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We present the thermodynamics of two variations of the interacting partially
directed self-avoiding walk problem by discussing versions where the length of
the walks assume real as well as a integral values. While the discrete model has
been considered previously to varying degrees of success, the continuous model
we now define has not. The examination of the continuous model leads to the
exact derivation of several exponents. For the discrete model some of these
exponents can be calculated using a continued-fraction representation. For both
models the crossover exponent ¢ is found to be 2/3. Moreover, we confirm the
tricritical nature of the collapse transition in the generalized ensemble and
calculate the full scaling form of the generating function. Additionally, the
similarities noticed previously to other models, but left unexplored, are
explained with the aid of necklacing arguments.

KEY WORDS: Tricritical point; directed walk; exact solution; g-series.

1. INTRODUCTION

There has been much interest in partially directed self-avoiding walks
(PDSAW) as free walks,") with self-interactions,*™* as interacting with a
surface,®® and combining both self- and surface potentials.” > The great
virtue of these models, as a simplification of the isotropic self-avoiding
walk family of models, is that many analytic techniques can be applied. The
behavior of free or noninteracting PDSAW has been understood") in great
details and the relevant “critical” exponents and scaling functions have
been calculated. Critical indices for the model with only surface interactions
have also been calculated. However, for the model with only self-inter-
actions, the IPDSAW model, critical exponents have been absent from the
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discussions. This addition of nearest-neighbor monomer-monomer inter-
action has allowed the study of a model displaying a collapse transition, as
occurs in the interacting case of the (undirected) self-avoioding walk
(SAW) model. This transition is believed to be a tricritical point in the
interacting SAW model and is seen as describing the 0-point of a dilute
solution of polymers. The partially directed model has also been seen to
possess such a collapse transition.”’ Previous work on the IPDSAW model
has located the collapse transition,® while other work® has calculated the
exact generating function of the model and proved the existence of the free
energy and the collapse transition. The functions involved in this solution
are g-hypergeometric functions for which far less is known about their
behavior than standard special functions. As a consequence the calculation
of exponents has not yet occurred. In this paper we consider two models,
a “discrete” and a “continuous” IPDSAW as illustrated in Fig. 1. Our
major results include the values for the common exponents at the collapse
transition given in Table II. In Section 2 we provide a broad sketch of
the behavior of the models, define these relevant exponents, and present the
consequences of the tricritical scaling expected. By solving exactly the
continuous IPDSAW model, whose generating function can be written in
terms of Bessel functions, we are able to study their asymptotics and hence
extract the critical exponents (Section 3). As a bonus we calculate the
scaling form of the generating function. A new continued-fraction represen-
tation of the solution to the discrete models is obtained (Section 4) and we
generalize the solution (Appendix A) to include variables needed for a finer
study of the problem. Assuming that certain exponents exist enables us to
use the continued-fraction representation to calculate several of these
exponents. The values obtained are the same as those found more
rigorously in the continuous model. We show that the continuous model is
the continuum limit (Section 5) of the discrete model and are therefore able
to understand the equality of the exponents in some detail. Lastly
(Section 6) we explain how both the discrete and our new continuous
version of the IPDSAW model are related to other models in the literature.
In particular, the models of polymer crystallization of Zwanzig and
Lauritzen (ZL) and the two-dimensional linear solid-on-solid (SOS) in a
magnetic field are shown by using necklacing arguments to be directly
related to our models.

2. SCALING

In this paper we examine two very similar models. The first is defined
by considering a two-dimensional square lattice and choosing one vertex
of that lattice from which to begin. From that vertex one builds partially
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directed self-avoiding walks of varying lengths, as in Fig. 1. Our problem in
statistical mechanics is the construction of the partition function Q,(7T) in
the canonical ensemble of fixed length L walks where we have nearest-
neighbor (attractive) monomer—monomer interactions. The canonical
partition function for the model is given by

Q(T)=> c'Pexp(ml/kyT) (2.1)

m

where —J is the energy associated with each nearest-neighbor contact, ¢!~
is the number of configurations with L steps and m nearest-neighbor
contacts, and kg is Boltzmann’s constant. The interactions introduce the
temperature and despite later generalizations the partition function is
essentially a function of this one variable. A variation on this model is
obtained if we consider a slightly different set of configurations and this
gives us our second model. Here we allow the vertical segment length to
assume real values and the interaction strength between successive vertical
“folds” to depend solely on the overlap of the two (in analogy with the
discrete model). This model can be conceived as the short-step limit of the
discrete one. The two models behave in a similar fashion, as one might
expect. The thermodynamic limit in these problems is the limit L — oo.
We now discuss the critical exponents with which we are concerned.
For convenience they are summarized in Fig. 2. In the case of infinite
temperature or no interactions (free walks) the thermodynamic limit is
often referred to as a critical point. The terminology and the subsequent
definition of the free walk exponents have been influenced by the formal
equivalence of free isotropic SAW and the n — 0 limit of the O(n) model.
The most common exponents are the partition function exponent y and the

Fig. 1. (a) A typical configuration of a discrete IPDSAW with interaction bonds shaded
gray. (b) A typical configuration of a continuous IPDSAW with interaction overlap shown

dark gray.
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Fig. 2. Diagrams illustrating the critical exponents and the associated limit directions (a) in
the singularity diagram or generalized ensemble and (b) in the canonical ensemble.

length scale exponent v. The exponent y is defined through the expected
scaling form of the partition function as

Q,~u"L""!, T=ow (2.2)

and has the value y=1 in PDSAW. Because this is a directed problem,
there are two length scale exponents that can be defined, each measuring
essentially the average size of walks in the horizontal, v* =1, and vertical
directions, v¥ = 1/2. These exponents are defined via the radius of gyration
K(R®¥)?YY(L), itselfl being an average (denoted by «-») over the
configurations of length L, as

K(ROYP Y~ L™ (2.3)

By adding interactions to the problem, and hence a temperature, there
exists scope not only for analysis of a large-L scaling behavior, but also
of fully thermodynamic phenomena. One goal is then the solution of the
limiting free energy per step/monomer

7(T)= —k,T lim ~1log 0, (T)

L—»ooL

This function of (real) temperture contains (usually) a lone singularity, that
is, there exists a (thermodynamic) critical point. The phase transition is
interpreted as a collapse transition where the dominant configurations at
high temperatures are eclongated, relatively thin though rough, that
“collapse” under stronger interactions (lower temperatures) to rather fatter
ones. A set of canonical critical point exponents is defined at the singular
point. In addition to the thermodynamic limit, the limiting behavior itself
is of interest in physics as in the case of free walks. The set of finite-length
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scaling exponents takes on three different values, depending on the tem-
perature, one at high temperatures, one at the critical point (7.), and
another in the collapsed phase. As one may expect, the high-temperature
values are identical to those of free walks.

