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Abstract. By ntilizing newly extended series for self-avoiding walks and polygons with
nearest-neighbour interactions on the square lattice we have examined the validity of a
recent conjecture on the scaling of their partition functions at low temperatures. The ratio
of the walk to polygon partition functions should have a length-dependent power law
singularity, r*®, at all temperatures, At low temperatures we find ¥” is 0.92 0.0 in distinc-
tion to the conjectured value of 19/16=1.18735, though we find agreement at high tempera-
tures and at the @-temperatures with the conjectured values there.

The collapse transition of a dilute polymer solution is a subset of perennial interest [1-
3]. Much work hag been accomplished on lattice models such as interacting self-avoiding
walks to elucidate this phenomenon. The lattice models possess a critical point as a
function of temperature which is identified as the @-point for polymers. This point can
be viewed as a type of tricritical point in the appmpnate thermodynamic space, The
critical phenomena analogy arises from the ‘formal’ mapping [4-6] of polymer config-
urations to those of the magnetic () model in the r—0 limit. The study of a single
polymer has focused on two cases. The high .temperature or good solvent regime has
been studied extensively, as has been the region around the @-point. Much less has
been attempted at low temperatures (that is, in a poor solvent) with some work at zero
temperatures {7]. In the above works the polymer density is zero. The subject of dense
polymer networks has also been active [8-11]. In a system of finite polymer density, at
low temperatures, the solution phase-separates into 2 dense phase and a dilute one.
Recently, this dilute low temperature phase, modelled by a single self-avoiding walk
with strong effective monomer-monomer attraction, has become the subject of several
conjectures.-

At high temperatures and at the 8-point the partition function for a walk is believed
to scale as

Zy~Zpu'n? ! (D

where y is some universal exponent that takes on one value at high temperatures and
another at the f-temperature. Here, u is related to the temperature dependent bulk
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free energy. (Z is also temperature dependent.} At these temperatures the walk has zero
average internal density with the radius of gyration and end-to-end distance scaling as

(R >~ Rn" )

with v>1/d, where 4 is the dimension of the sysiem.

At temperatures below the 8-point a single walk is, on average, in a collapsed state
with a finite internal monomer density. The radins of gyration and end-to-end distance
scale with the exponent v=1/d. Taking account of this observation, it has been conjec-
tured [12, 13] that at low temperatures the above scaling (1) for the partition function
should be replaced by

Zo~Zpipinr! (3)

whete o is most likely to have the value (d—1)/d and so y; is related to a temperature
dependent surface free energy. Again, Z is temperature dependent. The rationale for
such a conjecture arises from the posited generic singularity structure of first order
transitions [ 14]. This conjecture was supported by work on interacting partially-directed
self-avoiding walks, first numerically [15], and then by exact calculation [16] in two
dimensions.

This work was exiended by Duplantier [17] who pointed out that because the walk
is internally dense at low temperatures it may be possible to adapt work on dense
polymer networks where the partition function scaling form above has occurred in a
different context. He further suggested that previous work on Hamiltonian walks on
the Manhattan lattice [9, 10] was applicable and conjectured values for the ¥ exponent
for open and closed polymers in two dimensions. We note that the connection between
Hamilionian walks and the T=0 limit of the collapse problem has been suggested
previously [18]. However, it is not clear, firstly, whether the dense analogy is truly
applicable because of (unseen) subtleties with the surface configurations and, secondly,
whether the Manhattan lattice imposes a relevant constraint that changes these values
[19]. To attempt to answer these questions we have utilized newly extended series for
interacting self-avoiding walks and polygons on the square lattice.

The series for interacting self-avoiding walks has been extended using direct enumer-
ation on an Intel Paragon supercomputer [20] up to length n=29. The values of the
walk partition function Z;(w) can be found for any o as

ZH @)=Y c(m)o™ 4

where @ is the Boltzmann weight associated with each interaction, related to the tem-
perature and coupling constant J as ® =exp(f.J), and ¢,{m) Is the number of configura-
tions of length » with m interactions. The series for interacting self-avoiding polygons
has also been extended up to n=42 by using the finite lattice method {211. The partition
function is similarly defined as

Z (@)=Y pdm)a™ &)

with p,(m) being the number of rooted polygons (loops) of length » with m interactions.

