour contacts. We have stochastically enumerated dressed KGWs on the
honeycomb lattice. These kinetic growth walks are dressed by ‘“‘remembering”
the left (L) and right (R) lattice faces that have been touched by the walk and
using the rule that the walk may not proceed between two faces of the same
labelling. This ensures that a walk can never enter a dead end unless it contains
the walk’s origin (see fig. 1) and hence in this way the “smartness’ property is
achieved. We have generated configurations up to a length of 2 X 10° keeping
track of the loop formation probability, the end-to-end distance, the average
number of such contacts, and their respective fluctuations. The simulations
were completed on an Intel Paragon supercomputer with 50 processors. It took
approximately 60 hours of cpu time (per processor) to obtain 5 X 10° samples
of length 2 X 10°. The code involved was nearly 100% parallelised.

The loop formation probability p, and the mean-square end-to-end distance
(R?), data allow the computation of the exponents a, = v, and v, via graphical
extrapolation of the finite-size approximations

pn (1)

pn/Z

’yt,n - ] = IOgZ

and

Fig. 1. A portion of the honeycomb lattice with a smart kinetic growth walk of length 19
illustrating the “dressing” necessary to avoid trapping. The beginning of the walk is marked with a
bullet.
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Table 1

Best estimates and exact conjectures for the bulk exponents for
the 6'-problem of interacting walks on the honeycomb lattice
derived from the smart KGW on that lattice. These are to be
compared to the values for the Duplantier and Saleur model.

Exponent v, Y, o, ¢

Estimates 0.571(2) 0.857(2) 0.857(2) 0.44(2)
Exact 6’ ] 3
DS walks

~Npe e
~3[oo o

<)
~Jw ~3f

(R*),

(R, @

21/{," = log,

over a range of lengths with errors computed from the fluctuations. The results
are listed in table I.

The internal energy and specific heat of the KGWs give us the ability to find
estimates of the specific heat exponent, a, and crossover exponent, ¢, [23]
which are related to each other via the scaling relation

2—a=1/¢. (3)

At the tricritical-like point in the static walk problems [23] the internal energy
U, and specific heat C, of walks of length n asymptotically behave as

U,~U,+Upn“? (4)
while if & <0
C,~C,+Cpn™. (5)

By calculating both the internal energy and specific heat we can either obtain
two estimates of ¢ using the scaling relation (3) or alternatively use the
relation to check the accuracy of our results. We use the finite-size estimations

U/Z—Un

¢n_1=log2U’:4_U/2 (6)
respectively
Coin— G,
2¢, —1=log, —671277 , (7)

with errors computed from the respective fluctuations.



D. Bennett-Wood et al. | Crossover in smart kinetic growth walks 287

0.50
0.48 T o
- +TTTT [T .
0.46 — \ T - T
c N | T TT1] L
< - \/ \\
0.44 - N L/ ~
- \/—/\/
0.42 - 1 L R R R e A |
0.40 T T T 1
0 50 100 150 200x10°
n

Fig. 2. A plot of local estimates of the crossover exponent ¢, against the length n.

The best estimates ¢, for the crossover exponent utilise the values of the
internal energy. These are plotted in fig. 2 along with 95% confidence intervals
on these estimates. The estimates from the specific heat data are consistent
with the internal energy data.

We do not use any further extrapolation methods as we have simulated walks
of such considerable length and feel that with such statistical errors that are left
in the estimates, any extrapolation procedure is open to criticism. However,
the estimates of ¢ are fairly constant over the decade plotted while estimates
on shorter walks show a downward drift. The results of our estimation for all
the exponents are in table 1. Each result encompasses the predicted exact
value. Assuming ¢ =32, we can further estimate U, =~0.23290(3) and C,=
1.02(4).

In conclusion, we have stochastically enumerated relatively long (2 X 10°)
smart or dressed kinetic growth walks on the honeycomb lattice and estimated
the thermal crossover exponent for the §’'-model to be ¢ =~ 0.44 = 0.02. This is
consistent with the exact crossover exponent (3 =0.428) for the model
proposed by Duplantier and Saleur [17] to be valid at the collapse transition.
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