It is difficult, however, to sum directly the partition function for fixed
lengths and so an alternate route is usually followed. A generating function
G(T,z)=3 z2Q,(T) is calculated instead. This can be viewed as simply a
mathematical device, being a Laplace transform of a kind or as the physi-
cal consideration of a new ensemble. This ensemble, referred to as a
generalized ensemble because it has no independent parameter that is
varied to produce the thermodynamic limit, is one of a single polymer
chain in contact with a particle bath of monomers. The resulting “phase”
diagram (or more precisely a singularity diagram) in the z-T plane (see
Fig. 3) is summarized as follows. At any temperature there exist values of
z small enough that the generating function converges. The generating
function has a radius of convergence 0 <z (7T) for all temperature (given
that the thermodynamic free energy exists). The radius of convergence is in
fact related to the thermodynamic free energy as

2oo(T) =exp[ff(T)] (24)

Thus the shape of the radius of convergence gives directly information
about the canonical free energy and hence some of the critical point
exponents. The thermodynamic limit in the generalized ensemble can be
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Fig. 3. The singularity diagram for the discrete IPDSAW model. Points whose coordinates
were previously known exactly are shown. This diagram has been calculated from the
continued-fraction expansion described in Sectiond4. The singularity diagram for the

continuous model is similar.
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taken as the limit z » z_(7) as long as the generating function diverges
smoothly as the limit is taken."'” This condition is fulfilled at temperatures
down to and including the collapse temperature. Under these conditions
and in the thermodynamic limit averages in the canonical ensemble
converge to the same value as the same property averaged in the
generalized ensemble. Moreover, the strength of the singularity of the limit
itself (as measured canonically by the finite length exponents) in both
ensembles can be simply related. Hence, the exponents y and v** can be
calculated in the generalized (also referred to as a grand in some of the
literature) ensemble rather than directly from the (canonical) definitions
above. Let us examine this so-called phase diagram further. First, the
region z >z, is not of interest usually, even though by suitably extending
the problem (by introducing a finite lattice and hence a volume parameter)
the radius of convergence may be interpreted as a phase boundary in the
z-T plane. Below z(T) the average walk length is finite (as calculated in
the generalized ensemble). At high temperatures and also at the critical
temperature the average walk length diverges on approaching the radius of
convergence. One may expect this, of course, if the canonical limit L — oo
is equivalent to the limit z » z (7). At low temperatures the average walk
length stays finite at z (7). It is expected that at low temperatures there
exists an essential singularity on z_(7) in analogy with the Fisher descrip-
tion of the condensation of a fluid."'"Y The low-temperature line is then
analogous to a line of first-order transitions. In the same vein the “critical”
point can be seen to be analogous to a tricritical point in the z — T plane.
In fact, a tricritical point is precisely what is expected at the collapse trans-
ition (or f-point) of polymer systems. It is this tricritical point that will be
the focus of our study. We shall refer to the thermodynamic critical point
or collapse transition at T, as a tricritical point and indeed see that the
crossover phenomenon associated with such a point does occur in our
models.

We shall now define the exponents that characterize the tricritical
point. In anticipation of our results, we describe the scaling picture that is
expected at the collapse transition using the assumption of conventional
tricritical scaling. It is the calculation of these exponents and confirmation
of this scaling picture that form the kernel of this paper.

The most common canonical exponents calculated at the (tri-)critical
point are & and #* (x and y denote the horizontal and vertical directions,
respectively). The & exponent desibes the singular part of the free energy

near 7', as

f;ingular part(T) ~ t2—i (25)
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where t=T—T,. The ¥ exponents are defined through an appropriate
thermal correlation length as

ST (2.6)

Please note the use of tildes to differentiate these (canonical) ther-
modynamic exponents from the length scaling exponents.

One can define the finite length scaling exponents y and v via the
partition function and the horizontal/vertical radius of gyration at any
temperature in the same fashion as in the infinite-temperature case. Three
separate values of these exponents are possible, depending on the tem-
perature, and we denote the high-temperature values simply with the same
symbols as the free walk definitions, while we denote the tricritical point
values by the addition of the subscript ¢, such as y,. The exponents at high
temperatures and at the tricritical point can also be calculated using the
generalized ensemble and so we give the appropriate definitions used in this
ensemble. (Strictly speaking, we should use different symbols for these a
priori.) The new set of y exponents is defined through the divergence of the
generating function (since the partition function and generating functions
are related via the Laplace-like transform) as

Gz, T)y~dz"" (2.7)
at high temperatures, where 4z=z_, —z, and
G(z, TY~ Az~ (2.8)

at T.. The radius-of-gyration exponents are defined through the average
horizontal/vertical length calculated in the generalized ensemble (these
averages are denoted (- >). We have

(Ly,>~dAz7"" (2.9)

at high temperatures, and by adding the subscript ¢ a similar equation
denotes the tricritical definition. (Here (L, is the average vertical length
of a single vertical segment, rather than the average number of vertical
steps, whereas (L, ) is the average number of horizontal steps.) The above
formulas are easier to tally with the previous definitions when it is realized
that the existence of the exponent y ensures the following behavior:

(LY~ Az} (2.10)

for the average total length {L).
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The generalized canonical exponent  describing the singularity of the
shape of the radius of convergence can be related to 4, the exponent of the
singular part of the free energy (2.5) through the relationship (2.4). We
clearly have

y=2—4a (2.11)

In addition, the generalized canonical exponents vy, measured
approaching T, along the radius of convergence, are expected to reproduce
the values of the canonical % respectively, since above T the calculation
of quantities such as a thermal correlation length will result in identical
results in the two ensembles.!” These could be found then by calculating
a two-point correlation function as in Nordholm’s work.""”’ We choose to
calculate these exponents by considering the average length scales (L 2
in the grand ensemble (assuming the existence of only a single length scale
in the problem near T.), approaching the tricritical point sitting at the
radius of convergence below T,.. These averages converge at the radius of
convergence when 7T <T,. This simpler method has been chosen to
illustrate the power of the generalized ensemble even below T.. (Our
results are in agreement with Nordholm’s method.)

The description of the collapse transition in the generalized ensemble
can be given succinctly with the assumption of the transition point being
a generic tricritical point. This allows us to write the scaling form, for
positive ¢,

G(dz, 1)~ Az 7O(Az~'1V?) (2.12)
where
const, x—0 '

where x_ is related to the radius of convergence. This introduces the
crossover exponent ¢. Contained in our assumption is the relationship

b =1/¢ (2.14)

(Please note that this definition of ¢ deviates from the conventional
tricritical usage where it is defined so that ¢ =y, but is chosen here to
coincide with that most common in the literature concerning the 6-point.)
Considering a similar scaling form for the length scale exponents gives
¢=vvi=v’/v). Making an analogous assumption for negative ¢ adjusted

{
for the fact that the generating function does not diverge on the radius of
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convergence (given that if exponents exist on this side they will be the same
as their positive ¢ counterparts), we have

G(t)~ 1t (2.15)

where y,=7v,/¢. (The exponent y, can be also found in a tangential high-
temperature approach along the phase boundary to the tricritical point.)

This scaling assumption has consequence for the scaling of the free
energy and partition function in the canonical ensemble. Without going
into detail, since we do not use the canonical ensemble for calculation,
scaling forms may be written down using basic crossover forms where there
is a single crossover exponent ¢ and the relationship 2—d=1/4 is
automaticaly satisfied.