The scaling form (3) contains four unknown parameters, even assuming that o=
1/2, and it would be very difficult to extract a reasonable value of y without knowing
Ho{w) and yi(@). To ameliorate this problem we have concentrated our study to the
ratio of walk Z) to polygon Z partition functions, which we denote as Q.(). This
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Table 1. Partition functions at high temperature (&> = 1.000).

” ZY A @

4 | 2.50000000e-+-01 4,00000000e+00 6.25000000
6 | 1.95000000e+02 1.20000000e4-01 | 16.25000000
8 | 1.47900000e+03 | 5.60000000e401 | 26.41071429
10 | 1.10250000e+04 2.80000000e-+02 | 39.37500000
12 1 8.12330000e+04 1.48800000e+03 | 54.59206989
14 | 5.936116G0e+05 | 8.23200000e+03 | 72.11017979
16 | 4.31133300e406 4.70080000e+04 | 91.71487832
18 | 3.11646830e+07 | 2.74824000e+05 | 113.39869520
.20 | 2,24424291e+08 1.63652000e+06 { 137.13507380
922 | 1.61114012e+09 | 9.89058400e+06 | 162.89635890
24 | 1.15365993e-+10 | 6.05104800e-+07 | 190.65456640
26 | 8.24281966e+10 | 3.74019776e4-08 | 220.38459420
28 | 5.87844646e+11 | 2.33213187e--09 | 252.06320990
30 | 4.18548949(1)e+12 | 1.46515358¢-+10 | 285.66899280(1)
32 | 2.9758749(8)e+13 | 9.26538451e+10 | 321.182023(8)
34 | 2.11319768(1)e+14 | 5.89317729¢+11 | 358.58376070(1)
36 | 1.4989351(4)e+15 | 3.76752338e+12 | 397.85688(1)
38 | 1.0621688(5)e+16 | 2.41960061e+13 | 438.98515(2)
40 | 7.5199558(6)e+16 | 1.56030800e+14 | 481.95329(4)
42 | 5.3196749(T)e+17 | 1.00991100e+15 | 526.74690(7)

function should have the scaling form
Z3/Z,= Q@) ~ On"”

where

yD = ¥walks ™ Yloops -

L3

(6)

(M

Note that at high and 8- temperatures the y-like exponent for loops is usually denoted
as ¢ — L. This form should be valid at all temperatures with y® assuming different values
at high, 8- and low temperatures. The conjecture of Duplantier [17] determined from
dense walks on the Manhattan lattice is that

yP=19/16=1.1875 . ¢:5]

for low temperatures (that is, large @).

Because of the differing lengths of the interacting watk and polygon series (29 steps
and 42 steps respectively), we have used the method of differential approximants to
extend the walk series at the required temperatures. In this technique, a number—
typically 12—of inhomogeneous differential approximants are constructed that utilize
all the available terms (29). Such approximants implicitly provide estimates of all future
terms. We have explicitly evaluated the next 13 terms, taking as our estimates the mean -
of the values given by the differential approximants, and taking as the error the standard
deviation. The results are given in tables 1-3, where it can be clearly seen that the ecror
increases with o, and also, of course with the order of the estimaied term. For =1,
the first unknown term can be estimated with an error better than 1 part in 10°, while
for @ =3, the 13th unknown term can only be estimated with an error of 1 part in 10%,
Nevertheless, even this worst case is sufficient for our subsequent analysis. This method
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Table 2. Partition functions at estimated f-temperature (w =1.931).

n

Zw

ZI

Qn

4

6

8
10
12
14
16
18
20
22
24
26
28

3.24480000e-+01
3.41904352e4+02
3.63072388e+03
3.83575893e+04
4.02490162e-+05
4.21534104e-+-06
4.40962830e+07
4.60529811e+08
4.80407121e+09
5.00724526e+10
5.21524402e+11
5.42842404e+12
5.64721081e+13