The above summary has defined the major exponents discussed in the
following sections and sets the scene for the calculation of these exponents
and the scaling function defined in (2.12). The more general consideration
of the tricritical scaling assumption in walk-type problems has been dis-
cussed by Owczarek et al.''?) and Brak et al."® In addition, there exists a
recent numerical study of the collapse phase by Prellberg et al.'*

3. CONTINUOUS IPDSAW

In this section we analyze a continuous version of the IPDSAW
problem. The great virtue of this approach is the neat and direct calcula-
tion of exponents and scaling functions. While the discrete model has been
examined in other publications, this is the first place the continuous version
has been considered. The rewards for doing so flow the fact that the solu-
tion is expressed in terms of Bessel functions whose asymptotics have been
well studied. The occurrence of Bessel/g-Bessel functions in problems where
the configurations are the continuous/discrete directed walk problems
seems generic. We begin by discussing the definition of the model and the
various partition and generating functions of interest.

The configurations of the continuous IPDSAW are partially directed
walks where the length of each vertical segment is allowed to assume real
values. Such a freedom would be natural when considering a model for
short monomer polymers (and so a walk model with short step length) and
also in a course-grained formulation of the original discrete model. This
leads to the examination of the limiting process that would result in our
continuous model (starting with the discrete case) and forms the crux of
Section 5. Note that because of the directed nature of the problem the
continuous model is noticeably asymmetrical (the horizontal length, being
made of single steps, can be made to vanish in the continuous limit). Alter-
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natively, since the horizontal and vertical limits are decoupled, one is also
able to consider a continuum limit where the horizontal step length
remains finite, as is done in this paper. Instead, we introduce a dummy
variable to count the number of vertical segments, which is numerically
equal to the number of horizontal steps (whatever their length).

We assign an energy U(ry,..., ry) to each configuration of length L and
number of vertical segments N, where each vertical segment, i=1,..., N, has
length r, measured in the positive y direction, giving L=, |r,|. This

energy 1s given by
N—1

U(ri,otrn)=—J Z u(ri, rigy) (3.1)
i=1
where

u(r,, ri+1):min(|ri|alri+ll)%(_riri+l) (3.2)

and #(r) is the Heaviside step function:

0, r<0
H(r)y=<1/2, r=0 (3.3)
1, 1>0

The function u(r,, r;, ;) measures the overlap of successive segments. This
model differs from the ZL model in that successive segments need not fold
back at each horizontal step, hence the complication of the Heaviside func-
tion in the energy. We consider the case of attractive monomer-monomer
interactions where J>0. The thermodynamics can be deduced from the
canonical partition function

O e

0uw)= Y | drie [

N=1 —

N
drn O < Y el — L> @XiHririe) - (3.4)

i=1

where the Dirac delta function restricts the “counting” to fixed-length
(equal to L) walks and w=exp(fJ)>1. The free energy in the ther-
modynamic (long-walk) limit is defined in the usual way as

f(w)= —kgT lim %log 0,(w) (3.5)

L > o

For mathematical convenience, then, it is easier to work in the
generalized ensemble of fixed monomer fugacity y (so that the length is
now allowed to vary). To this end we define the generalized partition

function as

G(ysw) =] yQulw)dL (36)
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This is the Laplace transform of the partition function and therefore can be
inverted if required, provided the usual conditions apply. We will, however,
calculate thermodynamic averages in the generalized ensemble, although
noting the restrictions pointed out by Nordholm."® For small enough y
the generalized partition function is finite. Interest lies in the radius of
convergence y . (w) of this function, since this is directly related to the free
energy via

flw)=kgTlogy,(w) (3.7)

The variable y is conjugate to the length and so plays the required role of
providing information indirectly about the finite-length scaling.

We now perform some manipulations similar to those that led to a
solution in the discrete model. By interchanging the summation and
integration, G(y; ) can be rewritten as

G(y;w)= )., Zy(y; ) (3.8)
N=1
where
ZN(y;a))———JOO dry-- [ drye (3.9)
and
N N—1
—BE[r]=—t Y, Irl+BJ Y ulr,r.,) (3.10)

i=1 i=1

where 7 >0 and is defined through y =exp(—1)< 1. As an aside, we note
that if the local interaction u(r,, r;, ;) were an absolute difference, then the
energy would be that of a solid-on-solid (SOS) model with a magnetic field
term. The generalized partition function G(y;w) as a function of the
temperature (interaction energy) o >1 and fugacity y <1 is the goal of
solution. We extend our aim (with a view to obtaining extra detail in the
solution) by the introduction of a counting variable x <1 for the number

of folds (or horizontal steps)
G(x, y;w)= ), x"Zy(y; ) (3.11)
N=1
We also now introduce the function %, (z), which is defined fully as

#,(z) = jw dt exp[ —t|1] + BT min(|tl, |2]) #(—12)] Zy (1) (3.12)

— O
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and
Zo(z)=1 (3.13)
Hence

Zy(y; w)=2Zy(0) (3.14)

We will therefore be interested in finding G(x, y; w) via the generating
function %(z), where

G(z)= Y x"Z(z) (3.15)

1

=
18

and hence
G(x, y; w)=%(0) (3.16)

To find the generating function, we find an integral equation which %
satisfies. The integral equation is reduced (with loss of boundary condition)
to a differential equation. The solution to the differential equation is then
substituted back into the integral equation to fix the constants of the
differential equation’s general solution. Finally, z =0 is substituted into the
solution to find G(x, y; ). The method is closely related to the solution of
the discrete case and one can view %(z) as related to the generating
function for continuous walks where the first vertical segment is of length
z. To find the required integral equation, the recursive formula for Z(z)
is substituted into the equation for %(z). The summation and integration
are interchanged, resulting in

@(z):xfo dt {exp[ —|t] + BJ min(|1], |z]) #(—12)1}[%(1) + 1] (3.17)

— oG

This equation is valid for all real z. The function %(z) is even, so we need
consider only the half-line [0, oo). Splitting the range of integration about
zero and then expressing the result as a single integral on the half-line
[using the even property of %(z)], we can reformulate the integral
equation as

G(z)=x joo dt {exp(—1t)+exp[ —ti+ BJmin(s, 12)1}[9(1)+1]1  (3.18)

The min(-) function can be rewritten in terms of sums and differences; that
1S,

min(x, y) = $(x +y) — 3lx — y| (3.19)

~—
N
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and so by multiplying by exp(—fJz/2) we obtain

F)=e N G(2)=| die” (e K+ L e M F () +e ] (3.20)
0

where

K="= (3.21)

and
H=1—pJ (3.22)

Differentiating this integral equation results in the following differen-
tial equation:
d*F

— — K2F (z)— 2Kxe M [F(z) + e ] (3.23)

We preempt Section 6 by remarking that the differential equation above
also occurs in the work of Zwanzig and Lauritzen, even though the integral
equation (and hence the solution) does not appear. It is convenient to
make the substitutions

u=qe " (3.24)
where
a’= §{(7x (3.25)
and
F(u)=%(z(u)) (3.26)
to give
u? %Z; u %Jr (U2 — A2) F(u) = ”‘;“ (3.27)
where
A=2K/H (3.28)

This is an inhomogeneous form of Bessel’s differential equation. The
general solution can be written down immediately as

o

Fu) = +CyJy(u) + CoJ 5 (u) (3.29)

a A
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This solution is then substituted back into the integral equation to
determine the constants. By equating orders, the constant C, is seen to
vanish and the remaining constant is given by

aH

C, =
' 2T (a) (3.30)
so that the complete solution is
aHe* J . (ae %)
1 g — /.
+%(z) IxJ (a) (3.31)
Simply substituting z=0 allows us to express the full solution as
_Ji(04)
14+ G(x, y;w)=0 ' -— :
+G(x, y;w)=0 T (07) (3.32)
where
4x\ "2
o= <ﬁ_J> (3.33)
and, reiterating,
. B
A= 3.34
'y (3.34)

T

while w =¢?’ and y=e"".

The expression has been derived assuming A>0 or 1> fBJ, which
translates to y < ~'. The ratio of the two Bessel functions is meromorphic
and diverges at the zeros of the denominator. Note that ¢ =0(x, ) and
A=A(y, w), so that the counting variable and the length fugacity play
asymmetric roles. Quantities of interest are first the generalized partition

function itself
G(y; w)=G(1, y; 0) (3.35)

which is found simply by using ¢ =a(1, @) without changing the order A
of the Bessel function. The average number of segments is given by

0log G(x, y; w)

3.36
0 log x o1 ( )

(N)=

and the average length by
0log G(1, y; w)
(Ly=""E

3.37
dlogy ( )
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The radius of convergence y. (w), and so the free energy, can be found
implicitly. The generalized partition function G(y; w) diverges when

Ji(cA)=0 (3.38)

and the solutions to this equation depend crucially on whether o is less
than or greater than one. In fact, the condition ¢ =1 or

B.J=4 (3.39)

describes the critical point in the system. For a given high temperature
such that g(w) > 1 there exists a smallest (nonzero) finite positive solution
of (3.38) for A or (translating) a solution for y= y_(w) in the interval
(0, o '). If the temperature considered changes and approaches that
defined by the condition (3.39), then the solution A approaches infinity and
Vol(w)—> ™' For low temperatures, o(w)<1, the generating function
converges for all ye [0, w ~']. There is an infinite sequence of poles above
o~ that accumulates there, hence y_(w)=w "' for w > w,.

Our rewards are now at hand. The generalized partition function can
be seen to have a isolated pole singularity for high temperatures, so the
standard exponent y =1. Below the critical temperature the generalized
canonical y does not exist, which implies that the standard ansatz for the
asymptotics of the partition function (in L) does not hold in the canonical
ensemble. At the critical temperature y,=1/3. We note again that (L)
diverges with a simple pole provided y exists. In fact, it is possible to write
down the complete scaling form around the critical temperature for the
generalized partition function as

1/2 A /12/3
GO~ ~(15)  aegme A (3.40)

where {(o), the temperature scaling variable, is defined differently above
and below the critical point as

P INY:
§§3/2:10g1+(1 ) (1—g)n (3.41)
for ¢ <1 and
2 32 2 1/2 1
_3.(_5) = (62— 1)2 — arccos - (3.42)

for ¢ > 1. Note that
(| ~1—0?|~|T—T, (3.43)
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for 6 ~ 1 and that

1
A~
4 | Voo(,.)—yl (344)

for y~ y(w.) and ¢ ~ 1. The differing high- and low-temperature defini-
tions of { hint at the underlying gross asymmetry in the collapse transition
physically. This can be clearly seen from the free energy: in the collapsed
phase (low temperature) the free energy is a constant (hence the entropy
is zero!), while above the critical temperature the free energy has a well-
defined singular variation. The approximation above has the tricritical
scaling form mentioned previously. From this scaling expression the
crossover exponent ¢ =2/3 is simply extracted. This is consistent with
the divergence of the generating function on approaching the critical tem-
perature from below fixed at the radius of convergence y_ (w)=w ., since,
for w>w,,

G(yo;)~(@—w)" (3.45)

which confirms y,=7v,/¢ =1/2. The average number of segments, which is
equal to the number (not length of) the horizontal steps, is given by

oAl (0A)/ ] (04) — (67> — 1) J,(0A)/T}(a4)]

201 — 0T (ch)T(07)] (3.46)

(N> =

Even though N is strictly not a length, we use it to define a horizontal scale
and in turn an exponent v*. Nordholm defines a true correlation length
which produces identical results for the ZL model. This quantity diverges
on approaching y, for high temperatures with a simple pole, so we assign

v¥=1 (3.47)
whereas at the critical temperature
vy =2/3 (3.48)

found from (3.46). Again this agrees with the crossover scaling expectation
for the exponent

vi/é (3.49)

X __
vi=1

The shape of the radius of convergence curve, which defines the
exponent ¥ and is found independently from analysis of (3.28), gives
Y =3/2. This is consistent with is consistent with the hypothesis of general
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Table |. High-Temperature Exponents

Exponent Y v v
Value 1 1 1/2

tricritical scaling, which demands  =1/¢. As mentioned in the previous
section, utilizing the fact that the radius of convergence curve is the curve
is the plot of the free energy, the canonical specific heat exponent is

G=2—y=1/2 (3.50)

All these exponents agree, as we shall see, with those that can be found,
making some scaling assumptions, from the discrete model. A complete set
of exponents set of exponents can be deduced,? including

p* =1/3 (3.51)

and
r=1/2 (3.52)

(Remembering that using arguments found in Nordholm’s paper,'® we
have %Y =v>".)

It is then worthwhile to note that the normal hyperscaling is satisfied
at the tricritical point

VAP =2—da (3.53)
since the equation, also satisfied,
2—G=1/¢ (3.54)

is believed can be understood as a “fractal” hyperscaling relation. This
exponent relation has been discussed recently in work on the general
assumption of tricritical points.

We now summarize our values for the exponents in Tables I and II.

2 Foster has subsequently calculated v and v}."'*

Table II. Tricritical Exponents

K

Exponent V. vy vy Y vy v, i 1/
Value 1/3 2/3 1/3 1/2 1 1/2 1/2 2/3 32
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4. DISCRETE MODEL

Here we describe and analyze the discrete IPDSAW model. Although
this model has been solved previously,®’ much has been added to the
understanding of the solution itself. In particular, a deeper analysis of the
properties of g-Bessel functions leads to the understanding of the critical
behavior of the model.

We start with the description of the model and present a solution
within the generalized canonical ensemble. The existence of a singularity in
the free energy as a function of the interaction energy in the thermo-
dynamic limit and hence a phase transition are shown. Then, utilizing a
continued-fraction expansion of the solution, analyticity properties of the
generating function are proved and the structure of the critical point is
investigated. In particular, we compute the exponents of the associated
tricritical scaling form.