4.00000000e+00
2.31720000e-+01
1.86980528e-+02
147052275403
1.21589867e+04
1.05680646e-+05
9.38507465¢-+05
8.44895530e-+06
7.71556406e-+07
7.13294615¢+08
6.65768863¢+09
6.26306464e-+10
5.93226873e+11

8.11200000
14.75506439
19.41765767
26.08432227
33.10227845
39.88754059
46.98103779
54.50730830
62.26467919
70.19883730
78.33415331
86.67360699
95.19479080

30
32
34
36
38
40
42

5.872026(4)e+14
6.10326(2)e+15
6.34126(4)e+16
6.58634(7)e+17
6.8389(1)e+18
7.0994(2)e+19
7.3677(3)e-+20

5.65234291e412
5.41333920e+13
5.20783699e-+14
5.03015913e415
4.87586020e+16
4.74141858e+17
4.62400596e+-18

103.88658(8)
112.7448(3)
121.7637(7)
130.937(1)
140.261(3)
149.731(5)
159.337(6)

Tahle 3. Partition functions at low temperature (o =3.000).

n

Z¥

Zy

@n

4

6

]
16
12
14
16
18
20
22
24
26
28

4.10000000e+01
5.79000000e+02
8.87100000e+03
1.38665000e+-05
2.17828100e+06
3.50760430e+07
5.73158285¢+08
9.44831607e--09
1.573756376e+11
2.64701687e+12
4.48810534e+13
7.66350539e+14
1.31684515e+16

4.00000000e+-00
$.60000000e401
4.40000000e4-02
5.12000000e4-03
6.63840000e--04
9.32400000e-+05
1.33023040e--07
1.94372280e+08
2.92281812e4-09
4.49030413e+10
7.00275379%+11
1.10665766e+13
1.77135867e--14

10.25000000
16.08333333
20.16136364
27.08300781
32.81334358
37.61909374
43.08714378
48.60938024
53.84371149
58.04961226
64.09057745
69.24010627
74.34096604

30
32
34
36
38
40
42

2 37581(B)e 17
3.9539(3)e+18
6.903(1)e+19
1.2109(5)e+21
2.132(1)e+22
3.766(3)e-+23
6.682(8)e-+24

9.86704270e+15
4.68568795e+16
7.72373830e+17
1.28297713e-+19
2.14625630e+-20
3.61388474e-+21
6.12166211e+22

75.373(2)
84.383(6)
89.37(2)
94.39(4)
99.34(6)
104.20(9)
109.2(1)
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Figure 1. This graph is a log-log plot of the ratio of partition functions @,(w) against
length # for three temperatures. The Boltzmann weights chosen w=1.0, 1.913, 3.0 represent
high (infinite}, critical and low temperatures respectively. The crosses are high temperature
values, the open circles are f-températare values and the full circles are the low temperature
values.

of coefficient prediction was justified to some extent in previous work [22] in which a
coefficient predicted to 10 digit accuracy was found fo be correct to all claimed digits.

We have evaluated the partition functions at three specific temperatures: one high,
one low and one at an estimated #-temperature. The estimated values of the exponent
¥® at high and §-temperatures can be compared with well regarded (but non-rigorous)
theoretical exact values to help establish the accuracy of our method. The high tempera-
ture was simply chosen as @ = 1.0 (that is, infinite temperature) to minimize unwanted
thermal corrections and the estimated exponent extracted (1.847 £:0.032) compared well
with the exact value of 59/32=1.843 75. The f-temperature was taken from a recent
estimate [23] as wy=exp(0.658£0.004)=1.931+0.008 and the estimated exponent
(1.298 +0.028) also compared well with the exact value of 9/721.2857. We note in
passing that the uncertainty in the critical point naturally increases the error in the
estimation of the value of y” at this point, as there is a drift of the estimated exponent
value with the assumed critical temperature. This can be utilized for an estimation of
the @-temperature assuming that the conjectured value of y”=9/7 is correct and ylelds
the estimate @e=exp(0.663£0.016)=1.94+0.03.