The configurations of this model are partially directed walks on a
two-dimensional square lattice with nearest-neighbor interactions. For later
convenience, we demand that these walks end with a horizontal segment.
Due to the directed nature of this problem, we can describe these
configurations in a natural way through the length r; of vertical segments
between two horizontal steps, measured in the positive y direction. Thus,
we associated to each configuration an N-tuple (r, r5,..., ¥ y) corresponding
to a configuration of total length L=Y""  |r,| + N.

The energy due to the nearest-neighbor interactions for each of these

configurations is then

Ulry, rages Fy) = —Ju(ry, 1o, 1 y) (4.1)

where
N—1

u(ry, raye, Fy) = Z min(|r,], [r; ) H(—riri_y) (4.2)

i=1

We assign weights x for steps in the horizontal direction and y for steps in
the vertical direction. The canonical partition function as a sum over all
possible configurations of fixed length L is then

L
QL(X, y,a)): Z XN Z yL—qu(rl,rz ..... rnN) (43)
N =

1 il +ir2l + - +lryl=L—-N

where we have set w =exp(fJ). We get the generalized partition function
by summing over all possible lengths,

Glx, @)= Y 0u(x 3 @)

— Z xN Z yM Z Cl)u(rl,rz ..... rn) (44)

N=1 M=0 [ril +1raf+ -+ ryl =M



Self-Interacting Partially Directed Walks 755

[ .x, y, CU - Z G Zx, Zy, CU) . (; (Z.x’ Ly, (,0) (4.5)

In the Appendix, we consider a generalization of this model which differen-
tiates between steps into the positive and negative y directions and thus
allows for, e.g., the modeling of an external field.

In order to derive an expresion for G(x, y, w), consider now the
generalized partition functions G, = G,(x, y, ) for walks that start with a
vertical segment of height r, so that

0

G(x,y,0)= Y G, (4.6)

Then we can concatenate these walks to get a recursion relation for G, as
follows:

G,=xy" {l + ) a)“(””GS} (4.7)

It follows that
Go=x{1+ G(x, y, z)} (4.8)

Using the symmetry G, = G _, and then restricting to r >0, we can further
simplify to

Grzxy’{l +Y G+ Y wmin(r’“c;s} (4.9)
s=0

s=1

which will be the starting point of our investigation.
We will now derive a homogeneous second-order difference equation

which we can solve using an ansatz from ref. 1. Using the scaling behavior
of the solutions, we can eliminate one of the two linearly independent
solutions. We then write the general solution of (4.9) as an expression

involving the quotient of two g-hypergeometric functions.
Taking differences in (4.9), we first eliminate the inhomogeneous term,

1 oo
Gr+1—yGr=xqr+1<1——> Z Gs (410)

@ s=r+1

Here we introduced for convenience the new variable ¢ = yw. Upon taking
differences a second time, we are left with

1
(Gr12—9G, 1) —q(G,  —YG,)= —xq"*? (1 —5> G,., (411)
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In the case of no interaction (w = 1), the right-hand side of this equation
is zero and we have a simple homogeneous difference equation with
constant coefficients. Its characteristic polynomial P(4) is

P(A)=(A—=y)4—q) (4.12)

and the solution is given by G, =4,y "+ 4,4’
This motivates the ansatz'"

G, =4 Z q"c, (4.13)

n=20

with ¢, = c¢,(x, g, ») independent of r, which inserted into (4.11) gives

i 1
P(A)co+ Y, q" [P(}Lq")c,, + xq (1 — 5) Aq'c, 1] =0 (4.14)

n=1

This equation is solved by
P(2)=0, ie, A,=y and 4,=g¢q (4.15)
and, choosing ¢, =1,

—xq(1 = o) 2g" [~ x(l—l/a))/l]” (2)

c,= — (4.16)
Here we have used the standard notation
(x;q), =[] (1—xg™"") (4.17)
m=1
Defining
% (")(_t)n
H(y,q,t 4.18
Z (¥; 0)a (g5 9)» (418)

we now can write the general solution of (4.11) as

1 |
G,=A1y’H<y, q,x<1 —a)—> q1+’>+A2q’H<qa), q, xa)<1 ——> q”’)
W

(4.19)

We remark that the function H is directly related to a basic hypergeometric
function'®

H(y, q, t):1¢1(09y;q’ t) (420)

'\n’;:}
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which can be seen to be a limiting function of ,¢, and that is the g-defor-
mation of the more familiar hypergeometric function , F,. Analogously, the
function H can be understood (apart from some normalizing factors and
seen by taking the limit ¢ —» 1) as a g generalization of Bessel functions.
Furthermore, as will be seen in the following sections, formally taking the
continuum limit vertically transforms Eq. (4.11) into Bessel’s differential
equation. Therefore, the solution above is also related via this second limit
to Bessel functions. In this section, the understanding of the singular
behavior of H is at the core of deriving the critical exponents.

Returning to the analysis, we see that, for |g| <1, H(y,q,tq") 1s
uniformly bounded in r, so that we can write

|G,| <const-(q"+ ") (4.21)

This we insert into (4.9) and, assuming 0 < w?y <1 <o, we get

r—1 o
|G,| <const-y’ [1 + Z (0g)’ +w” qs]

=0 5=
<const -y [1+(wgq)]
<const -y’ (4.22)
As H(y, g, tq")— 1 for r— co, we see that in fact A,=0. The reason for
this is that we obtained the homogeneous difference equation (4.11) by

taking differences from (4.9), thus introducing additional solutions.
The boundary conditions for G, and G, from (4.9) are

G0=x{1+ S G+ 3 Gs}——-x{1+G(x,y,a))} (4.23)

s=0 s=1

and

G1=xy{1+ Y G+ ) GS}

s=0 s=1

=xy{1_w+<1—wx+1+w>(1+G(x,y,a))} (4.24)

2 2 2

so that we can write down the solution for G(x, y, w) as

l—w (G l+ow 1—w -1
L+G(x, y, 0)=— {VGIO—( T+ x>} (4.25)




758 Owczarek et al.

and, upon inserting the quotient of the g-Bessel functions,

H(y, q, q1)
H(y,q, 1) ZH—(y_q_qt)— (4.26)
we get
1 —
1+ G(x, y, )= @ (4.27)

20 (y, yw, xy(w— 1)) =11+ (1 —w)(1 —x)

We remark that we could have arrived at the same result by
immediately inserting the ansatz (4.13) into the recurrence relation (4.9).
However, the above approach has the virtue of being more transparent.

In the further analysis of J#(y, g, t) we restrict ourselves to the region
lg] < 1, but first we note that the g-Bessel functions converge for |g| > 1 as
well, and that they are related by

11 ¢
H(y> q: qt):H<_9 _>_> (428)
y qy
so that we have
11 ¢
H(y,q, t)%(—,—,—>=1 (4.29)
y ql)y

However, there is an essential singularity at g = 1.
Further functional equations for H(y,q,t) enable us to derive
continued-fraction expansions for #(y, ¢, t). We have in particular

t
H(ya q, t)—‘H(ya q’qZ)Z _1—__)—)H(qy’ q, qt) (430)
ry
t
H(y. 4, 1)~ Hlgy. - a0)= = 757 _qy)H(qzy, g.qt)  (4.32)
so that with defining
~ H(qy, g, qt)
H(y, q, t)=—ﬁm (4.33)

we get

! ~
Ay, 4 t)=1—1—_;=%”(y, q,1) (4.34)

N xa')

W
‘*q,‘,;.:;
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and

- t q2yl - 5 — 1y —1
” , o, - 1— 1— 2 % s Yo
(5. 1) { (1—y><1—qy>[ =) (1-2>) (‘””’)} }
(4.35)

which defines a (Stieltjes type) continued-fraction expansion for 7.
Utilizing theorems in Section 54 of ref. 17, we see that for |g|#1 this
expansion converges to a meromorphic function in ¢ in the whole complex
plane. Moreover, the convergence is uniform in any domain excluding the
poles of this function. As the continued fraction converges uniformly in a
neighborhood of the origin, it is equal to its power series expansion.

Note that the expansion (4.35) is fundamentally different from the
continued fraction given in ref. 18. In particular, it has the advantage of
having a much larger domain of convergence, and thus facilitates numerical
computations of the generating function for all |g| # 1 (with much better
convergence when compared to series expansions). The continued fraction
has been used in the computation of the phase diagram in Fig. 3. Also, all
exponents given below can be calculated numerically using this expansion.

The above results do not include g =1; however, in this case (4.35)
yields a simple quadratic equation for H#(y, 1, t), giving rise to square root
branch points at > —2(1+y)t+ (1 —y)*=0.

As we will use the continued-fraction expansion given by (4.35) for our
further analysis, it is convenient to express (4.27) in terms of H,

1+ G(x, y, 0) = L=y (4.36)
(1 —=x)(1—=y)—=2xyH(y, yo, xy(w — 1))

in a way suggestive of the singularity structure needed to discuss the phase
diagram. We only need to discuss the singularity closest to the origin. This
will be on the positive real axis, as G is a power series with positive
coefficients. There are two ways for this singularity of G to arise. First,
G can have a pole, corresponding to a zero in the denominator, ie., we

have
2xyH(y, yo, xy(w—1)) = (1 =x)(1 —y) (4.37)

From the continued-fraction expansion it is clear that the locus of
these zeros depends analytically on w, as long as yw =g <1. Second, if
there is no zero of (4.37) for yw < 1, then the closest singularity is given by
the essential singularity of # at yw=gqg=1. On this line, we can insert
H#(y,1, x(1—y)) into (4.37) and see that the two singularities coincide
precisely at the square root branch point of that solution, given by
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w.(x, y). For o <w, we have a simple pole singularity and for w > w,_ we
have an essential singularity (G attains in fact a finite value). For more
details see ref. 18.

Now we proceed to the calculation of the exponents. First, we note
that the square root branch point gives an exponent of y, = 1/2. The central
problem in the computations of the exponents away from the line g=1 is
that we can get explicit expressions for #, and thus for G, only on the line
g=1. However, we can compute partial derivatives of all orders on g=1
by differentiating (4.35) and inserting #(y, 1, ¢). Thus, we can deduce
information about the critical structure from their divergences as w — w,
from above. Due to the structure of (4.35), the computations are rather
cumbersome and the derivatives grow rapidly in size, which necessitates the
use of a symbolic manipulation program. In what follows, we therefore
refrain from stating explicit equations.

Due to the existence of all higher-order derivatives on the line g =1,
we are justified in writing an asymptotic series expansion of Hine=1—gq,
1e.,

o

H(p, 1—g, )~ Y A" (y, 1)e" (4.38)

n=20

Inserting this equation into (4.35), multiplying out, and sorting by powers
of ¢ yields an iteration scheme for s (y, t). This iteration scheme shows
in particular that in the neighborhood of the branch point J#")(y, 1)
diverges with exponent

Y=y, +nd with y,=3 and 4=3 (4.39)

This “gap exponent” 4 is consistent with a tricritical scaling ansatz which
links 4 to the crossover exponent ¢ as

_1
A

Wi

¢ (4.40)

Now consider the computation of y,, i.e., the divergence of G(x, y, w,)
for y — 1/w,. It can be shown that

(4.41)
ay w=awg, v=1/w,

has a finite value. Assuming that the exponent exists, we therefore get

(—y,—1)+4y,=0  andthus y,=3 (4.42)

o
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This independent confirms the above value of the crossover exponent

2
=42 (4.43)

¢yu3

A slightly more indirect approach leads to the computation of the
shape exponent =2 —a. For this, we compute the shape of the level lines
~ yw) from G(x, y,(w), w)=1[at y,(w)=1/w and then let / > co. Analysis of
these results shows that = 3/2, which confirms y = 1/¢.

Therefore, by making an asymptotic expansion and relating this to
~ tricritical scaling, we are able to calculate exactly the rational values of the
exponents at the 6-point.

5. CONTINUUM LIMIT

The continuous model and the discrete model can be directly related
by taking the continuum limit. If the size of the edges of the lattice, a, are
put explicitly into the equations of the discrete model and the limit a — 0
is taken, then the continuous model is obtained. (In order to obtain the
continuous model, only the lattice constant in the vertical direction must
be allowed to shrink.) Before taking this limit it is necessary to determine
the length dimensions of the objects occurring in the equations. As noted
in Section 3, %(z) is the generating function of the partition function Zy(z),
but it is equally valid to interpret it as a generalized (or grand) partition
function for continuous walks whose first vertical step has length z. Thus

__%(;) dz = probability the first vertical step has length between z and z + dz

(5.1)

where A" = [ %(z) dz. As probabilities are dimensionless, it is consistent
for 4(z) to have the dimensions of inverse length. This in turn means that
the Boltzmann factors xy* have the dimensions of inverse length (which,
for convenience, we associated with the x factor).

Returning to the discrete model and Eq. (4.9), we make the change of

variable from G, to ¥,, where
G, =xy"(9+1) (5.2)

With this change Eq. (4.9) becomes

G =xGy+x+ Y x(y + yo™I) 1+ %) (5.3)

s=1
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Now we make the length dimensions explicit by inserting the lattice
constant a to give

g axg()'{“ax-i" Z ax(yus+yas min(ar, a.s))(l +gus) (54)

s=1

Now let the lattice shrink to zero, but ensure that the physical length of the
walk remains finite by taking the limit @ - 0, with ar and as remaining
finite. Thus, ar—z, as—t, and Y., a— [ dr, and hence Eq.(54)
becomes

{42=J dt x(y' + y'o™ ) (1 + %) (5.5)
0

If this is compared with Eq. (3.18) of the continuous model, we see that the
same equation is obtained with y=exp(—1), w =exp(BJ), and 4. =%(z).
As shown in Section 3, the solution to (5.5) is an expression containing
Bessel functions. The same result can be obtained from the discrete solution
if the continuum limit is taken after the solution to the recurence relation
is obtained. This result demonstrates clearly which expressions in the
discrete solution become Bessel functions in the continuum limit.