The choice of a suitable low temperature was difficult as one had to balance the
concerns of being far enough away from the 8-point to avoid crossover effects while
not being at too low a temperature where parity effects (due to certain polygon sizes
permitting significantly more interactions) make it irapossible to extrapolate series
meaningfully. By examining the partition function ratio over a range of temperatures
we decided upon @ = 3.0 as a value where exponent estimates could be usefully extrapol-
ated while crossover curvature in the estimates seemed to be small. Given these consid-
erations, our result at this low temperature for ¥°, 0.921+0.088, excludes the
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Table 4. ¥ extrapolations and conjectured values in all three regimes.

w = 1.000 [ w=1081 | w = 3.000
n 4 local slopes
5 2.35658118 1.47544613 1.11108419
7 1.68824168 0.95451366 0.78553572
9 1.78970588 1.32269838 132263930
i1 1.79220461 1.30685403 1.05269360
13 1.80541916 1.20960799 0.88664211
15 1.80099516 1.22577962 1.01633727
17 1.80183222 1.26156301 1.02384742
19 1.80386831 1.26289746 0.97065867
21 1.80618465 1.25839056 0.95055357
23 1.80837356 1.26020239 0.96095831
25 1.81042024 1.26389686 0.96714474
27 1.81228778 1.26539426 0.95741279
29 1.81401183(1) 1.26642(1) 0.9503(3)
31 1.8155706(4) 1.26787(4) 0.947(1)
33 1.8169889(4) 1.2694(1) 0.947(4)
35 1.8182812(5) 1.2708(2) 0.955(8)
37 1.819462(1) 1.2723(4) 0.947(14)
39 1.820542(2) 1.2737(8) 0.931(21)
41 1.821534(3) 1.274(1) 0.951(29)
extrapolations to oo
1.85 i 1.29 | 0.95
extrapolations from DAs
1.847(32) { 1.298(28) | 0.921(88)
¥ conjectured values
50/32 = 1.84375 [ 9/7 ~ 1.2857 {19716 = 1.1875

conjectured value of 19/16=1.1875. The values of the two partition functions and their
ratio are given in tables 1, 2, and 3 for these three temperatures. Figure 1 is a plot of
the ratio of partition functions @,. It can be seen that these are smooth on a graphical
scale in this log-log plot.

In order to estimate exponent values, we used two different methods. Firstly, we
performed a differential approximant analysis [24]. At all temperatures we used approxi-
mants with critical points biased at 1.0 with and without assumed confiuent exponents.
The approximants giving the best results were the ones utilizing all available coefficients
and covering all possible combinations of approximants in the range of [1..3, 1..3, 1..3,
1..3; —1..2] with assumed confluent exponents. Averaging over these approximants
after discarding defective ones we get the results presented in table 4. Secondly, we
computed the local slopes from the log-log plot and estimated their limiting values
using a suite of extrapolation methods [24], thereby confirming the results obtained
from the differential approximant analysis.

Table 4 gives the list of local slopes extracted from the Q, and figure 2 plots these
against 1/n to illustrate the data. They show graphically the answers given by differential
approximant analysis.

In conclusion, the differential approximant analysis gives answers consistent with
the believed exact results at high (59/32=1.84375) and 8- (9/7~21.2857) temperatures
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Figure 2. This graph is a plot of local estitnates of the exponent ¥® against 1/n for the
three temperatures. The crosses are high temperatures values, the open circles are §-tempera-
ture values and the full circles are the low temperature values. The arrows indicate the
conjectured results. At Jow temperatures the estimates are more erratic than at high tempera-
tures thongh they still settie to a value well away from the conjectured 19/16.

but the value extracted at low temperatures (0.921 +0.088) excludes the recent conjec-
ture (19/16=1.1875).
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