We begin with the recurrence relation (4.9) and obtain a functional
equation as follows. Let

Sv)=Y VG, (5.6)

Then, using (4.9), we obtain

Xyv yv wyv
S(V)=(1+G0)1 pv (1)<1_yv+l—a)yV>

Vv wyyv
+ xS(wyv) <1 fyv— 1 _i}yv> (5.7)

This functional equation can now be solved to give

S(v)—xz {yqy [1+GO+S(1)]+S<1>%}

n k—1 k
yq v qv
11 ( v ) (58)
Pl 1l—yg"~ v 1—g"v
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where g = wy. Thus, by letting v=1, we obtain

S(y=(1+%) T (g, ;) + ST (g, y;y)+ T (¢, ¥;9)]  (59)

where
o) xntqn n qu—l qk
Ty )= x : [ _ 5.10
ngol—tq kU1 l_qu : 1_qk ( )
and hence
14+Gy) 7 (q,
S(1) = (0~ 0) (‘Iry 3 Y) (5.11)
1—-T(q.y;¥)— 7 (4, ¥; 9)

Before taking the continuum limit we once again make the length
dimensions explicit by inserting the lattice constant a, to give

1 G,) T “q,
S4(1) = Lja‘” (ify) (5.12)
1 =7 g y:9) =7 (¢, 9)
with
O ax taqan [ ayaqa(kﬂl) aqak :l
s ) a an a,a a (513)
“(q, 5t Z kﬂ 1—y4g k—1) 1—q %

Now, taking the limit a — 0 gives the surprisingly simple results

. . O'A, 1—4
lim 7 %q, y;y)=1(4) 5 Ji1(od)

a—0

) /1 1—4

lim 7y )=1-T(F) oot (514
. J; . 1(ah)
1 Sal — A+1
hm S ) = 7 ) =T o)

where I” and J, are the gamma function and Bessel functions, respectively,
o = (4x/pJ)*?*, and A= BJ/(t — BJ).

Now, as G4x, y;w):=32 __ aG,=aG,+25%1), in the continuum
limit we obtain

2J.
G(x, y; w) = lim G*(x, y; w) = Jil2) (5.15)

a—0 J}.fl(z)—J).+1(Z)
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and hence, by using Bessel functions identities, we obtain

J.(ch
1+G(x,y;w)=#aai)) (5.16)

This is precisely the continuum model result [cf. Eq. (3.32)].

6. CONNECTIONS

When the IPDSAW model was studied previously the similarity of the
models discussed by Zwanzig and Lauritzen!">?? to the IPDSAW was
noticed. The models can be formally written down in similar fashion and it
is clear that due to the different set of configurations considered the
models differ somewhat. In this paper we have shown that the exponents are
identical where they exist and in fact while solving the continuous version
the same differential equation occurs. Here we resolve the tantalizing
similarities by showing that one set of problems follows from the other,
using a necklacing®" argument.

The major difference between the models is that in the Zwanzig and
Lauritzen (ZL) models the configurations are such that at each horizontal
step the walk is constrained to fold back onto itself (see Fig.4). The
absence or not of length assigned to the horizontal steps in the continuous
versions has been discussed in Section 3 and is not a difference between the
ZL and IPDSAW models.

We begin by defining the ZL model at the generalized canonical level.
In the continuous version the generating function is given by

e @]

Gx,y;w)= ), x"Zy(y; o) (6.1)

where

(6.2)

Fig. 4. A typical configuration of a discrete ZL walk with interaction bonds shown light gray.

N
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with
N N—1
—BE[r;]= —1 Z ri+pJ Z u(ri, rivy) (6.3)
i=1 i=0
and
u(ri, rip ) =min(r;, r; o) (6.4)

(The lengths r, are defined to be positive in this model.) The definition is
similar to that of the continuous IPDSAW in Section 4 apart from the
range of integration in the expression for Z(y; w) and the absence of the
Heaviside function in the energy u(r;, r;, ). The discrete model is defined
analogously with the summations substituted for the integrals in the
expression for Z(y; ). Hence, for the discrete model

oo

Zyly;o)= Z Z e PELr] (6.5)
r1=0

ry=0

where the energy is given by the same expression as in the continuous case.
This has the same relation to the discrete IPDSAW that the continuous
model had to its counterpart.

As pointed out in the section on the continuous model, the expression
Zy(y; ) is similar to the partition function for the SOS model with
magnetic field term. In fact, in the case of the ZL model there is an exact
correspondence. Rewriting the energy equation (6.3) as

_BE[r= —HY ri—K Y {ri+lr—rl+r} (66

i=1 i=1

makes this explicit, where H=1t— fJ and K= fJ/2 as defined during the
solution of the continuous model. Recently®**’ a generating function
approach has been applied to the discrete version of the two-dimensional
SOS model in a magnetic field with a boundary potential. Without the
boundary potential the expression for the generating function is identical to
that for the discrete ZL model. In the continuous case also this relationship
is manifest in previous work on the ZL [see Eq. (34) of ref. 19] and the
SOS models [see Eq. (16) of ref. 23]. These similarities occur because, as
we have seen, the energy and partition function of the SOS model with
magnetic field (though no excess boundary energy) occur in intermediate
stages of the solution to the ZL as defined above. The difference between
the problems lies in which variables are considered fugacities: in the SOS
model the radius of convergence in x paramount, while in the ZL (and
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IPDSAW) it is a dummy variable set to one or y. Because there is a also
a difference in the definitions of the lengths r, themselves, this equivalence
cannot be extended to the SOS problem with boundary energy (that is, to
be possibly related to the ZL model with boundary potential). (In the SOS
model the r, are the absolute heights of the horizontal steps above some
fixed boundary, while in the ZL and IPDSAW they are differences between
successive steps.) The IPDSAW model with boundary potential has been
investigated elsewhere.®?)

The generalized partition function ZL®™(x, y; ) for the continuous
ZL model is

|+ ZLo(x, y; ) =20~ ——JJ_(ij,—i) (6.7)
where, repeating for convenience, ‘
o= (104gxw> " (6.8)
and
log w (69)

A=
logy !'—logw

The generalized partition function ZL***(x, y; w) for the discrete ZL model
is

1+ ZL¥%(x, y; w)

l—w
T H(x, xo, xp?w(o —1))/H(x, xo, xp(o— 1)) +1— (1 + o) — (1 —w)x
(6.10)
where the g-Bessel function H(x, g, t) is defined as before:
~  (3) n
q2’(—1)
H(x,q,t)= 6.11
(e 0= L o, (10
with
(x;q),=[] (1=x¢""") (6.12)

m=1

One can compare these to the results of the previous sections, where
we now denote the generalized partition functions by PD(x, y; ):

1 Ji(04)

T (o) (6.13)

1+ PD"(x, y;w)=0"

\‘;gg}

N

£/
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for the continuous IPDSAW, and for the discrete IPDSAW is given by

1 + PD¥(x, y; w)
_ 1—w
T 2[H(x, xo, xy?w(w— 1))/H(x, xo, xp(0 —1))] = (1 + ®) = (1 —w)x
(6.14)

The argument linking the ZL and IPDSAW models is slightly different
in the continuous and discrete cases, so let us begin with the simpler, which
is the continuous version. The essence of the argument is understanding
how to construct configurations of the IPDSAW model from the restricted
ZL space of walks. The energies of the common configurations are identical
(suitably chosen); in fact, the ZL configurations form a subset of the full
IPDSAW space. Consider an arbitrary IPDSAW walk. One can see that
this walk can be uniquely partitioned into ZL subwalks concatenated
together (see Fig. 5). Remember that ZL walks are those with at least one
vertical segment, and one horizontal step is attached to each segment. By
considering other IPDSAWs it is not difficult to convince oneself that any
IPDSAW walk can be found by concatenating a certain number of ZL
walks. Moreover, the set of walks obtained by concatenating ZL walks
together, taking account of the arbitrariness of the direction of the first
vertical segment, is precisely the set of IPDSAW configurations. The
generating function can be constructed likewise as

PDcont(x’ Vs (1))=2ZLC0m(X, y; Cl)) z [ZLcom(X, y; (D)]k (615)

k=0
SO
2Z L (x, y; )

PDcont X,y )=
(%, y; @) 1 —ZL*"(x, y; w)

(6.16)

The expressions given above satisfy this relationship.

Fig. 5. A typical discrete IPDSAW walk showing how it can be uniquely decomposed into
ZL walks.
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The discrete case is complicated by the fact that one must avoid
double counting those walks that begin with a horizontal step. Moreover,
in the construction of the IPDSAW configurations from ZL walks each
building block must take this double counting into consideration. This
results in using

ZL(x,y,w)—x[1+ZL(x, y; w)] (6.17)

instead of simply ZL(x, y; w) as the building block generating function.
Again the IPDSAW generating function is constructed as

PDY(x, y; w) = [2ZL¥° — x(1 + ZL¥*)]

x ¥ [ZLY— x(1+ ZL¥) ] (6.18)

k=0
giving
2ZLY(x, y; w) — x[1 4+ ZL¥(x, y; w)]
1 — {ZL(x, y; 0) — x[1 + ZLY¥(x, y; w) ]}

PDdiSC(X,y;CU): (619)

Again this relationship is easily verified using the exact expressions for the
discrete generating functions. The necklacing arguments link the ZL and
IPDSAW problems, while the ZL solution formally contains a certain SOS
model solution. These connections account for the appearance of the same
functions as solutions to several different problems considered in the
literature.

APPENDIX. THE GENERALIZATION OF THE DISCRETE
MODEL

One step toward the computation of the length-scale exponents of
IPDSAW is to distinguish between vertical segments, depending on their
orientation in the walk. This leads to the investigation of a four-variable
generating function of the discrete model.

Although this generahzatlon is still solvable, the solution is in the form
of a rather complex expression. Nonetheless, this is an interesting
generalization of the difference equations in Section 4.

We introduce y, and y_ as variables conjugate to steps into the
positive y and negative y directions, respectively. Writing G =G, and
G, =G _, for nonnegative r (ie ., Gy =Gy ), we get in straxghtforward

analogy to (4.9)

Gri — xyri {1 2 Z mm(r,.\‘)Gf} (Al)

=0 —

S 3
Noung?
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This leads to the following difference equation:

1

(Gr,—ry:G,y "Qi(Gri+1“inri): —xqr—;Z (1 _;> Gr, (A2)

where we denote ¢, =wy . .

In the case of no interaction (w=1), the right-hand side of this
equation is again zero and we have a set of decoupled homogeneous
difference equations with constant coefficients.

For w # 1, however, we now have to solve a set of coupled difference
equations. For this it is convenient to introduce vector notation. Defining

G+
G.-(2e) (A3)
and the off-diagonal matrix
O r
Q = <qr q0+> (A4)

we can write (A.2) as

(Gr+2_Gr+l)_w(Gr+l -G,)= —x(w— N2, .G, (A.5)

The characteristic polynomial for the lhs of (A.5) is
P[Al=41-1)(1—w) (A.6)

For later convenience, we also define

r= (‘“ 0 ) (A7)
0 gq_
In modification of (4.143), we try the ansatz
0 C+\
G,=1 Y Qc, with c,,=<ci) (A.8)
n=20 r

which leads to

PlAleot T QH(2Q7"Q),,— (1+ )i, Q1 +ol)c,

n=1

+x(w—1)i§2r‘"Q’:+lcn_l}:0 (A.9)
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where [ is the 2 x 2 identity matrix. It is due to the appearance of matrix
products in this equation that the solution is more complicated.
Fortunately, these matrix products simplify, as

Qr—ZmQ2m =(q+qA)sm and Qi—2m92m—l=(q+q‘)s(m—1)rs (AIO)

r+s r+s

Thus, the sum can be split up into even and odd terms,

0=P[ilco+ ¥ Q7 {PIMg.q_ )" TCom+x(@—1) Mg, q ) "Cop1}

m=1

+ Y QF YPLUgLq )" M es ot x(@-1) Mg )" e o)
m=1 (All)

Again, we have two solutions i,=1 and 1,=o. Comparison with
Section 4 shows that we have to choose A, =1, as the two solutions have
to coincide for g_ =g, =g¢. Thus

N —x(w—1) g, q_)" . + —x(0—=1)q,9-)"q9 + o

ct = c; _, and c¢j,, = — -
2 Pl(g.q_)"] ! 2t P[(g.q )"q.1 °
(A.12)

whence it follows that

2m . 2m m? m
N xMw—1)""(g.9 )" q"% + (A.13)

e P(g+q Y '+ 1 Pl(gsq )] o

c

and
g oS DY g TR (A1)
" Plg g )" g 1 TTR- PL(g g )" g1 PLg+q-)"]
Inserting this into the ansatz (A.8), we get
yIGE=Y (g q )" (Gt gl
m=90
=AFfcf —Bcg (A.15)
with
> xw—1)" (g9 )" "q% (A16)

~

Ar = -
mZZOHZZI Pl(g.q-) '¢:1Pl(g.q)"]
x2m+1(w_ 1)2m+l(q+q_)m(m+r)qr++m+l

,,,2:0 Pl(g.q )V"q. 1117 Pl(g. g ) 'q.1Pl(g.+q )]
(A.17)

Bi
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The initial conditions determine the constants ¢,. We get, in analogy
to (4.25),

l—w 140 - -1
1+G(x,y+,y_,w)=—£—{ﬂ(x,y+,y,,a))—< > + 3 x>}

(A.18)

"where

yiI'GF+y Gy
2G,
=(Ao+ +BJ)(A1+—BF)—(A6+Bo')(A1‘—Bf)
(Ad + By )N(Ay — By )—(4g + By )4y —By)
(A.19)

%(x,yﬂy#,a)):

The distinction between steps up and down thus leads to an expression
which takes into account the coupling between those steps, resulting in
A*#BF. For y,=y_=y these expressions become equal, and (A.19)
reduces to Eq. (4.27).
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